Optical reference geometry for stationary and axially symmetric spacetimes

Marek A Abramowicz†‡, Paweł Nurowski‡ and Norbert Wex§

† Department of Astronomy and Astrophysics, Göteborg University, Chalmers Technical University, S-41296 Göteborg, Sweden

‡ SISSA, Via Beirut 4, I-34014, Trieste, Italy

and ICTP, Strada Costiera 11, I-34014 Trieste, Italy

§ Max-Planck-Gesellschaft, Arbeitsgruppe Gravitationstheorie, Max-Wien Platz, D-6800 Jena, Germany

Received 12 September 1994, in final form 21 April 1995

Abstract. We discuss the acceleration and Fermi-Walker transport for the circular motion of particles, photons and gyroscopes in stationary, axially symmetric spacetimes in terms of the optical reference geometry.

PACS numbers: 0420, 0425

1. Optical reference geometry in static spacetimes

Abramowicz, Carter and Lasota [1], hereafter ACL, defined an optical reference geometry on three-dimensional spatial sections in static spacetimes. The optical geometry is obtained from the directly projected geometry of 3-spaces by a proper conformal rescaling. Light trajectories are geodesic lines in the optical geometry. Equations describing dynamics are identical to those describing Newtonian dynamics on a curved two-dimensional surface. The optical reference geometry offers insight into relativistic dynamics by providing a description in accord with Newtonian intuition and explaining effects which otherwise seem to be paradoxical [2, 3]. Therefore, it may be useful to consider the optical geometry in a more general case of stationary and axially symmetric spacetimes which is relevant in many astrophysical applications. We do this here.

2. Optical reference geometry in a general spacetime

In [4] we have introduced the optical geometry and defined the inertial forces for a general spacetime with no symmetries, generalizing the static spacetime definition given by ACL. Our approach employs a vector field n^i , and a scalar function Φ which locally obey the conditions

$$n^k n_k = -1 \qquad \dot{n}_k = n^i \nabla_i n_k = \nabla_k \Phi \qquad n_{[i} \nabla_i n_{k]} = 0. \tag{2.1}$$

It was shown in [4] that at least one solution of (2.1), corresponding to Φ = constant, exists in every spacetime.

We briefly recall the points of [4] which are relevant here[†]. The 4-velocity u^i of a test particle (with rest mass m) may be uniquely decomposed into

$$u^i = \gamma(n^i + v\tau^i). \tag{2.2}$$

Here τ^i is a unit spacelike vector orthogonal to n^i , v is the speed, and $\gamma^2=1/(1-v^2)$. Let $\tilde{v}=\gamma v$. For photons $v=\pm 1$ and $\tilde{v}=\pm \infty$. In the projected space with the metric $h_{ik}=g_{ik}+n_in_k$, Frenet's triad (θ_A) , A=1,2,3, associated with the particle trajectory is given by $(\theta_A^i)=(\tau^i,\lambda^i,\Lambda^i)$, where the unit vectors λ^i and Λ^i are the first and second normals. The optical geometry is introduced by conformal rescaling $\tilde{h}_{ik}=e^{2\Phi}h_{ik}$. The covariant derivative in \tilde{h}_{ik} is denoted by $\tilde{\nabla}_i$. For Frenet's triad in optical geometry, $(\tilde{\theta}_A^i)=e^{-\Phi}(\theta_A^i)$, and $(\tilde{\theta}_{Ai})=e^{\Phi}(\theta_{Ai})$.

Equation (2.1) defines τ^i only along the world line of the particle. However, in our construction one also needs to know how τ^i changes along trajectories of $\tilde{\eta}^i = e^{\Phi} n^i$. This should be postulated, and here we adopt the ACL gauge

$$\mathcal{L}_{\tilde{\eta}}\tau_{k} = \tilde{\eta}^{i}\nabla_{i}\tau_{k} - \tau^{i}\nabla_{i}\tilde{\eta}_{k} = 0. \tag{2.3}$$

Although different gauges are possible, only this particular one gives physically natural interpretations of different terms in the acceleration formula.

The projection of the 4-acceleration $a_k^{\perp} = (\delta_k^j + n^j n_k) u^i \nabla_i u_j$ is uniquely decomposed in terms proportional to zeroth, first and second powers of \tilde{v} and its change, $\dot{V} = u^i \nabla_i (\tilde{v} e^{\Phi})$,

$$a^{\frac{1}{k}} = G_k(\tilde{v}^0) + C_k(\tilde{v}^1) + Z_k(\tilde{v}^2) + E_k(\dot{V}) = \tilde{\nabla}_k \Phi + 2\tilde{v}\tilde{X}_k + \tilde{v}^2\tilde{\tau}^k\tilde{\nabla}_k\tilde{\tau}_i + \dot{V}\tilde{\tau}_k$$
(2.4)

where, $\tilde{X}_k = \gamma e^{-\Phi} \tau^i \nabla_{(l} \tilde{\eta}_{k)}$. From equation (2.4) we have deduced the covariant definitions of inertial forces,

Gravitational force:
$$G_k = -m\tilde{\nabla}_k \Phi$$
 (2.5)

Coriolis (Lense-Thirring) force:
$$C_k = -2m\gamma^2 v e^{-\Phi} \tau^i \nabla_{(i} \tilde{\eta}_{k)}$$
 (2.6)

Centrifugal force:
$$Z_k = -m(\gamma v)^2 \tilde{\tau}^i \tilde{\nabla}_i \tilde{\tau}_k$$
 (2.7)

Euler force:
$$E_k = -m\dot{V}\tilde{\tau}_k$$
. (2.8)

3. Circular motion in stationary and axially symmetric spacetimes

Stationary, axially symmetric spacetimes were discussed by number of authors. We follow here Bardeen's discussion in [5]. In these spacetimes two commuting Killing vector fields exist,

$$\nabla_{(i}\eta_{k)} = 0 \qquad \nabla_{(i}\xi_{k)} = 0 \qquad \eta^{i}\nabla_{i}\xi_{k} - \xi^{i}\nabla_{i}\eta_{k} = 0.$$
 (3.1)

The vector field η^i is (at least asymptotically) timelike and has open trajectories, while the vector field ξ^i is spacelike and has closed trajectories.

† In the paragraph following equation (4) in [4], the formula in the text should read, $\nabla^t \Phi = g^{ti} \nabla_i \Phi = 0$. In the paper, the last = 0 is missing.

Let $\alpha_0 > 0$ and ω_0 be two constant numbers. Then, obviously, the vectors

$$\eta_*^i = \alpha_0(\eta^i + \omega_0 \xi^i) \qquad \xi_*^i = \xi^i \tag{3.2}$$

are also commuting Killing vectors, i.e. they obey (3.1). Bardeen [6] has pointed out that any physically meaningful quantity X constructed from the Killing vectors η^i and ξ^i in some covariant way must be invariant under the transformation $X(\eta^i_*, \xi^i_*) = X(\eta^i, \xi^i)$, or the B-invariant as we shall call it for short.

It is easy to check by a direct substitution that the vector n^i field corresponding to the zero angular momentum observers (ZAMO) introduced by Bardeen [5],

$$n^i = e^{\Phi}(\eta^i + \omega \xi^i) \tag{3.3}$$

$$\omega = -\frac{(\eta \xi)}{(\xi \xi)} \qquad \Phi = -\frac{1}{2} \ln \left[(\eta \eta) + 2\omega(\xi \eta) + \omega^2(\xi \xi) \right]$$
 (3.4)

is B-invariant and that it obeys conditions (2.1), which are themselves B-invariant. Therefore, once the 4-velocity of a particle u^i is specified, the ZAMO vector field n^i can be used for the definition of inertial forces described in the previous section.

In this paper we assume that the motion is *circular*, and therefore that the 4-velocity of a particle on a particular circular trajectory of ξ^i (which we denote by \mathcal{C}_0) equals,

$$u^{i} = A(\eta^{i} + \Omega \xi^{i}) \tag{3.5}$$

$$-A^{-2} = (\eta \eta) + 2\Omega(\eta \xi) + \Omega^{2}(\xi \xi). \tag{3.6}$$

Here Ω is the angular velocity measured by the stationary observer at infinity. In general, $\dot{\Omega} = u^i \nabla_i \Omega \neq 0$. Equating (3.5) with the expression for velocity in terms of ZAMO, given by (2.2), one deduces that

$$v = \tilde{\Omega}\tilde{R} \qquad \tau^i = \xi^i \tilde{r}^{-1} \qquad \tilde{r}^2 = (\xi \xi). \tag{3.7}$$

Here $\tilde{\Omega}$ is the angular velocity measured by ZAMO, and \tilde{R} is the radius of gyration

$$\tilde{\Omega} = \Omega - \omega \qquad \tilde{R} = \tilde{r}e^{\Phi} \,. \tag{3.8}$$

Although (3.7) determines τ^i only on C_0 , it obviously makes sense everywhere in the spacetime, and therefore it is natural to postulate that (3.7) indeed gives τ^i everywhere. This is equivalent to adopting the ACL gauge (2.4).

We call \tilde{R} the radius of gyration, because $\tilde{R}^2 = \tilde{\ell}/\tilde{\Omega}$, where $\tilde{\ell} = \tilde{\mathcal{L}}/\tilde{\mathcal{E}}$ is the specific angular momentum, $\tilde{\mathcal{L}} = (u\xi)$ is the angular momentum, and $\tilde{\mathcal{E}} = -(u\tilde{\eta}) = \gamma e^{\Phi}$ is the energy of the particle. *Nota bene*, this proves that the von Zeipel cylinders in stationary spacetimes should be defined by the B-invariant condition $\tilde{R} = \text{constant}^{\ddagger}$. See [7] for a discussion of these concepts in static spacetimes.

[†] In the coordinate frame in which $\eta^i = \delta^i_t$, and $\xi^i = \delta^i_\phi$, with t being time and ϕ being the azimuthal angle around the symmetry axis, one has $g_{tt} = (\eta \eta) = -e^{-2\Phi}$, $g_{t\phi} = (\eta \xi)$, $g_{\phi\phi} = (\xi \xi)$. In this frame (3.2) becomes, $t_* = \alpha_0^{-1} t$, $\phi_* = \phi - \omega_0 t$.

[‡] Some authors wrongly define the von Zeipel cylinders in non-static spacetimes by a non-B-invariant equation R = constant with $R^2 = \ell/\Omega$ and $\ell = -(u\xi)/(u\eta)$.

One derives, after a short piece of algebra

$$G_k = -m\nabla_k \Phi \tag{3.9}$$

$$C_k = m\gamma^2 v \tilde{R} \nabla_k \omega \tag{3.10}$$

$$Z_k = -m(\gamma v)^2 \tilde{R}^{-1} \nabla_k \tilde{R} \tag{3.11}$$

$$E_k = -me^{\Phi} \gamma^3 \tilde{R} \dot{\Omega} \tilde{\tau}_k \,. \tag{3.12}$$

It is easy to check that the four forces G_k , C_k , Z_k , E_k , and the velocity v are B-invariant. Indeed, it is instructive to see how different quantities which are *not* B-invariant combine to form the B-invariant ones in (3.9)–(3.12). For example, the gravitational potential is not B-invariant, $\Phi_* = \Phi - \ln \alpha_0$, and for this reason it is determined only up to an additive constant (as should be expected). However, its gradient $\nabla_k \Phi$ is B-invariant and therefore physically meaningful. Similarly, $\tilde{R}_* = \alpha_0^{-1} \tilde{R}$, $\omega_* = \alpha_0 (\omega - \omega_0)$ and $\tilde{\Omega}_* = \alpha_0 \tilde{\Omega}$.

Note that

$$\tilde{\tau}^i \tilde{\nabla}_i \tilde{\tau}_k = \kappa \tilde{\lambda}_k = -\tilde{R}^{-1} \nabla_k \tilde{R} \,. \tag{3.13}$$

Here $\kappa = 1/\mathcal{R}$ is the curvature, and \mathcal{R} the curvature radius of the circle \mathcal{C}_0 , as measured in the optical geometry. It is, $\mathcal{R}_* = \alpha_0^{-1} \mathcal{R}$. For geodesic lines $\kappa = 0$.

4. Steady circular motion

In this section we assume that the circular motion is steady, $\dot{\Omega}=0$. A unit spacelike vector e_k parallel to $\nabla_k \tilde{r}$ defines the direction outwards of the symmetry axis $\tilde{r}=0$. We denote by $G(\tilde{r})=-e^k\nabla_k\Phi$, $C(\tilde{r})=e^k\tilde{R}\nabla_k\omega$, $Z(\tilde{r})=-e^k\tilde{R}^{-1}\nabla_k\tilde{R}$ the velocity independent parts of the gravitational, Coriolis and centrifugal accelerations in the direction of e_k , and for the total acceleration in this direction we write, $a=e^ka_k$.

The Kerr metric, and several other stationary and axially symmetric ones, display a discrete mirror symmetry $g_{ik}(z) = g_{ik}(-z)$, which invariantly defines the equatorial plane z = 0. Let Q^i denotes the acceleration vector a^i , or the gradient of an axially symmetric, stationary, and mirror-symmetric function. On the equatorial plane

$$Q^i \Lambda_i = 0 = Q^i \tau_i \,. \tag{4.1}$$

This means that on the equatorial plane Q^i points in the direction of the vector $\lambda^i = \varepsilon e^i$, where $\varepsilon = (\lambda e)$ is equal either +1 or -1. On this plane we define $E^i = \varepsilon \Lambda^i$. The vectors (τ^i, e^i, E^i) form an orthonormal triad whose orientation in space relates to the axis of symmetry independent of the particle's trajectory.

4.1. Acceleration and geodesic motion on the equatorial plane

On a particular circle C_0 defined by $\tilde{r} = \text{constant}$ one has

$$a(\tilde{v}, \tilde{r}) = -G(\tilde{r}) - \tilde{v}^2 Z(\tilde{r}) + (1 + \tilde{v}^2)^{1/2} \tilde{v} C(\tilde{r}). \tag{4.2}$$

Orbital velocities of free particles (circular geodesic motion) are given by solutions of the equation $a(\tilde{v}, \tilde{r}) = 0$, or

$$\tilde{v}_{\pm} = \pm \left[\frac{\frac{1}{2}C^2 - ZG \mp \frac{1}{2}C\left(C^2 - 4ZG + 4G^2\right)^{1/2}}{Z^2 - C^2} \right]^{1/2}.$$
 (4.3a)

If $C(\tilde{r}) \neq 0$, free orbits could exist at a particular circle $\tilde{r} =$ constant if and only if $C^2(\tilde{r}) - 4Z(\tilde{r})G(\tilde{r}) + 4G^2(\tilde{r}) > 0$. Additional (obvious) inequalities must be obeyed for existence of either prograde or retrograde orbits. If $C(\tilde{r}) = 0$, i.e. in a static spacetime, the free orbit exists if and only if GZ < 0, i.e. if and only if gravitational and centrifugal forces points in opposite directions. The orbital velocity is given by

$$\tilde{v}_{\pm} = \pm \left(-\frac{G}{Z}\right)^{1/2}.\tag{4.3b}$$

The condition $Z(\tilde{r})G(\tilde{r}) < 0$ is *not* fulfilled in the Schwarzschild spacetime for circles with $\tilde{r} < 3\sqrt{3}M$. (This corresponds to r < 3M in Schwarzschild coordinates, where M is the central mass.)

For ultra-relativistic particles $\tilde{v}^2 \gg 1$ and (4.2) becomes

$$\frac{a(\tilde{v},\tilde{r})}{\tilde{v}^2} = -Z(\tilde{r}) \pm C(\tilde{r}) + [-G(\tilde{r}) \pm \frac{1}{2}C(\tilde{r})]\tilde{v}^{-2} + \mathcal{O}(\tilde{v}^{-4}). \tag{4.4}$$

The upper signs are for the prograde motion, $(\tilde{v} > 0)$, and the lower signs for the retrograde $(\tilde{v} < 0)$ motion. It follows from (4.4) that, with accuracy $\mathcal{O}(\tilde{v}^{-2})$, motion of ultra-relativistic particles is not influenced by the gravitational force. With the same accuracy, the ultra-relativistic particles move along the circles given by

$$Z(\tilde{r}) - C(\tilde{r}) = 0$$
 (for prograde motion) (4.5a)

$$Z(\tilde{r}) + C(\tilde{r}) = 0$$
 (for retrograde motion). (4.5b)

Photons move exactly along these circles. Ultra-relativistic particles moving progradely along the prograde free-photon orbit (4.5a) have acceleration a = -G + C/2 independent of the orbital speed (with the above-mentioned accuracy). The same surprising effect occurs for ultra-relativistic particles moving retrogradely along the retrograde free-photon orbit (4.5b), with accuracy $\mathcal{O}(\tilde{v}^{-2})$, acceleration a = -G - C/2 is independent of the orbital speed. For static spacetimes C = 0. Abramowicz and Lasota [8] noticed that in this case the acceleration exactly equals $G(\tilde{r})$ and is exactly independent of the speed for all particles, not only the ultra-relativistic ones, which move either progradely or retrogradely along the unique (prograde = retrograde) circular free-photon orbit given by $Z(\tilde{r}) = 0$. From equation (3.13) one deduces that this circle is a geodesic line in the optical geometry \tilde{h}_{ik} . For static spacetimes all the geodesic lines in optical geometry always coincide with trajectories of free photons (ACL), and this explains the name 'optical geometry'.

4.2. Fermi-Walker transport and gyroscope precession

The Fermi-Walker derivative of τ^i with respect to u^i equals $\delta \tau_k / \delta s = u^i \nabla_i \tau_k - (a_k u_i - a_i u_k) \tau^i$, and the vector Ω_G^j ,

$$\Omega_G^j = \left(\frac{\delta \tau^k}{\delta s} \Lambda_k\right) \lambda^j - \left(\frac{\delta \tau^k}{\delta s} \lambda_k\right) \Lambda^j \tag{4.6}$$

gives the rate of precession (with respect to τ^i) of a gyroscope which moves with the 4-velocity u^i , see, for example, [9].

For a steady circular motion,

$$-mv\gamma^{-1}\frac{\delta\tau_k}{\delta s} = \frac{1}{2}(1+v^2)C_k + Z_k. \tag{4.7}$$

One sees that the precession of the gyroscope is not influenced by the gravitational force. On the equatorial plane,

$$\Omega_G^j = \gamma^3 \left[\frac{1}{2} (1 + v^2) C(\tilde{r}) + \varepsilon e^{\Phi} \tilde{\Omega} \frac{\tilde{R}}{\mathcal{R}} \right] E^j.$$
 (4.8)

In this formula one easily recognizes different types of precession (Thomas, geodesic, Lense-Thirring). Its generalization will be discussed in [10].

Acknowledgment

This work was supported by Komitet Badań Naukowych under the grant no 2 P302 112 7.

Appendix

The main steps in the derivation of (2.4) are

$$u^{k} \nabla_{k} u_{i} = \dot{\gamma} n_{i} + (\gamma v) \dot{\tau}_{i} + \gamma^{2} \dot{n}_{i} + \gamma^{2} v^{2} \tau^{k} \nabla_{k} \tau_{i} + \gamma^{2} v (n^{k} \nabla_{k} \tau_{i} + \tau^{k} \nabla_{k} n_{i})$$

$$\gamma^{2} \dot{n}_{i} + \gamma^{2} v^{2} \tau^{k} \nabla_{k} \tau_{i} = (\gamma^{2} - 1 + 1) \dot{n}_{i} + \gamma^{2} v^{2} \tau^{k} \nabla_{k} \tau_{i} = \dot{n}_{i} + v^{2} \gamma^{2} [(\tau^{k} \nabla_{k} \tau_{i}) + (n^{k} \nabla_{k} n_{i})]$$

$$\tilde{\tau}^{k} \tilde{\nabla}_{k} \tilde{\tau}_{i} = \tau^{k} \nabla_{k} \tau_{i} + \nabla_{i} \Phi - \tau_{i} \tau^{k} \nabla_{k} \Phi.$$

References

- [1] Abramowicz M A, Carter B and Lasota J-P 1988 Gen. Rel. Grav. 20 1173
- [2] Allen B 1990 Nature 347 615
- [3] Miller J C Approaches in Numerical Relativity ed R d'Inverno (Cambridge: Cambridge University Press) p 114
- [4] Abramowicz M A, Nurowski P and Wex N 1993 Class, Quantum Grav. 10 L183
- [5] Bardeen J M 1973 Black Holes ed C DeWitt and B S DeWitt (New York: Gordon and Breach)
- [6] Bardeen J M 1970 Astrophys. J. 162 71
- [7] Abramowicz M A, Miller J C and Stuchlik Z 1993 Phys. Rev. D 47 1440
- [8] Abramowicz M A and Lasota J-P Acta Phys. Polon. B 5 327
- [9] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (New York: Freeman)
- [10] Andersson A 1995 Gyroscope precession in an arbitrary spacetime Master Thesis University of Göteborg (in preparation)