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Abstract. New algebraically special solutions of the Einstein-Maxwell equations are con-
structed. Among them are the first examples of solutions with twisting rays and a purely
radiative Maxwell field.

1. Introduction

In recent papers with Lewandowski [1-3] we studied Einstein’s equations for pure
radiation R,, = k,k,, where k, is a vector field tangent to a twisting shear-free con-
gruence of null geodesics in spacetime. We showed that these equations reduce to a
single linear second-order equation when the NUT parameter M vanishes. Solving this
linear equation led us to new solutions of the Einstein equations. In this paper we
consider algebraically special solutions of the Einstein-Maxwell equations. We con-
struct the first twisting solutions of Petrov type IT which are not just charged vacuums,
Also the first examples of twisting Petrov type II and I1I solutions with pure radiation
Maxwell fields are presented. Thus the ‘no go’ theorem of Debever et al [4] (sce also
Wils [5]) cannot be extended to the above Petrov types.

We assume that spacetime admits a twisting shear-free congruence of null geodesics,
which is aligned with one of the eigenvectors of the Maxwell tensor F,,. It follows
from the Goldberg-Sachs theorem [6] that the Weyl tensor of the metric is algebraically
special. The Einstein-Maxwell equations reduce to the following equations [7] (we
follow the notation used in [8]) for functions m, M, P (all real) and L, ¢%, ¢3 (all
complex) of coordinates u, Re £ Im £ (the fourth coordinate is denoted by r):

(8—2L,)$3=0 (1.1)
(0= L,)(P "¢ +8, (P3¢ =0 (1.2)
P(3-3L,)(m+iM)=-2¢1¢; ' (1.3)
PY3-2G)a(G*~3G) — P[P (m+iM)], = $3d5 (1.4)
M = —2P?3 Re(8G)+ P? Re(932 — 21,62 ~%3,0L) (1.5)
where
d=a;— L3, (1.6)
G=L,-3InP (1.7)
2i% = P*@L-sL). (1.8)
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Given a solution of equations (1.1)-(1.5), ithe corresponding metric iensor g and the
electromagnetic field 2-form F =3F,, 8" » 8" are defined by
=288 - 8% {1.9)
F= (‘51 ~$)8' A9~ (é1+ )P A8+ n B0 d’z‘az A% (1.10)

where the null tetrad &* is given by

8l A2/ D7 = 52 A3 Ak T AL T AF
» \Jb_{]r\l & w uuluui‘.,lj.;us
. - {1.11)

St=dr+ W de+ WdE+ HS®

pl=—(r+iZx) W=p 'L, +i% (L.12)

H =—r(ln P), — (mr+ MZ — ¢3¢9)p5 — P? Re(3G) '
and
¢ =p’¢} da=pd3+ p'P2L, ~3)¢1+2ip’ P(EL, —52) ¢\, (1.13)
The energy-momentum tensor of the electromagnetic field is given by

Tia=Ty= 2$1¢1 Ty3= Tz:a:z‘;qu: (1.14)

T33=252¢'2 = T= Tia= Toy= Tiu=0. '

Equations (1.3)-(1.5) with ¢ =0 are equivalent to the (reduced) Einstein equations
with a pure radiation field. If, in addition, ¢3=0, they reduce to the vacuum
equations [9].

Equations {1.1)-(1.5) are invariant under a coordinate transformation

w'=U(E & u) &= h(¢) r=ug'r {1.15)
which induces the foliowing transformation iaws of dependent variabies
L'=-h;'aU (m+iM)Y=U*(m+iM) P'=U kP (1.16}
¢7' = U'e! 8= UL (kg h,) 93 (117)
2=U% hG'= G ~3hgh;'. {1.18)

2. Equations

Equations (1.1}-(1.5) can be written in the form

(3-2G)g=0 (2.1)
(3-GYf+P3,8=9 {2.2)
(0-3G)(m+iM)=—2qf (2.3)
(0-2G1(3G -G+ P '8, (m+iM)=~ff (2.4)
Re[33S —2G38 +(-33G + GG)S] = —2M (2.5)
where
g=P2? f=P%¢} §=-2P"'% M+iM =P m+iM).  (2.6)

The functions G, g, f, m, M and § are invariant under transformation (1.15) with E=&
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Following the method of Robinson and Robinson [10] for vacuum fields, we will
assume that

= qu=fu =, =M,=0. (2.7
Conditions (2.7) are invariant under transformation (1.15}, which can be used to obtain
P, =0 (2.8)
Condition (2.8} still admits the following changes of the coordinates u, & r
uw'=Ulg Elu+ Ux(§¢) £'=h(¢) r=r/U. (29)
Under assumptions (2.7) and (2.8}, integrating (1.7) with respect to L yields
L=u(G+3ln P)+w/P {2.10)
where w= w(& £) is an arbitrary function. It follows from (1.8), (2.6) and (2.8) that
S=uyP+.S" (2.11)
where
y=i(aG —aG) (2.12)
and
=-2Im[(3+ G)Iw]. (2.13)
Equations (2.1)-(2.5) take the form
(8—-2G}g=0 (2.14)
8—-G)f=0 {2.15)
(6-3G)m+iM)=-2gF (2.16)
(3-2GY6EG-GH=-ff 2.17)
Re[338 —2G38 + §(~33G + GG) — yiw+ w(3Gy —25y)] = —2ML. (2.18)

We will consider w, G, g, f, #, M as basic unknown variables. They are subject to
equations (2.14)-(2.18), where y and § are given by (2.12) and (2.13), respectively.
The function P(¢& £) is arbitrary. Once 2 solution of (2.14)-(2.18) is known and a
function P is chosen, the functions m, M, L, ¢3, ¢3 can be obtained from (2.6) and
{(2.10). The metric tensor and the electromagnetic fleld can be computed according to
(1.9)-(1.13).

A transformation (2.9) can beAused to simplify equation (2.18). For & = £ it induces
the following change of w and §:

w'=w—(3+G)(PULUTY §'=8§-yPUUTL. (2.19)

Since PU,U;’ can be any real function of £ and £ we can impose one real condition
on w, e.g.

= {2.20)
or {only if y#0)

A

§=-2Im[(3+ G)w]=0, (2.21)
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Equations (2.14)~(2.18) can be partially integrated as follows. Let F(£ &) be a
function {complex, in general) related to G by

G=48InF (2.22)

By virtue of a freedom we have in defining F, solutions to equations (2.14)}, (2.13),
without loss of generality, can be written as

f=¢F £=0,1 (2.23)
q=AF? (2.24)

where A= A(£) is a holomorphic function. Equations (2.16) and (2.17) are equivalent
to the equations

[ F*(m+iM)] = —26AF/F (2.25)
and

[ F (G- G*)]=—<eF/F (2.26)
respectively. It follows from them that

i +iM = —2¢AFal + BF® (227
where B is another holomorphic function of £ and I is defined by

I=G*-3G. : . (2.28)

Thus all the functions G, g, f 71, M can be expressed in terms of F and w (and arbitrary
holomeorphic functions A, .B), which are subject to equations (2.26) and (2.18). Equation
{2.18) can be written in the form

Im[(3- G)a+ G- G)w+2ws(aG — G*)]= MP™>. (2.29)
Equation (2.26) does not involve w. Given a solution F of (2.26} equation (2.29) is a
linear equation for w.
Theorem 2.1. Let P(£, £) be an arbitrary real function (P # 0) and let m, M, L, ¢°, ¢3
be given by

m+iM =2¢AP Fa(6G — G°) + BP*F°

L=u(G+aln P)+w/P

¢{=AP'F? $9=eP*F
where e =0 or e=1, A and B are holomorphic functions of £ and G=3In F. If

functions F(& £) and w(¢ ) satisfy equations (2.26) and (2.29), then relations (1.9)~
(1.13) define an algebraically special solution of the Einstein-Maxwell equations.

The case £ =0 corresponds to vacuum or charged vacuum metrics. In this case,
integrating equation (2.26) yields
al = CF? (2.30)

where C=C(£). If C =0 then equations (2.30), (2.29) can be explicitly solved [10].
If C #0 then

w=w,— BF/2C (2.31)
where wy satisfies equation (2.29) with My =0,



New solutions of the Einstein- Maxwell equations 2073

The case £ =1 corresponds to radiative Maxwell fields. Substituting
w=wy+ AF (2.32)

into equation (2.29) transforms its ruS to M, = Im(BF?).
Thus, if 41 # 0, then equation (2.29) can be reduced to

Im[(5— G} 3+ &)~ G)wy—2wedI]= e Im( BF?). (2.33)

This means, in particular, that one can easily generate charged radiative Einstein-
Maxwell fields from purely radiative (¢, =0) ones.

If A% 0 (or B # 0)then it can be transformed to A’ = 1 (or B' = 1) by a transformation
(2.9). Function w, undergoes the same transformation law as w under (2.9). Due to
this, w, can be assumed to be real. Then (2.33} is a third-order equation for w,. If

v=i3s In(F/F)#0 (2.34)
then we can assume

Im[{3+ G)w,]=0. (2.35)
In this case equation (2.33) is equivalent to

Re[ yawo+ (287 —3Gy)wy] = 2¢ Im(BF?). (2.36)

Equations (2.35) and (2.36) form a first-order system of equations for the complex
function wy. Another form of equation (2.33) is obtained if, following Robinson and
Robinson [10], one introduces functions ¢ and ¢ according to

wo=(a+ G +iw). (2.37)
Then equation (2.33) takes the form
3%y =@ (Ip) —a* () + (IT + e FF)§ = £ Im(BF?) (2.38)

where I is given by (2.28). The function ¢ is disposable. It can be transformed to
¢'=0Dby (2.9).

3. Radiative solutions admitting the Killing vector @,

In this section we will assume that £ =1 (i.e. the Maxwell field is radiative, ¢3# 0) and
y=1@3G-3G)=0 (3.1)

in addition to assumptions (2.7), (2.8). In this case 3, is the Killing vector since
transformation (2.9) can be used to obtain

§,L="0. (3.2)
Instead of considering equations (2.26), (2.33), (3.1) for F and w, it is now more

natural to reduce equations (1.1)-(1.5} to equations for P and Z. Equations (1.1)-{1.3)
yield

where &, b, ¢ are holomorphic functions of £ and b # consiant. Equations (1.4), (1.5
reduce to
85{ P*33 ln P) =|ab[* (3.4)
89%+2%33In P=P~? Im(2ab+ c). (3.5)
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Given P and Z, the function L can be found by integrating equation (1.8), Up to a
transformation {2.9) (with U, =1) L is given by

L=j J 5P~ dE (3.6)

Double integration of equation (3.4) yields
P%33In P=bb+e+eé (3.7)

where e= e(£). Transformation (2.32) corresponds to the following decomposition
of =

E=20+lm(6ao—2a08 In P) (3-8)
where
a,=a/ab. (3.9}

The function Z, is subject to the equation

382+ 22433 In P= P72 Im(c,) (3.10)
where

co= ¢+ 2ayde. (3.11)
The splitiing (3.9) of X corresponds to the following decomposition of L:

L=L,—~d,P? (3.12)
where

2iZo= P*(GLy—3Ly). (3.13)

Given P and 3 function Ly can be defined by a formula analogous to (3.7).

Theorem 3.1. Let a, b (b # constant), ¢, and ¢ be holomorphic functions of £ If real
functions P, Z, of & and £ satisfy equations (3.8) and (3.10) then functions

L=i J S0P 2dE—~a/(abPY)
l=a $3=3bP m+iM = ~2ab — &+ 2ade/3b
define an algebraically special Einstein-Maxwell field via relations (1.9}-(1.13), (3.9).
For e =0 equation (3.8) is equivalent to the Liouville equation, which is exactly

soluble. Due to the freedom (restricted by (3.2) and (3.6}) of transformations (2.9) it
is sufficient to take only one solution of the Liouville equation, say

P=|b](1+ £). (3.14)
Given this P, equation (3.10) takes the form

(1+ £8)%8% 4+ 250 = Im ¢/ bb. ' (3.15)
Solutions of (3.15) have the form

2=Y+S (3.16)

where S is 2 particular solution of (3.15) and Y satisfies the homogeneous equation
(1+££Y9aY =-2Y. (3.17)
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Equation (3.17) is the eigenfunction equation (with eigenvalue equal to —2) for the
Laplace operator on the two-dimensional sphere. The variable £ can be interpreted as
the complex projective coordinate on the sphere

£=tanid e (3.18)
where 49, ¢ are the usual spherica] angles. Separation of & and ¢ in (3.17) leads to Y

kS e o

being a linear combination of funciions

(&/|£))Pi(z} (£/161) Q¥ (2) (3.19)
where P, QY are the associated Legendre functions [11] and
z-(l—éé)/(l+£ (3.20)

Y=(1+§§)“(a—a§5+B£+B—§) (3.21)

where o and 8 are constants, real and complex, respectively. Whether solutions (3.21)
are more important than others is an open question,
It is quite easy to find a particular solution of (3.15) when

c=ogb+e &eER (3.22)
where ¢,, ¢, are constants. In this case
S=1Im(e,/2b). (3.23)-

Theorem 3.2. Let a and b, b # constant, be arbitrary holomorphic functions of £ and
let B,m, M, L, $3, 3 be given by

= [B|(1+ £&) (3.24)
m+iM=cb+tc (3.25)
L=i j SoP?dE-a/(abP?) (3.26)
dl=a $I=03bP (3.27)

where
3,=Y+Im(e,/25) (3.28)

Y satisfies (3.17) (e.g. it is given by (3.21)}) and ¢,, & (both real), ¢,, 8 (both complex)
are constants. The above relations, together with (1.9)-(1.13), (3.9), define an
algebraically special solution of the Einstein-Maxwell equations. The Weyl tensor of
the solution is of Petrov type I if m+iM #0 or a #0, and it is of Petrov type II1 if
m+iM=a=0.

Metric functions P, m, M, L, 9, ¢3 given by (3.24)-(3.28) with a =0+ X, describe
purely radiative Einstein-Maxwell fields with twisting rays.

Below we give iwo exampies of solutions covered by theorem 3.2.

If Y= ¢, =10 then the metric corresponding to (3.24)-(3.28) reads:

(rF+23) d¢ dE
bb(1+ ££)°

g=2

_203{dr+1(62d§ B3 dg)+(bb+“" ;22’) 1&3} (3.29)
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where
,9-‘=du——~—-—~—«a;!§"’i:;2_;§" Go=g e (330)
3 =Im{oa, — aod In[b{1+ ££)*]}. (3.31)
The electromagnetic field is given by (1.10) with
¢ =ap’ (3.32)
$2=plbl(1+&DBE-paa-2iptaasy T T T (3%
where
o=—{(r+iZ)"\ (3.34)

Solution (3.29)-(3.34) with a # 0 is twisting, charged and radiative. In the limit a » 0
it vields a non-twisting pure radiation (no charge) Einstein-Maxwell field. The latter
solution belongs to the class of solutions obtained by Bartrum [12]. In the limit &~ +/2™!
it reduces to the Schwarzschild solution with mass m =e¢,.

An example of a solution with a purely radiative (¢, =0) Maxwell field follows
from theorem 3.2 if, e.g. a=¢,=0 and

Y =a(1-£b)/(1+&E). ' (3.35)
In this case the metric and the electromagnetic field read:
(r*+3% d¢ of { £dE-Edg ( - e ) }
= =5 - + —=t ar-— .
g=2 Bh(1+ EZ)° 2871 dr+2ai REYE bb PP & {3.36)
03, fab T4 TR a7 £ 27N
= AGO A Too At (3.37)
where
soal28 S =du+Lde+LdE (3.38)
1+ &
Liia‘—-————-*g_' =+ia r———"'—g_ilnl;u; o {3.39)
bo(1+¢E) | bb(1+887° R

This solution is of Petrov type II if ¢,# 0 and it is of Petrov type III if ¢, =0. In the
limit &->+2"" it reduces to the Kerr metric with mass parameter m = ¢, and angular
momentum parameter equal to a. In the limit @ — 0 it coincides with solution (3.29)-
(3.34) with a=0.

Solution (3.36)-(3.39) provides the first example of a pure radiation Einstein-
Maxwell field with twisting light rays. Recently, it has been proven by Debever et al
4] that aligned twisting pure radiation Einstein-Maxwell fields of Petrov type D do
not exist. The above example shows that this theorem cannot be generalized to Petrov
types Il and IIL
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