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Abstract. We discuss the acceleration and Fermi-Walker transport for the circular motion of
particles, photons and gyroscopes in stationary, axially symmetric spacatimes in terms of the
optical reference geometry.

PACS numbers: 0420, (425

1. Optical reference geometry in static spacetimes

Abramowicz, Carter and Lasota [1], hereafter ACL, defined an optical reference geometry
on three-dimensional spatial sections in static spacetimes. The optical geometry is obtained
from the directly projected geometry of 3-spaces by a proper conformal rescaling. Light
trajectories are geodesic lines in the optical geometry. Equations describing dynamics are
identical to those describing Newtonian dynamics on a curved two-dimensional surface.
The optical reference geometry offers insight into relativistic dynamics by providing a
description in accord with Newtonian intuition and explaining effects which otherwise seem
to be paradoxical [2,3]. Therefore, it may be useful to consider the optical geometry in a
more general case of stationary and axially symmetric spacetimes which is relevant in many
astrophysical applications. We do this here. '

2. Optical reference geometry in a general spacetime

In [4] we have introduced the optical geometry and defined the inertial forces for a general
spacetime with no symmetries, generalizing the static spacetime definition given by ACL.
Our approach employs a vector field #', and a scalar function @ which locally obey the
conditions

ném = ~1 iy = n'Ving = Vi d npVing =0. (2.1)

It was shown in [4] that at least one solution of (2.1), corresponding to & = constait, exists
in every spacetime.
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We briefly recall the points of {4] which are relevant heret. The 4-velocity u’ of a test
particle (with rest mass m) may be uniquely decomposed into

w =yt 4+ vrh. (2.2)

Here t' is a unit spacelike vector orthogonal to #‘, v is the speed, and % = 1/(1 — v?).
Let # = yv. For photons v = %1 and ¥ = +oo. In the projected space with the
metric h; = gip + M8, Frenet’s triad (64), A = 1,2,3, associated with the particle
trajectory is given by (8,) = (z', A\, AY), where the unit vectors A’ and A’ are the first and
second normals. The opt1ca] _geometry is introduced by conformal rescaling Rix = e®®hyy.
The covariant derivative in /1 is denoted by V;. For Frenet's triad in optical geometry,
@) =e%(9}), and (B4;) =e ®(Bas).

Equation (2.1) defines 7° only along the world line of the particle. However, in our
construction one also needs to know how ' changes along trajectories of 7 = ¢®nf. This
should be postulated, and here we adopt the ACL gauge

;C,;rk = ﬁ"V,-rk - r"V,-F;k =0. (23)

Although different gauges are possib]e, only this particular one gives physically natural
interpretations of different terms in the acce]eratlon formula.

The projection of the 4-acceleration at, = (6 +nim ) Vi is uniquely decomposed
in terms proportional to zeroth, first and second powers of & and its change, V = u! V; (ie?®),

at = Gy (8% + Ce(B') + Zu(#?) + Ex(V) = Vi ® + 20K, + 0284V, % + Vi (2.4)

where, }?k = ye“”rfv(;ﬁh. From equation (2.4) we have deduced the covariant definitions
of inertial forces,

Gravitational force: Gy = —mV, @ (2.5)
Coriolis (Lense~Thirring) force: C = —2myve™%7' Vi, (2.6)
Centrifugal force: Zp = —m(y ¥ V9,5 @n
Euler force: £, = —mV %, (2.8

3. Circular motion in stationary and axially symmetric spacetimes

Stationary, axially symmetric spacetimes were discussed by number of authors. We follow
here Bardeen’s discussion in [5]. In these spacetimes two commuting Killing vecior fields
exist,

Ving =0 Vit =0 NV —E Vi =0. G.1D

The vector field n' is (at least asymptotically) timelike and has open trajectories, while
the vector field £ is spacelike and has closed trajectories.

1 In the paragraph following equation (4) in [4], the formula in the text should read, V¢ = g"' Vi® =0, In the
paper, the last = 0 is missing.
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Let o > 0 and ey be two constant numbers. Then, obviously, the vectors
no=ao(n +wot) &= (3.2)

are also commuting Killing vectors, i.e. they obey (3.1). Bardeen [6] has pointed out that
any physically meaningful quantity X constructed from the Killing vectors n' and &' in
some covariant way must be invariant under the transformation X (4, £5) = X(n', &%), or
the B-invariant as we shall call it for short}.

Tt is easy to check by a direct substitution that the vector n’ field corresponding to the
zero angular momentum observers (ZAMO) introduced by Bardeen [5],

n' = e + wt') ‘ (3.3)
= _gg & = —lin[tm) +20Em + 2EE)] (34)

is B-invariant and that it obeys conditions (2.1), which are themselves B-invariant.
Therefore, once the 4-velocity of a particle # is specified, the ZAMO vector field n can be
used for the definition of inertial forces described in the previous section.

In this paper we assume that the motion is circular, and therefore that the 4-velocity of
a particle on a particular circular trajectory of &' (which we denote by Cp) equals,

u' = A + QED (3.5)
— A% == () + 202(nk) + Q2(£8). (3.6)

Here 2 is the angular velocity measured by the stationary observer at infinity. In
general, 2 = &'V, Q2 # 0. Equating (3.5) with the expression for velocity in terms of ZAMO,
given by (2.2), one deduces that

v =R ! = giF! 72 = (£8). (3.7
Here 2 is the angular {'elocity measured by ZAMO, and R is the radius of gyration
R=0-w R=re®. (3.8)

Although (3.7) determines =’ only on Cjp, it obviously makes sense everywhere in the
spacetime, and therefore it is natural to postulate that (3.7) indeed gives 7/ everywhere,
This is equivalent to adopting the ACL gauge (2.4).

We call R the radius of gyration, because R? = £/, where £ = L/€ is the specific
angular momentum, £ = (u£) is the angular momentum, and € = —(uf) = ve? is the
energy of the particle. Nota bene, this proves that the von Zeipel cylinders in stationary
spacetimes should be defined by the B-invariant condition R = constanti. See [7] for a
discussion of these concepts in static spacetimes.

1 In the coordinate frame in which #' = &,, and & = 6"4,. with ¢ being time and ¢ being the azimuthal angle
around tlhe symmelry axis, one has gy = () = ~e72%, gy = (1), gpy = (£5). In this frame {3.2) becomes,
Lh=ag gy = ¢ —wpt.

1 Some authors wrongly define the von Zeipel cylinders in non-static spacetimes by a non-B-invariant equation
R = constant with R = £/ and £ = ~(u§)/ (un).
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One derives, after a short piece of algebra

Gy = —mV, @ (3.9)
Cy = myRVw (3.10)
Zy = —m(yv)’ RV R (3.11)
Ey = —me®y3 RO, . (312

It is easy to check that the four forces Gy, Cr, Zx, E}, and the velocity v are B-invariant.
Indeed, it is instructive to see how different guantities which are not B-invariant combine
to form the B-invariant ones in (3.9)-(3.12). For example, the gravitational potential is not
B-invariant, ¢, = ¢ — Inoyg, and for this reason it is determined only up to an additive
constant (as should be expected). However, its gradient V@ is B-invariant and therefore
physically meaningful. Similarly, R, = o IR, w, = oig(w — o) and 2, = 2.

Note that

PR =kh = —RIVR. (3.13)

Here ¥ = 1/R is the curvature, and R the curvature radius of the circle Cp, as measured
in the optical geometry. It is, R, = oy IR. For geodesic lines « = 0.

4. Steady circular motion

In this section we assume that the circular motion is steady, €2 = 0. A unit spacelike vector
; parallel to V7 defines the direction outwards of the symmetry axis F = 0. We denote
by G(F) = —e'Vy®, C(F) = e* RV, Z(F) = —* RV, R the velocity independent parts
of the gravitational, Coriolis and centrifugal accelerations in the direction of ey, and for the
total acceleration in this direction we write, a = efa;.

The Kerr metric, and several other stationary and axially symmetric ones, display a
discrete mirror symmetry g,,(z) = gix(—z), which invariantly defines the equatorial plane
7z =0. Let Q' denotes the acceleration vector a’, or the gradient of an axially symmetric,
stationary, and mirror-symmetric function. On the equatorial plane

QA =0=Q'r;. 4.1

This means that on the equatorial plane O points in the direction of the vector A = g&/,
where & = (Ae) is equal either +1 or —1. On this plane we define EY = eAf. The vectors
(z!, ¢!, E) form an orthonormal triad whose orientation in space relates to the axis of
symmetry independent of the particle’s trajectory.

4.1. Acceleration and geodesic motion on the equatorial plane

On a particular circle ¢y defined by 7 = constant one has
a(@, 7y = —G(F) — PP Z(F) + (1 + ) 28CEF) . 4.2)

Orbital velocities of free particles (circular geodesic motion) are given by solutions of
the equation a(#,7) =0, or

1/2
Lot zG T Lo (c? - 426G + 4G
iy =+ {2 F 3¢ +46%) . 4.3a)

—c?
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If C(F) # 0, free orbits could exist at a particular circle 7 = constant if and only if
C2(F) — 4Z(F)G(F) + 4G(F) > 0. Additional (obvious) inequalities must be obeyed for
existence of either prograde or retrograde orbits, M C(F) = 0, i.e. in a static spacetime,
the free orbit exists if and only if GZ < 0, i.e. if and only if gravitational and centrifugal
forces points in opposite directions. The orbital velocity is given by

. G\'"?
vi=:|:(—~E) . (4.3b)

The condition Z(F)G{F) < O is nor fulfilled in the Schwarzschild spacetime for circles
with 7 < 3+/3M. (This corresponds to r < 3M in Schwarzschild coordinates, where M is
the central mass.)

For ultra-relativistic particles #¢ 3> 1 and (4.2) becomes

afii, F)
B2

= ~Z(F) & C(F) + [-G(F) £ CEI™7 + OF™). (4.4)

The upper signs are for the prograde motion, (¥ > 0), and the lower signs for the
retrograde (# < Q) motion. It follows from (4.4) that, with accuracy O(37%), motion
of ultra-relativistic particles is not influenced by the gravitational force. With the same
accuracy, the ultra-relativistic particles move along the circles given by

ZFH—-CH =0 {for prograde motion) (4.5a)
ZIAH+CFH) =0 (for retrograde motion) . (4.5b)

Photons move exactly along these circles. Ulira-relativistic particles moving progradely
along the prograde free-photon orbit (4.54) have acceleration @ = —G +C/2 independent of
the orbital speed (with the above-mentioned accuracy). The same surprising effect occurs
for ulira-relativistic particles moving retrogradely along the retrograde free-photon orbit
(4.5b), with accuracy ((5~2), acceleration a = —G — C/2 is independent of the orbital
speed. For static spacetimes C = 0. Abramowicz and Lasota [8] noticed that in this
case the acceleration exactly equals G({¥) and is exactly independent of the speed for afl
particles, not only the vltra-relativistic ones, which move either progradely or retrogradely
along the unique (prograde = retrograde) circular free-photon orbit given by Z(F) = 0.
From equation (3.13) one deduces that this circle is a geodesic line in the optical geometry
hix. For static spacetimes afl the geodesic lines in optical geometry always coincide with
trajectories of free photons (ACL}, and this explains the name ‘optical geometry’.

4.2, Fermi—Walker transport and gyroscope precession

The Fermi-Walker derivative of 7/ with respect to ' equals 87,/8s = w' Vit — (aru; —
ayue) 7, and the vector $¥k,

; st st .
QL = (—S?Ak) M- (E;—).k) Al (4.6)

gives the rate of precession (with respect to 7‘) of a gyroscope which moves with the
4-velocity u!, see, for example, [9].
For a steady circular motion,

é
—myy == I+ DG+ 2 (4.7)
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One sees that the precession gf the gyroscope is not influenced by the gravitational force.
On the equatorial plane,

. ; R _.
QL =y° %(1+v2)C(r)+£e¢Qﬁ Ef. (4.8)

In this formula one easily recognizes different types of precession (Thomas, geodesic,
Lense~Thirring). Its generalization will be discussed in [10].
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Appendix
The main steps in the derivation of (2.4) are

WV = va; + (yv)T: + yzfz,- + yzvzrkvkr,- + yzv(n"Vkr,- + t*Vny)
Vi 4+ vt Vi = (0 - 1+ Diy + 20t Ve = 4+ 0V F (A )
9,8 = t* W + Vi — TV D
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