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Abstract: On a natural circle bundle T(M) over a 4-dimensional manifold M equipped
with a split signature metric g, whose fibers are real totally null selfdual 2-planes, we
consider a tautological rank 2 distribution D obtained by lifting each totally null plane
horizontally to its point in the fiber. Over the open set where g is not antiselfdual, the
distribution D is (2,3,5) in T(M). We show that if M is a Cartesian product of two
Riemann surfaces (Σ1, g1) and (Σ2, g2), and if g = g1 ⊕ (−g2), then the circle bundle
T(Σ1×Σ2) is just the configuration space for the physical system of two surfaces Σ1 and
Σ2 rolling on each other. The condition for the two surfaces to roll on each other ‘without
slipping or twisting’ identifies the restricted velocity space for such a system with the
tautological distribution D on T(Σ1 × Σ2). We call T(Σ1 × Σ2) the twistor space,
and D the twistor distribution for the rolling surfaces. Among others we address the
following question: “For which pairs of surfaces does the restricted velocity distribution
(which we identify with the twistor distribution D) have the simple Lie group G2 as the
group of its symmetries?” Apart from the well known situation when the surfaces Σ1
and Σ2 have constant curvatures whose ratio is 1:9, we unexpectedly find three different
types of surfaces that when rolling ‘without slipping or twisting’ on a plane, have D
with the symmetry group G2. Although we have found the differential equations for the
curvatures of Σ1 and Σ2 that gives D with G2 symmetry, we are unable to solve them
in full generality so far.
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1. Introduction

Bryant and Hsu [4, pp. 456–458] gave the following description of the configuration
space of two solids rolling on each other ‘without slipping or twisting’: the two solids
are represented by two surfaces Σ1 and Σ2, equipped with the respective Riemannian
metrics g1 and g2. The configuration space for the physical system is parametrized by
points x on the first surface, points x̂ on the second surface (these are just the points of
contact of the two surfaces), and a rotation A identifying the tangent space to Σ1 at x
with the tangent space to Σ2 at x̂ . This makes the configuration space a circle fiber bundle
S

1 ↪→ C(Σ1,Σ2) → Σ1 ×Σ2 over the Cartesian product Σ1 ×Σ2 of the two surfaces,

C(Σ1,Σ2) = {(x, x̂, A) | A : TxΣ1 → Tx̂Σ2, A ∈ SO(2) ∼= S
1},

with the projection π(x, x̂, A) = (x, x̂).
In this realization of the configuration space, the movement of the two surfaces is rep-

resented by curves γ (t) = (x(t), x̂(t), A(t)) in C(Σ1,Σ2). The unconstrained velocity
space at a point p consists of all vectors of the form γ̇ (t)|t=0 = (ẋ(t), ˙̂x(t), Ȧ(t))|t=0,
where γ (t) stands for all smooth curves in C(Σ1,Σ2) such that γ (0) = p.

The ‘no slipping and no twisting’ conditions constrain the velocity space, reducing its
dimension at each point from five to two. This reduction is obtained by first imposing a
condition for the absence of ‘linear slipping’. This can be formalized as follows. If γ (t) =
(x(t), x̂(t), A(t)) is an admissible motion, then the lack of linear slipping means that:

A(t)ẋ(t) = ˙̂x(t).

This produces a drop in the dimension of the velocity space at each point by two, from
five to three. The condition of no ‘twisting’ reduces this dimension to two. We impose
it now. It means that the admissible motions γ (t) = (x(t), x̂(t), A(t)) must have the
following geometric property: for every vector field v(t) which is parallel along x(t) the
A(t) transformed vector field v̂(t) must be a vector field parallel along x̂(t), i.e.

1∇ ẋ(t) v(t) = 0 and A(t)v(t) = v̂(t) implies
2∇ ˙̂x(t) v̂(t) = 0,

where
i∇ is the Levi-Civita connection for the surface (Σi , gi ).

To be more explicit, we now follow [2]. We take (e1(x), e2(x)) as an orthonormal
frame in Σ1 and (e3(x̂), e4(x̂)) as an orthonormal frame in Σ2. To simplify the notation,
from now on we will omit the dependencies of x and x̂ in the expressions involving these
basis vectors.

The most general forms of the commutators for (e1, e2) and (e3, e4) are:

[e1, e2] = a1e1 + a2e2, [e3, e4] = a3e3 + a4e4, (1.1)

with a1 = a1(x), a2 = a2(x) functions on Σ1 and a3 = a3(x̂), a4 = a4(x̂) functions on
Σ2. We extend the coframes (e1, e2) and (e3, e4) to a coframe (e1, e2, e3, e4) onΣ1×Σ2.
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This is done by requiring that the extended frame (e1, e2, e3, e4) satisfies (1.1), with the
functions a1, a2 being constant along e3 and e4, and the functions a3 and a4 being
constant along e1 and e2. The next requirement, that uniquely defines the extension,
is that all commutators of (e1, e2, e3, e4) other than those given by the relations (1.1)
vanish on Σ1 × Σ2 . Parametrizing the rotation matrices A by the angle of rotation φ,

Aφ =
(

cos φ − sin φ

sin φ cos φ

)
,

we further extend the frame (e1, e2, e3, e4) from Σ1 × Σ2 to C(Σ1,Σ2) by the require-
ment that the resulting vector fields (e1, e2, e3, e4) on C(Σ1,Σ2) are constant when Lie
dragged along the fibers:

L∂φ ei ≡ 0, i = 1, 2, 3, 4.

This defines a coframe (e1, e2, e3, e4, ∂φ) in C(Σ1,Σ2). Now, it follows from [2] that
the velocity space of admissible motions constrained by the ‘no slipping and no twisting’
conditions is, at every point, spanned by:

X̃1 = e1 + cos φ e3 + sin φ e4 + (−a1 + a3 cos φ + a4 sin φ)∂φ,

X̃2 = e2 − sin φ e3 + cos φ e4 + (−a2 − a3 sin φ + a4 cos φ)∂φ.
(1.2)

We summarize the above considerations in the following proposition.

Proposition 1. The configuration space for the physical system of two surfaces rolling
on each other ‘without slipping or twisting’ is a circle bundle S

1 ↪→ C(Σ1,Σ2) →
Σ1×Σ2. The space of admissible velocities for the system is a 2-dimensional distribution
Dv in C(Σ1,Σ2). In coordinates (x, x̂, φ) on C(Σ1,Σ2), where x and x̂ denote the
respective points on Σ1 and Σ2, and where φ is the angle of rotation corresponding
to the map Aφ , the distribution Dv is spanned by the vector fields X̃1 and X̃2 given by
(1.2).

Remark 1. Note that if we simultaneously rescale the metric of our two Riemann surfaces
by the same constant, i.e. (g1, g2) → (s2g1, s2g2) with s = const �= 0, then ei → s−1ei
and ai → s−1ai , i = 1, 2, 3, 4. This transformation merely rescales the vector fields
X̂1, X̂2 as X̂1 → s−1 X̂1 and X̂2 → s−1 X̂2. Thus the distribution Dv does not change
when the two rolling surfaces are scaled by the same constant factor. This reflects an
obvious fact that the local symmetry of two surfaces rolling on each other ‘without
slipping or twisting’ should only depend on their relative size with respect to each other
and not on their individual sizes.

We now present a simple observation that is crucial for the rest of the paper:

Proposition 2. Every point of the configuration space C(Σ1,Σ2) of the system of two
rolling surfaces ‘without slipping or twisting’ defines a 2-plane, which is totally null in
the standard split signature metric in R

4 = R
(2,2).

Proof. Given a point (x, x̂, φ) in C(Σ1,Σ2) we consider the graph

{(a, b, a cos φ − b sin φ, a sin φ + b cos φ) | a, b ∈ R
2} ⊂ R

4,

of the map Aφ : TxΣ1 → Tx̂Σ2. This gives a plane

N (x, x̂, φ) = Span(X1, X2)
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in R
4 spanned by the vectors

X1 = (1, 0, cos φ, sin φ) and X2 = (0, 1,− sin φ, cos φ).

Due to the orthogonality of A, the plane N (x, x̂, φ) is totally null in the standard split
signature metric y2

1 + y2
2 − y2

3 − y2
4 in R

4 = R
(2,2).

This proposition suggests that we consider the space T(M) of real totally null planes
over a 4-dimensional manifold M = Σ1 ×Σ2 equipped with the metric g = g1 ⊕ (−g2)

and identify the points of the configuration space C(Σ1,Σ2) for the two rolling surfaces
with the points of T(M). To make this suggestion into a precise identification we now
discuss the geometry of the space T(M). Because of possible applications other than the
kinematics of the rolling surfaces, we will consider T(M) over general split signature
metric 4-manifolds M , not assuming from the very beginning that M is a product of two
surfaces.

2. Twistor Space

2.1. Null planes in R
(2,2). Consider the 4-dimensional vector space V = R

4. Denote
by (e1, e2, e3, e4) the standard basis in it, e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 =
(0, 0, 1, 0) and e4 = (0, 0, 0, 1). Then every vector y ∈ V is y = y1e1+y2e2+y3e3+y4e4.

We now endow V with the standard split signature metric g, by setting g(y, y) =
y2

1 + y2
2 − y2

3 − y2
4 for each y ∈ V . We also choose an orientation in V . This additionally

equips V with the Hodge star operator ∗ which, in particular, is an automorphism of the
space

∧2V of bivectors. In the basis ei this automorphism is given by

∗ (e1 ∧ e2) = e3 ∧ e4, ∗(e3 ∧ e4) = e1 ∧ e2,

∗ (e1 ∧ e3) = e2 ∧ e4, ∗(e2 ∧ e4) = e1 ∧ e3,

∗ (e1 ∧ e4) = −e2 ∧ e3, ∗(e2 ∧ e3) = −e1 ∧ e4.

(2.1)

One easily checks that the map ∗ : ∧2V → ∧2V squares to the identity, ∗2 = Id. It
has two eigenvalues +1 and −1, and splits

∧2V onto a direct sum of the corresponding
eigenspaces

∧2V = V+ ⊕V−. Bivectors from V+ are called selfdual, and bivectors from
V− are called antiselfdual.

In V we have two kinds of real totally null planes. An example of the planes of the
first kind is

N+ = Span(e1 + e3, e2 + e4), (2.2)

and an example of the planes of the second kind is

N− = Span(e1 + e3, e2 − e4). (2.3)

The difference between them is clearly visible in terms of their corresponding bivectors:
Let N = Span(n1, n2) be a general real totally null plane in V . This means that

n1, n2 ∈ V, g(n1, n1)=g(n1, n2)=g(n2, n2)=0 and n1 ∧n2 �=0. Every such N defines
a line RL(N ) in

∧2V represented by L(N ) = n1 ∧n2. One can show that the condition
that N is totally null forces L(N ) to be an eigenvector of ∗. Thus L(N ) is either selfdual
or antiselfdual, and we use this property of L(N ) to call the corresponding N selfdual, or
antiselfdual respectively. In this sense, our N+ above is selfdual, and N− is antiselfdual.
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The identity component SO0(2, 2) of the orthogonal group SO(2, 2) acts on totally
null planes via:

hN = Span(hn1, hn2), where h ∈ SO0(2, 2), N = Span(n1, n2),

and hn1 denotes the usual action of SO0(2, 2) in the standard 4-dimensional represen-
tation on the vector n1 in R

4 = R
(2,2).

This action has two orbits O+ and O− given by:

O± = {hN± | h ∈ SO0(2, 2)},
where N± is given by (2.2) and (2.3), respectively. Thus each orbit consists of all the
totally null planes of a given selfduality. Both of them are diffeomorphic to a circle S

1.
We summarize considerations of this section in the following (well known) proposition.

Proposition 3. The space O of totally null planes in V = R
4 equipped with the split

signature metric is a disjoint union, O = O+
⊔ O− of the spaces O± of respectively

selfdual and antiselfdual totally null planes. Each of the spaces O± is diffeomorphic to
a circle, O± ∼= S

1. In the orthonormal basis (2.1) the orbit O+ may be parametrized by
φ ∈ [0, 2π [, so that N+(φ) ∈ O+ iff

N+(φ) = Span(e1 + cos φ e3 + sin φ e4, e2 − sin φ e3 + cos φ e4).

Similarly the orbit O− consists of points

N−(φ) = Span(e1 + cos φ e3 + sin φ e4, e2 + sin φ e3 − cos φ e4).

The corresponding lines of bivectors are:

RL(N+(φ))

= Span
(

e1 ∧ e2 + e3 ∧ e4 − sin φ(e1 ∧ e3 + e2 ∧ e4) + cos φ(e1 ∧ e4 − e2 ∧ e3)
)

and

RL(N−(φ))

= Span
(

e1 ∧ e2 − e3 ∧ e4 + sin φ(e1 ∧ e3 − e2 ∧ e4) − cos φ(e1 ∧ e4 + e2 ∧ e3)
)
.

2.2. Null planes on a manifold. We now consider a 4-dimensional real oriented man-
ifold M equipped with a split signature metric g. We use an orthonormal coframe
(σ 1, σ 2, σ 3, σ 4) in which the metric looks like

g = gi jσ
iσ j = (σ 1)2 + (σ 2)2 − (σ 3)2 − (σ 4)2, (2.4)

with its dual frame of vector fields (e1, e2, e3, e4) on M . We then have ei−| σ j = δ
j

i . At
every point y ∈ M , we have a circle

O+(y) = {N+(y, φ)

= Span(e1 + cos φ e3 + sin φ e4, e2 − sin φ e3 + cos φ e4) | φ ∈ [0, 2π [}
of real totally null planes N+(φ). A disjoint union T(M) of these circles,

T(M) =
⋃
y∈M

O+(y),
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as y runs through all the points of M , is a circle bundle

S
1 ↪→ T(M)

π→ M,

with the projection

π(y, N+(y, φ)) = y

and fibers

π−1(y) = O+(y).

One sees that the points (y, N+(y, φ)) are uniquely parametrized by (y, φ), y ∈
M, φ ∈ [0, 2π [. We will use this parametrization of T(M) in the following.

Definition 1. Given a 4-dimensional oriented manifold M equipped with a split signa-
ture metric g its natural circle bundle S

1 ↪→ T(M)
π→ M defined above is called a

twistor (circle) bundle.

Twistor bundle T(M) has an additional structure induced by the Levi-Civita connection
from M (see [3,14] for more details, and e.g. [7,12] for the formulation in terms of
totally null planes).

Proposition 4. The tangent bundle TT(M) to the twistor circle bundle S
1 ↪→ T(M) →

M of a 4-dimensional manifold M equipped with a split signature metric g naturally
splits into vertical V and horizontal H parts

TT(M) = V ⊕ H.

This equips T(M) with a canonical rank two distribution D whose 2-plane at each
point (y, φ) ∈ T(M) is given by the horizontal lift of a totally null plane N+(y, φ) from
y ∈ M to (y, φ) ∈ T(M).

Proof. Of course, the vertical space V consists simply of all the tangent spaces to the
circles O+(y) ∼= S

1.
Below we give an explanation of how the horizontal space H in TT(M) is defined,

and what the horizontal lift is. Having this explained, we will define D as in the statement
of the proposition.

We start with the horizontal lift of vectors Y from M to T(M). It sends every tangent
vector Yy from y ∈ M to a vector Y(y,φ) at a chosen point (y, φ) in the fiber π−1(y) as
follows:

Take a curve y(t) in M starting at y, y(0) = y, and tangent to Yy . Then we identify the
chosen point (y, φ) to which we want to lift our Yy with a totally null plane N+(y, φ) in
the tangent space Ty M . Using the Levi-Civita connection associated with g in M we now
parallel transport the totally null plane N+(y, φ) along the curve y(t) from point y to
y(t f ), with some t f > 0. In this way we obtain a curve of 2-planes ỹ(t) = N+(y, φ, t)
along y(t) for all 0 ≤ t ≤ t f . Since the Levi-Civita connection preserves nullity of
vectors, the curve ỹ(t) of planes is actually a curve of totally null planes. And for
sufficiently small t f these totally null planes are selfdual for the reason of continuity,
since N+(y, φ) was selfdual, and y(t) is continuous.
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This shows that given a differentiable curve y(t) in M , starting at y and tangent to
Yy , we have a corresponding curve ỹ(t) in T(M) starting at (y, φ). The tangent vector to

this curve d ỹ
dt |t=0 is by definition the horizontal lift Ỹ(y,φ) of Yy from y to (y, φ) ∈ T(M),

Ỹ(y,φ) = d ỹ

dt |t=0
.

It is a matter of checking that the construction of this lift does not depend on the choice
of the curve y(t): any other curve y1(t) passing through y at t = 0, and tangent to Yy

produces the same lift. It also follows that the image H(y,φ) of the lift map (y, Yy, φ)
∼
→

Ỹ(y,φ), with (y, φ) fixed, is at each point (y, φ) ∈ T a 4-dimensional vector space, which
we denote by H(y,φ). This, by definition is the horizontal vector space at (y, φ), and we
define H as

H =
⋃

(y,φ)∈T(M)

H(y,φ).

Definition 2. The canonical horizontal rank two distribution D on T(M) defined in
Proposition 4 is called the twistor distribution.

To give an explicit formula for the horizontal lift in terms of the coordinates (y, φ)

on T(M) we introduce the Levi-Civita connection 1-forms Γ i
j , associated with the

orthonormal coframe (2.4). These are uniquely defined by

dσ i + Γ i
j ∧ σ j = 0, and Γi j + Γ j i = 0,

where Γi j = gikΓ
k
j , and gi j and σ i are given by (2.4). Once the connection 1-forms Γ i

j
are determined by the coframe and the metric (2.4), they define connection coefficients
Γ i

jk via

Γ i
j = Γ i

jkσ
k .

Then an elementary (but lengthy) calculation, using the explanation about the hori-
zontal lift given in the proof of Proposition 4, leads to the following lemma:

Lemma 1. In coordinates (y, φ) on T(M) adapted to the orthonormal coframe (2.4),
the formulas for the horizontal lifts of the frame vectors (e1, e2, e3, e4) are:

ẽi = ei +
(
Γ 3

4i − Γ 1
2i + (Γ 1

4i − Γ 2
3i ) cos φ + (Γ 1

3i + Γ 2
4i ) sin φ

)
∂φ, ∀i = 1, 2, 3, 4.

In particular, the twistor distribution D is spanned by two vector fields X̃1 and X̃2
on T(M) given by:

X̃1 = e1 + cos φ e3 + sin φ e4 + z1∂φ,

X̃2 = e2 − sin φ e3 + cos φ e4 + z2∂φ,
(2.5)
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with the following ‘horizontal corrections’ z1 and z2:

z1 = Γ 3
41 − Γ 1

21 + cos φ(Γ 3
43 − Γ 2

31 + Γ 1
41 − Γ 1

23)

+ sin φ(Γ 3
44 + Γ 2

41 + Γ 1
31 − Γ 1

24) + cos2 φ(Γ 1
43 − Γ 2

33)

+ cos φ sin φ(Γ 2
43 − Γ 2

34 + Γ 1
44 + Γ 1

33) + sin2 φ(Γ 1
34 + Γ 2

44),

z2 = Γ 3
42 − Γ 1

22 + cos φ(Γ 3
44 − Γ 2

32 + Γ 1
42 − Γ 1

24)

+ sin φ(−Γ 3
43 + Γ 2

42 + Γ 1
32 + Γ 1

23) + cos2 φ(Γ 1
44 − Γ 2

34)

+ cos φ sin φ(Γ 2
44 + Γ 2

33 − Γ 1
43 + Γ 1

34) − sin2 φ(Γ 1
33 + Γ 2

43).

(2.6)

The resemblance of the formulas (2.5) for the twistor distribution D to the formulas
(1.2) for the velocity distribution Dv of two rolling surfaces, together with Proposition 2,
suggests to specialize our considerations to M = Σ1 ×Σ2, with g = g1 ⊕ (−g2), where
(Σ1, g1) and (Σ2, g2) are the two rolling surfaces.

We then have the following theorem.

Theorem 1. There is a natural identification

C(Σ1,Σ2) ∼= T(Σ1 × Σ2)

between the configuration space C(Σ1,Σ2) of two surfaces rolling on each other ‘with-
out slipping or twisting’, and the circle twistor bundle T(Σ1×Σ2) over the split signature
metric 4-manifold (Σ1 × Σ2, g1 ⊕ (−g2)), where gi is the metric on Σi .

Moreover, in this identification, the velocity space Dv of two surfaces rolling on each
other ’without slipping or twisting’ coincides with the twistor distribution D on T(M),

Dv = D.

Proof. The identification is obtained by means of Proposition 2:
First, given two surfaces (Σ1, g1) and (Σ2, g2) we form a split signature 4-manifold

M = Σ1×Σ2 with the metric g = g1⊕(−g2), and its circle twistor bundle T(Σ1×Σ2).
Then, given a point (x, x̂, φ) in C(Σ1,Σ2), we identify it with a totally null plane
N+(y, φ) = Span(e1 + cos φ e3 + sin φ e4, e2 + sin φ e3 − cos φ e4) at y = (x, x̂) in M .
Here (e1, e2, e3, e4) is an orthonormal basis for g corresponding to two orthonormal
bases (e1, e2) for g1 and (e3, e4) for g2. Thus, given a point (x, x̂, φ) in C(Σ1,Σ2) we
have the totally null plane N+(y, φ) at y = (x, x̂) in M = Σ1 × Σ2, i.e. a point (y, φ)

in T(Σ1,Σ2).
Conversely, having T(Σ1 × Σ2) we can canonically split every projection y =

π((y, φ)) onto y = (x, x̂), such that x ∈ Σ1 and x̂ ∈ Σ2. Since we have an interpretation
of (y, φ) as a totally null plane N+(y, φ) at y = (x, x̂) we can now associate to it Aφ as
a unique linear orthogonal map Aφ : TxΣ1 → Tx̂Σ2 whose graph in (TxΣ1)× (Tx̂Σ2)

is the totally null plane N+(y, φ).
This shows both directions of the identification.
Having given the identification, we now specialize the formula (2.5) to the case when

M = Σ1×Σ2. We return to the setting as in formula (1.1), where the orthonormal frames
(e1, e2) and (e3, e4) are extended to the orthonormal frame (e1, e2, e3, e4) in M = Σ1 ×
Σ2. Now, having the commutation relations (1.1) we calculate the connection coefficients
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Γ i
jk of the Levi-Civita connection of g = g1 ⊕(−g2) in the frame (e1, e2, e3, e4). These

are:

Γ 1
21 = a1, Γ 1

22 = a2, Γ 3
43 = a3, Γ 3

44 = a4.

Modulo the symmetry, gi jΓ
j
kl = −gkjΓ

j
il , all other connection coefficients are zero.

These, when inserted in the expressions (2.6) for the horizontal corrections z1 and z2,
give:

z1 = −a1 + a3 cos φ + a4 sin φ and z2 = −a2 + a4 cos φ − a3 sin φ.

Insertion of these z1 and z2 into formulas (2.5) defining the vectors X̃1 and X̃2,
transforms the vectors spanning the twistor distribution D into Agrachov-Sachkov’s
vectors (1.2) spanning the velocity space Dv of the two rolling surfaces restricted by the
non-slipping and non-twisting conditions.

This finishes the proof.

In view of this theorem we have the following definition:

Definition 3. Let (Σ1, g1) and (Σ2, g2) be two Riemann surfaces. The circle twistor
bundle T(M) over a manifold M = Σ1 × Σ2 equipped with the split-signature metric
g = g1 ⊕ (−g2) is called a twistor space for the surfaces Σ1 and Σ2 that roll on each
other ‘without slipping or twisting’.

3. Cartan’s Invariants of Rank Two Distributions in Dimension Five

For completeness we will now present the basic, well known, or implicit in Refs. [4,9,13],
facts about rank two distributions in dimensions five, which will be needed in the next
section. This part of the paper is purely expository, and it is based on Ref. [13]. The
reader is referred to this paper for details.

Let X̃1 and X̃2 be two linearly independent vector fields on a 5-dimensional manifold
M5. Their span

D = Span(X̃1, X̃2)

is a rank two distribution on M5. If [X̃1, X̃2] = a1 X̃1+a2 X̃2 for some functions a1, a2 on
M5, the distribution is integrable. Such distributions do not have local invariants, in the
sense that every such distribution can be locally brought to the form D = Span(∂x , ∂q),
by a local diffeomorphism of M5. On the other extreme, a rank two distribution is called
generic, or (2, 3, 5), as e.g. in [6,7], if we have:

[X̃1, X̃2] = X̃3, [X̃1, X̃3] = X̃4, [X̃2, X̃3] = X̃5, (3.1)

and at each point of M5 the five vectors (X̃1, X̃2, X̃3, X̃4, X̃5) are linearly independent.
Generic rank two distributions in dimension five have nontrivial local invariants—

in general given two (2, 3, 5) distributions D1 and D2 on M5 a local diffeomorphism
ϕ : M5 → M5 such that ϕ∗D1 = D2 does not exist. If we have a (2, 3, 5) distribution D
on M5 for which we have a (local) diffeomorphism ϕ : M5 → M5 such that ϕ∗D = D,
we say that D has a (local) symmetry ϕ. The full set of local symmetries for D is locally
a Lie group, the symmetry group of D, which locally can be described by its Lie algebra,
realized as a Lie algebra of vector fields Y on M5 such that [Y,D] ⊂ D.
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It turns out that the (2, 3, 5) distribution D with maximal group of symmetries is
locally diffeomorphic to

DG2 = Span (∂x + p∂y + q∂p + 1
2 q2∂z, ∂q),

where (x, y, p, q, z) are local coordinates on M5. It is a result of Cartan and Engel
[8,10], that in this case the local symmetry group is isomorphic to the split real form
of the exceptional Lie group G2. Thus the maximal group of local symmetries for a
(2, 3, 5) distribution has dimension 14.

Cartan [9] gave a necessary and sufficient condition for a (2, 3, 5) distribution D to
be locally diffeomorphic to DG2 . For this a certain quartic, the Cartan quartic,

C(ζ ) = A1 + 4A2ζ + 6A3ζ
2 + 4A4ζ

3 + A5ζ
4, (3.2)

with certain functions A1, A2, A3, A4, A5 on M5, has to identically vanish. This means
that an if and only if condition for a distribution D to be locally diffeomorphic to DG2

in a neighbourhood of a point is the vanishing of all Ai s:

A1 ≡ A2 ≡ A3 ≡ A4 ≡ A5 ≡ 0,

in this neighbourhood.
It follows that twistor distributions, as described in Proposition 4 and Definition 2,

are either integrable, or generic (2,3,5).
This second situation is dominating. This whether D is integrable or generic depends

on the selfduality properties of the Weyl tensor of the corresponding split signature metric
g on M . We have the following theorem, which can be proven by a direct calculation
using our setting from Lemma 1:

Theorem

The twistor distribution D is integrable everywhere in T(M) if and only if the split
signature metric g on M has antiselfdual Weyl tensor. Moreover, if the selfdual Weyl
tensor is nonvanishing in an open set U in M then the twistor distribution D in π−1(U)

is a generic (2, 3, 5) distributions on open dense stets. It is non generic at most in four
points at each fiber. These points correspond to totally null planes (at most four at each
point!) on which the selfdual Weyl tensor vanishes.

This gives us an important corollary of the identification theorem (1).

Corollary 1. The velocity space Dv of two surfaces rolling on each other ’without slip-
ping or twisting’ has local symmetry group G2 around a point if and only if it is nonin-
tegrable and its Cartan quartic identically vanishes in a neighbourhood of the point.

In the procedure below, which is implicit in [13], and more explicit in [11], we
summarize how to effectively calculate C(ζ ) given a (2, 3, 5) distribution D on M5. In
particular, we show how to calculate the functions Ai .

3.1. A procedure for calculating Cartan’s quartic. Let D = Span(X̃1, X̃2) be a (2, 3, 5)

distribution on a 5-dimensional manifold M5.

– Form the vectors X̃3, X̃4, X̃5 by taking the appropriate commutators as in (3.1). Since
the distribution is (2, 3, 5) the vector fields (X̃1, X̃2, X̃3, X̃4, X̃5) constitute a local
frame on M5.
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– Consider the coframe (ω1, ω2, ω3, ω4, ω5)of 1-forms dual to the vector fields (X̃1, X̃2,

X̃3, X̃4, X̃5). This means that the forms ωi are related to vector fields X̃ j via:

X̃i−| ω j = δi j .

– Introduce the ‘invariant forms’ (θ1, θ2, θ3, θ4, θ5) defined by⎛
⎜⎜⎜⎜⎝

θ1

θ2

θ3

θ4

θ5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

b11 b12 b13 0 0
b21 b22 b23 0 0
b31 b32 b33 0 0
b41 b42 b43 b44 b45
b51 b52 b53 b54 b55

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ω3
ω4
ω5
ω1
ω2

⎞
⎟⎟⎟⎠ , (3.3)

with some unknown functions bμν on M5 satisfying the nonvanishing determinant
condition:

(b13 b23 b31 −b12 b23 b31 −b13 b21 b32 +b11 b23 b32 +b12 b21 b33 −b11 b22 b33)(b45b54 −b44 b55) �= 0.

– Force these forms to satisfy the exterior differential system

dθ1 = θ1 ∧ (2�1 + �4) + θ2 ∧ �2 + θ3 ∧ θ4,

dθ2 = θ1 ∧ �3 + θ2 ∧ (�1 + 2�4) + θ3 ∧ θ5,

dθ3 = θ1 ∧ �5 + θ2 ∧ �6 + θ3 ∧ (�1 + �4) + θ4 ∧ θ5,

dθ4 = θ1 ∧ �7 + 4
3θ3 ∧ �6 + θ4 ∧ �1 + θ5 ∧ �2,

dθ5 = θ2 ∧ �7 − 4
3θ3 ∧ �5 + θ4 ∧ �3 + θ5 ∧ �4,

(3.4)

with some 1-forms (�1,�2, . . . , �7). This, in particular, will impose conditions on
the unknowns bμν that should be solved.

– It follows (and this is explained in full detail in [9], see also [13]) that given X̃1 and
X̃2 spanning a (2, 3, 5) distribution, all the above mentioned conditions on bμν are
algebraic, and can be always explicitly solved. Consequently the forms θ1, θ2, . . . , θ5

and �1,�2, . . . , �7 can be explicitly found. One has to note, however, that Eq. (3.4)
do not determine all the unknown coefficients bμν , and that, as a consequence,
the forms θ1, θ2, . . . , θ5,�1,�2, . . . , �7 are not uniquely specified. In particular,
the forms θ1, θ2, . . . , θ5 still depend on the undetermined bμνs. Also, the forms
�1,�2, . . . , �7, apart from depending on these bμνs, are given up to additional
freedom. It follows that this freedom, i.e. not totally determined bμνs and the addi-
tional freedom in the choice of �As, is not relevant, for finding the zeros of the
Cartan quartic: an important observation of Cartan is that, under the transformations
induced by this freedom, Cartan’s tensor merely scales by a nonvanishing function.

– Thus, given X̃1 and X̃2, find a representative of your choice of the forms (θ1, θ2, θ3,

θ4, θ5) as in (3.3) satisfying (3.4). Because of the determinant conditions satisfied
by the bμνs the 1-forms (θ1, θ2, θ3, θ4, θ5) constitute a coframe on M5.

– Construct a (3, 2) signature bilinear form g̃ on M5 given by

g̃ = θ1 ⊗ θ5 + θ5 ⊗ θ1 − θ2 ⊗ θ4 − θ4 ⊗ θ2 + 4
3θ3 ⊗ θ3. (3.5)

It was shown in [13] that g̃ transforms conformally under the transformations induced
by the freedom in the choice of θ i s, and therefore it defines a conformal class [g̃] of
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(3, 2) signature metrics on M5. This class is entirely determined by the distribution
D = Span(X̃1, X̃2).

– Consider vector fields (Y1, Y2, Y3, Y4, Y5) on M5 which are dual,

Yi−| θ j = δ
j
i ,

to the coframe 1-forms (θ1, θ2, θ3, θ4, θ5). In terms of these vectors the distribution
D is spanned by the vectors Y4 and Y5,

D = Span(Y4, Y5).

As it is easily seen D is totally null in the conformal class [g̃]. Also the distribution
E = Span(Y1, Y2) is totally null in [g̃].

– It turns out that for every null vector field Z1 in D there is precisely one null line
R·Z2 in E orthogonal to it. Indeed, if Z1 = αY4 + βY5 then the unique orthogonal
line in E is spanned by Z2 = αY1 + βY2. Ignoring the situation when α = 0, we
introduce a coordinate ζ = β

α
parametrizing both lines. Thus, to a null line in D we

have a unique null line in E . For each value of ζ they are respectively spanned by

Z1(ζ ) = Y4 + ζY5 and Z2(ζ ) = Y1 + ζY2.

– Choose a simple representative g̃0 of the conformal class, consider its Weyl tensor
C̃i

jkl and lower the index i by g̃0 to have C̃i jkl . This enables us to think about

C̃(·, ·, ·, ·) as a multilinear map

C̃(·, ·, ·, ·) : TM5 × TM5 × TM5 × TM5 → F(M5),

where F(M5) denotes the set of smooth functions on M5.
– Implicit in [13] is the formula

C(ζ ) := A1 + 4A2ζ + 6A3ζ
2 + 4A4ζ

3 + A5ζ
4

= h C̃( Z1(ζ ), Z2(ζ ), Z1(ζ ), Z2(ζ ) ),

where h is a nonvanishing function on M5.
– Thus the Cartan quartic (3.2) is, modulo a nonvanishing factor, the quantity: C̃(Z1(ζ ),

Z2(ζ ), Z1(ζ ), Z2(ζ )), obtained from a pair (Z1(ζ ), Z2(ζ )) of null directions Z1(ζ )
in D, the corresponding orthogonal null directions Z2(ζ ) in E , and from the Weyl
tensor C̃ of the conformal class [g̃]. In particular, the functions Ai whose vanishing
is necessary and sufficient for D to have local symmetry G2, modulo nonvanishing
factors, are given by:

A1 = C̃(Y4, Y1, Y1, Y4), A2 = C̃(Y4, Y1, Y2, Y4), A3 = C̃(Y4, Y1, Y2, Y5),

A4 = C̃(Y4, Y2, Y2, Y5), A5 = C̃(Y5, Y2, Y2, Y5).
(3.6)

– We note here a theorem of Cartan that the vanishing of Ai ’s is actually a necessary
and sufficient condition for all Weyl tensors C̃i

jkl to vanish. Thus in the Corollary
(1), vanishing of Cartan quartic can be replaced by vanishing of Weyl tensors, i.e.
that (T(M), [g̃]) is conformally flat.
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4. Examples of Surfaces Whose Twistor Distribution has G2 Symmetry

4.1. The problem. The restricted velocity space Dv for two balls (bounded by the two
spheres S

2
r1

and S
2
r2

of the respective radii r1 and r2) rolling on each other ‘without
slipping or twisting’ has been investigated for a while during recent years, see [1,4,5,17].
It is therefore well known that the distribution Dv defined by such a system on the
configuration space C(S2

r1
, S

2
r2

) is integrable if and only if the radii r1 and r2 of the
balls, are equal. In case the radii are not equal, the distribution Dv is (2, 3, 5) and has
always a global symmetry SO(3) × SO(3). But a surprising result of Bryant–Bor–
Montgomery–Zelenko [5,17], says that if, in addition to r1 �= r2, the ratio of the radii
is r1 : r2 = 3 or r1 : r2 = 1

3 , then the dimension of the local symmetry of the (2, 3, 5)

distribution Dv increases from 6 to 14, and the distribution becomes locally maximally
symmetric (2, 3, 5) distribution DG2 , with G2 group as a symmetry. This remarkable
observation gives a ‘physical’ realization of this exceptional Lie group; a realization
unnoticed by mathematicians and physicists for more than 100 years, from the year
1894, when Cartan and Engel, have shown that this group is a symmetry group of a
certain rank two distribution in dimension five [8,10].

The peculiar 3 : 1 or 1 : 3 ratio of the radii of the two balls for which Dv has
local symmetry G2 provoked the question posed by G. Bor and R. Montgomery, for a
‘geometric’ explanation of this fact. In our opinion this question would be very interesting
if the two balls with these ratios were the only two surfaces which rolling on each other
‘without slipping or twisting’ had G2 as the local symmetry group. The aim of the rest of
the paper is to show that this is not the case: we are able to find surfaces that roll ‘without
slipping or twisting’ on a plane having Dv with local symmetry G2. Thus, in view of
the result we are going to present in this section, we propose to change the question of
R. Bor and R. Montgomery into the following problem:

Find all the pairs of surfaces which when rolling on each other ‘without slipping or
twisting’ have the velocity space as a (2,3,5) distribution Dv with G2 as the local group
of symmetries.

4.2. General setting. Before passing to our examples we set the framework for the
problem in the full generality, when we have two general surfaces (Σ1, g1) and (Σ2, g2).

According to Theorem 1 we identify the configuration space C(Σ1,Σ2) with the
twistor space T(Σ1×Σ2) of the manifold M = Σ1×Σ2 with metric g = g1⊕(−g2). We
choose the corresponding orthonormal frames (e1, e2) on Σ1 and (e3, e4) on Σ2, extend
them to M as it was explained below the formula (1.1), and write down the generators
of the twistor distribution D as in (2.5)–(2.6). We now introduce the following notation:

ei−| d f =: fi ,

which associates a lower index i to a frame derivative of a function f in the direction of
the frame vector ei , i = 1, 2, 3, 4, on T(M). With this notation, the Gaussian curvatures
κ of g1 and λ of g2 are:

κ = a21 − a12 − a2
1 − a2

2 , λ = a43 − a34 − a2
3 − a2

4 .

Now we calculate the commutator [X̃1, X̃2], which turns out to be

[X̃1, X̃2] = X̃3,
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where

X̃3 = a1 X̃1 + a2 X̃2 + (λ − κ)∂φ. (4.1)

Thus, the twistor distribution is integrable if and only if the two surfaces have equal
curvatures, as it was claimed. From now on, we will only deal with the surfaces with
unequal curvatures:

κ �= λ.

The next step is to calculate the commutators [X̃1, X̃3] and [X̃2, X̃3]. We denote the
results by X̃4 and X̃5, respectively:

[X̃1, X̃3] = X̃4, [X̃2, X̃3] = X̃5.

The (ugly) formulas for X̃4 and X̃5 are:

X̃4 =
(

a11 + a1
( κ1

λ − κ
− (a3 +

λ4

λ − κ
) sin φ + (a4 − λ3

λ − κ
) cos φ

))
X̃1

+
(

a21 + a2
( κ1

λ − κ
− (a3 +

λ4

λ − κ
) sin φ + (a4 − λ3

λ − κ
) cos φ

))
X̃2

−
( κ1

λ − κ
− (a3 +

λ4

λ − κ
) sin φ + (a4 − λ3

λ − κ
) cos φ

)
X̃3

+(λ − κ)
(

sin φ e3 − cos φ e4

)
, (4.2)

and

X̃5 =
(

a12 + a1
( κ2

λ − κ
− (a4 − λ3

λ − κ
) sin φ − (a3 +

λ4

λ − κ
) cos φ

))
X̃1

+
(

a22 + a2
( κ3

λ − κ
− (a4 − λ3

λ − κ
) sin φ − (a3 +

λ4

λ − κ
) cos φ

))
X̃2

−
( κ2

λ − κ
− (a4 − λ3

λ − κ
) sin φ − (a3 +

λ4

λ − κ
) cos φ

)
X̃3

+(λ − κ)
(

cos φ e3 + sin φ e4

)
. (4.3)

These equations show, in particular, that if κ �= λ, the five vector fields (X̃1, X̃2, X̃3,

X̃4, X̃5), form a frame on T(M), and that in such case the twistor distribution is
always a (2, 3, 5). Now, to analyze the invariants of D it is convenient to pass from
the ‘surfaces adapted frame’ (e1, e2, e3, e4, ∂φ) on T(M) to the distribution adapted
frame (X̃1, X̃2, X̃3, X̃4, X̃5), and use the procedure outlined in Sect. 3. Passing to the
duals (ω1, ω2, ω3, ω4, ω5) of (X̃1, X̃2, X̃3, X̃4, X̃5) and considering the invariant forms
(θ1, θ2, θ3, θ4, θ5) as in (3.3) we find that the unknowns bμν must, in particular, satisfy
the following equations:

b11 = b21 = 0, b44 = b12

b31
, b45 = b13

b31
, b54 = b22

b31
,

b23 = b13b22 − b3
31

b12
, b55 = b13b22 − b3

31

b12b31
,
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b41 =
((

4b13b32 − 4b12b33 + 3b31(a1b12 + a2b13)
)
(κ − λ) + 3b31(b12κ2 − b13κ1)

+3b31
(
(b13λ3 − b12λ4) cos φ + (b12λ3 + b13λ4) sin φ

))(
3b2

31(κ − λ)
)−1

,

b51 =
((

3(a1b12 +a2b13)b22b31 −b3
31(3a2b31 +4b32) +4b22(b13b32 −b12b33)

)
(κ −λ)

+3b31
(
b22(b12κ2 − b13κ1) + b3

31κ1 + (b22(b13λ3 − b12λ4) − b3
31λ3) cos φ

+(b22(b12λ3 + b13λ4) − b3
31λ4) sin φ

))
(1 + cos φ)

(
6b12b2

31(κ − λ)
)−1

.

We have also obtained formulas for b42, b52 and b53. Their length prevents us from
displaying them here. The important thing is that Eq. (3.4), and our formulas for bμν

implied by them, enabled us to find an explicit representative for the conformal class [g̃]
discussed in Sect. 3. We have also calculated the coefficients A1, A2, A3, A4, A5 of the
Cartan quartic in this general case. The formulas for them are very long and not very
illuminating. So we will not display them here. Instead, we concentrate on special cases.

4.3. Surface with one killing vector and a surface of constant curvature. To simplify
the matters we consider a surface (Σ1, g1) with a Killing vector rolling on a surface
(Σ2, g2) of constant Gaussian curvature.

We aim to find all pairs (g1, g2) for which the corresponding twistor distributions D
has local symmetry G2.

We use the setting from the previous section. Since g2 is a metric of constant curvature
λ, and g1 has Killing symmetry, our assumptions enable us to choose (e1, e2, e3, e4) such
that:

a1 = 0, a3 = 0, a21 = κ + a2
2 , a22 = 0, a43 = λ + a2

4 , a44 = 0, dλ = 0.

In the above, we have assumed that the Killing vector field of g1 is the vector field
e2 multiplied by a suitable positive smooth function on Σ1, so in particular κ2 = 0. The
metrics g1 and g2 read:

g1 = (σ 1)2 + (σ 2)2, g2 = (σ 3)2 + (σ 4)2,

where (σ 1, σ 2), and (σ 3, σ 4) are the respective duals to (e1, e2) and (e3, e4). The split
signature metric g, in this setup reads:

g = (σ 1)2 + (σ 2)2 − (σ 3)2 − (σ 4)2,

and we have

dσ 1 = 0, dσ 2 = −a2σ
1 ∧ σ 2, dσ 3 = 0, dσ 4 = −a4σ

3 ∧ σ 4.

These assumptions enormously simplify the expression for the conformal metric g̃.
We have the following proposition.

Proposition 5. The conformal class [g̃] of (3, 2)-signature associated with the twistor
distribution D of the twistor space T(Σ1 × Σ2) for two surfaces, the first with a Killing
vector, and the second a space of constant Gaussian curvature λ, is represented by the
metric

g̃ = θ1 ⊗ θ5 + θ5 ⊗ θ1 − θ2 ⊗ θ4 − θ4 ⊗ θ2 + 4
3θ3 ⊗ θ3 (4.4)
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with the basis 1-forms (θ1, θ2, θ3, θ4, θ5) given by:

θ1 = ω4 − ω5, θ2 = ω5, θ3 = −ω3,

θ4 = −ω1 +ω2 +(a2 +
κ1

λ−κ
)ω3 +(a2

2 + 8
5κ − 7

5λ + 1
10

κ11 −a2κ1

κ −λ
− 1

2

κ2
1

(κ −λ)2 )ω4,

θ5 = −ω2 − (a2 +
κ1

λ − κ
)ω3 − (a2

2 + 13
10κ − 7

10λ + 1
10

κ11

κ − λ
− 1

2

κ2
1

(κ − λ)2 )ω4

+( 3
10κ − 7

10λ + 1
10

a2κ1

λ − κ
)ω5,

with the basis forms (ω1, ω2, ω3, ω4, ω5), which are the duals of the vector fields (2.5)–
(2.6), (4.1), (4.2), (4.3), given by:

ω1 = σ 1,

ω2 = (2a2
2κ + 2κ2 − a2κ1 − 2a2

2λ − 3κλ + λ2)
σ 2

(κ − λ)2

+ (a2
2κ + κ2 − a2κ1 − a2

2λ − κλ) sin φ
σ 3

(κ − λ)2

− (
a2a4(κ − λ) + (a2

2κ + κ2 − a2κ1 − a2
2λ − κλ) cos φ

) σ 4

(κ − λ)2 + a2
dφ

κ − λ
,

ω3 = ( − a2(κ − λ) + κ1
) σ 2

(κ − λ)2 + κ1 sin φ
σ 3

(κ − λ)2

+
(
a4(κ − λ) − κ1 cos φ

) σ 4

(κ − λ)2 − dφ

κ − λ
,

ω4 = − σ 2

κ − λ
− sin φ

σ 3

κ − λ
+ cos φ

σ 4

κ − λ
,

ω5 = σ 1

κ − λ
− cos φ

σ 3

κ − λ
− sin φ

σ 4

κ − λ
.

To answer the question of when D of Proposition 5 has G2 as local group of symmetries,
we need only particular components of the Weyl tensor of the metric (4.4). However, we
declare that we were able to calculate the entire Weyl tensor in a manageable form. In
particular we have found all the components (A1, A2, A3, A4, A5) of Cartan’s quartic
in this case. They read:

A1 = A2

= 10(κ − λ)3κ1111 − 70(κ − λ)2κ111κ1 − 49(κ − λ)2κ2
11 + 280(κ − λ)κ2

1 κ11

+ 8(κ − λ)3(2κ + 7λ)κ11 − 20(κ − λ)2(κ + 6λ)κ2
1 − 175κ4

1

+ (κ − λ)4(κ − 9λ)(9κ − λ),

A3 = A1 − 10(κ − λ)3a2κ111 + 154
3 (κ − λ)2a2κ11κ1 − 20(κ − λ)3a2

2κ11

− 4
3 (κ −λ)3(3κ −7λ)κ11 − 140

3 (κ −λ)a2κ
3
1 + 5

3 (κ −λ)2(21a2
2 + 4κ −11λ)κ2

1

− 4
3 (κ − λ)3(15a2

2 + 12κ + 7λ)a2κ1 + 1
3 (κ − λ)4(κ − 9λ)(9κ − λ),

A4 = −2A1 + 3A3,
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A5 = −5A1 + 6A3 + 30(κ − λ)3a2
2κ11 − 49(κ − λ)2a2

2κ2
1

+ 2(κ − λ)3(15a2
2 − 3κ − 28λ)a2κ1 + (κ − λ)4(κ − 9λ)(9κ − λ). (4.5)

We have the following theorem.

Theorem 2. Let (Σ1, g1) be a Riemann surface with Gaussian curvature κ , which has a
Killing vector, and let (Σ2, g2) be a Riemann surface of constant Gaussian curvature λ.
Consider configuration space of the two surfaces rolling on each other ‘without slipping
or twisting’. Then in order for distribution Dv to have local symmetry G2, the curvatures
must satisfy:

(9κ − λ)(κ − 9λ)λ = 0. (4.6)

Proof. According to the previous discussion Dv will have local symmetry G2 if and
only if all Ai s given by Eqs. (4.5) identically vanish. This means that the following three
equations are necessary and sufficient:

10(κ − λ)3κ1111 − 70(κ − λ)2κ111κ1 − 49(κ − λ)2κ2
11 + 280(κ − λ)κ2

1 κ11

+ 8(κ − λ)3(2κ + 7λ)κ11 − 20(κ − λ)2(κ + 6λ)κ2
1 − 175κ4

1

+ (κ − λ)4(κ − 9λ)(9κ − λ) = 0,

− 10(κ − λ)3a2κ111 + 154
3 (κ − λ)2a2κ11κ1 − 20(κ − λ)3a2

2κ11

− 4
3 (κ − λ)3(3κ − 7λ)κ11 − 140

3 (κ − λ)a2κ
3
1 + 5

3 (κ − λ)2(21a2
2 + 4κ − 11λ)κ2

1

− 4
3 (κ − λ)3(15a2

2 + 12κ + 7λ)a2κ1 + 1
3 (κ − λ)4(κ − 9λ)(9κ − λ) = 0,

30(κ − λ)3a2
2κ11 − 49(κ − λ)2a2

2κ2
1

+ 2(κ − λ)3(15a2
2 − 3κ − 28λ)a2κ1 + (κ − λ)4(κ − 9λ)(9κ − λ) = 0. (4.7)

One can view these equations as algebraic equations on κ11, κ111 and κ1111, and as
such they may be easily solved. However, the solutions κ11 = κ11(κ, κ1, λ, a2), κ111 =
κ111(κ, κ1, λ, a2), κ1111 = κ1111(κ, κ1, λ, a2), have to satisfy equations

dκ11 = κ111σ
1 and dκ111 = κ1111σ

1.

This introduces two additional algebraic equations involving the four variables κ, κ1, λ

and a2. Elimination of κ1 from these two equations reduces them to a single algebraic
equation for κ, λ and a2, which after a simplification, and exclusion of the possibility in
which a2 ≡ 0 yields the necessary condition (9κ − λ)(κ − 9λ)λ = 0. The case a2 ≡ 0
must be excluded because otherwise, κ ≡ 0, and Eqs. (4.7) reduce to κ = λ = 0.

We now have the corollary confirming the result of Zelenko–Bryant–Bor–Montgomery:

Corollary 2. Two surfaces of constant Gaussian curvature rolling on each other ‘without
slipping or twisting’ have Dv with local symmetry G2 if and only if the ratio of their
curvatures is 1 : 9 or 9 : 1

Proof. Obviously κ = 9λ and κ = 1
9λ solve (4.6). But instead of looking into the

integrability conditions it is better now to use (4.5) to write down the Cartan quartic in
this case. Of course now, since κ = const, we use Eqs. (4.5) with κ1111 = κ111 = κ11 =
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κ1 = 0. Inserting this into (4.5), and using the definition (3.2) of the Cartan quartic we
find that, modulo a nonvanishing factor, the Cartan quartic is:

C(ζ ) = (κ − 9λ)(9κ − λ)(κ − λ)4(1 + 2ζ + 2ζ 2)2. (4.8)

Excluding the integrable case, this is identically zero if and only if κ = 9λ or κ = 1
9λ,

as claimed.

Remark 2. Note that if λ>0 the surfaces described by the corollary are spheres with the
ratio of the radii 1 : 3 or 3 : 1. But we can also have two hyperboloids with λ<0 here.

Remark 3. Also note that if (κ − 9λ)(9κ − λ) �= 0 the Cartan quartic has always two
distinct double roots. In the terminology of Ref. [15], the root type of the Cartan quartic is
[2, 2]. According to Cartan, in such a case, the dimension of the local symmetry group of
the corresponding distribution D can not be larger than 6. It is easy to think of examples
where the symmetry group of Dv has the maximal dimension 6, since the distribution
of the two-sphere system has always symmetry SO(3) × SO(3), and the distribution of
the two-hyperboloid system has always symmetry SO(1, 2) × SO(1, 2).

4.4. G2 and surfaces of revolution rolling on the plane. We now pass to the analysis
of the still open possibility λ = 0 in (4.6). It turns out that in this case we can obtain
several examples of surfaces that roll ‘without slipping or twisting’ on the plane with
velocity space Dv that has symmetry G2.

We have the following theorem.

Theorem 3. Modulo homotheties there are only three metrics corresponding to surfaces
with a Killing vector, which when rolling on the plane R

2 ‘without slipping or twisting’,
have the distribution Dv with local symmetry G2. These metrics in a convenient coordi-
nate system can be written as

g1o = ρ4dρ2 + ρ2dϕ2,

g1+ = (ρ2 + 1)2dρ2 + ρ2dϕ2,

g1− = (ρ2 − 1)2dρ2 + ρ2dϕ2,

(4.9)

or, collectively as:

g1 = (ρ2 + ε)2dρ2 + ρ2dϕ2, where ε = 0,±1.

Their curvature is given by

κ = 2

(ρ2 + ε)3 . (4.10)

Proof. If λ = 0 and (Σ1, g1) is a surface with a Killing vector K = ∂ϕ , we can introduce
local coordinate systems (x, y) on Σ1 and (u, v) on Σ2 such that

σ 1 = ρ(x)dx, σ 2 = ρ(x)dϕ, σ 3 = du, σ 4 = dv.

Then the 4-metric reads:

g = ρ(x)2(dx2 + dϕ2) − du2 − dv2,
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and the variables from Eqs. (4.7) needed for the G2 symmetry are given by:

a2 = − ρ′

ρ2 , κ = ρ′2 − ρ′′ρ
ρ4 .

The only relevant coframe derivative is given by:

∂1 = 1

ρ
∂x .

One can now write down Eqs. (4.7) in this setting. They look ugly, and they all involve
the derivatives of the function ρ up to the sixth order. We treated these equations as
algebraic equations for ρ(6), ρ(5) and ρ(4), and used the same trick as in the proof of
Theorem 2. Namely, we algebraically solved the equation for ρ(4), differentiated it, and
compared it with the ρ(5) obtained algebraically. Then we did the same for ρ(5) and
ρ(6). This produced a unique compatibility condition, obviously of the third order in the
derivatives of ρ, which reads:

ρ(3)ρ′ρ2 − 3ρ′′2ρ2 + ρ′′ρ′2ρ + ρ′4 = 0. (4.11)

Now two miracles have happened: It turns out that

– Eq. (4.11) is not only necessary but also sufficient for making the Cartan quartic
vanishing, and also

– Eq. (4.11), despite its ugly look, is completely solvable by means of elementary
functions1.

The first claim can be easily checked by solving (4.11) algebraically for ρ(3) and insert-
ing it, together with its three consecutive derivatives into Eqs. (4.7). These, with such
ρ(3), become identities 0 = 0. The second claim is justified by making a reciprocity
transformation for the variables x and ρ. It is an elementary calculation, that the func-
tion ρ = ρ(x) �= 0 satisfies Eq. (4.11) if and only if x = x(ρ) satisfies a linear 3rd
order ODE:

x ′′′ρ2 + x ′′ρ − x ′ = 0. (4.12)

This can be easily solved yielding

x = 1
2αρ2 + β log ρ + γ

as its most general solution. Here α, β, γ are real constants. Inserting this general solution
into the metric of the surface Σ1 we get

g1 = ρ2(d(αρ2 + β log ρ + γ ))2 + ρ2dϕ2 = (β + αρ2)2dρ2 + ρ2dϕ2.

We have to exclude here the case when α = 0, since in this case g1 is flat. If α �= 0
metrics g1 are homothetic to one of the metrics (4.9). In particular, all metrics g1 with
β = 0 are homothetic to g1o. If β �= 0 all metrics g1 for which αβ > 0 are homothetic
to g1+, and if αβ < 0 the metrics g1 are homothetic to g1−.

Calculating the Gauss curvature for the metrics g1 above we get

κ = 2α

(β + αρ2)3 ,

which reduces to (4.10) for the three homothety non-equivalent classes of metrics
g1+, g1− and g1o .

1 We thank Szereszewski [16] for showing us the explicit transformation from Eqs. (4.11) to (4.12).
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Now the problem of isometric embedding of metrics (4.9) in flat R
3 arises. We have the

following theorem.

Theorem 4. Let U be a region of one of the Riemann surfaces (Σ1, g1) of Theorem 3,
in which the curvature κ is nonnegative. In the case ε = +1, such a region can be
isometrically embedded in flat R3 as a surface of revolution. The embedded surface, when
written in the Cartesian coordinates (X, Y, Z) in R

3, is algebraic, with the embedding
given by

(X2 + Y 2 + 2)3 − 9Z2 = 0, ε = +1.

In the case ε = −1, one can find an isometric embedding in R
3 of a portion of U given

by ϕ ∈ [0, 2π [, ρ ≥ √
2. This embedding gives another surface of revolution which is

also algebraic, and in the Cartesian coordinates (X, Y, Z), given by

(X2 + Y 2 − 2)3 − 9Z2 = 0, ε = −1.

In the case ε = 0, one can embed a portion of U with ρ ≥ 1 in R
3 as a surface of

revolution

Z = f (
√

X2 + Y 2), with f (t) =
∫ t

ρ=1

√
ρ4 − 1 dρ.

Proof. In Theorem 3 we have proven that we have three cases of metrics corresponding
to surfaces which when rolling ‘without slipping or twisting’ on the plane have G2 as a
symmetry of Dv . To embed them in R

3 as surfaces of revolution, we put:

X = ρ cos ϕ, Y = ρ sin ϕ, Z =
∫ √

(ρ2 + ε)2 − 1 dρ, where ε = 0,±1.

(4.13)

If ε = 1, the function under the square root in the integral is positive for all ρ ≥ 0, and
this embeds the entire (Σ1, g1+) in R

3. Actually the integral is elementary in this case,∫ √
(ρ2 + 1)2 − 1 dρ = 1

3 (ρ2 + 2)3/2, and this embeds (Σ1, g1+) as an algebraic surface

(X2 + Y 2 + 2)3 − 9Z2 = 0

in R
3. If ε = −1 the integral for Z above is only meaningful for ρ ≥ √

2. So only the
region ϕ ∈ [0, 2π [, ρ ≥ √

2 of Σ1 can now be embedded in this way. In this case the
integral for Z is also elementary,

∫ √
(ρ2 − 1)2 − 1 dρ = 1

3 (ρ2 − 2)3/2. This embeds
the above mentioned portion of (Σ1, g1−) as an algebraic surface (of revolution) in flat
R

3 given by:

(X2 + Y 2 − 2)3 − 9Z2 = 0.

If ε = 0 the embedding is given by (4.13) with Z being an elliptic integral Z =∫ √
ρ4 − 1 dρ. It now embeds the portion ϕ ∈ [0, 2π [, ρ > 1 of (Σ1, g1o) in flat R

3.
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Fig. 1. The Mathematica print of the three surfaces of revolution, whose induced metric from R
3 is given,

from left to right, by respective metrics g1−, g1+ and g1o. The middle figure embeds all (Σ1, g1+). In the left
figure only the portion of (Σ1, g1−) with positive curvature is embedded, and in the right figure only points
of (Σ1, g1o) with ρ > 1 are embedded. It is why the left and right figures have holes on the top. All three
surfaces, when rolling on a plane ‘without twisting or slipping’ have velocity space Dv with symmetry G2

Fig. 2. The first two figures on the left give the Mathematica print of negative curvature portion ϕ ∈
[0, 2π [, ρ ∈ [0.5, 2] of the Riemann surface with the metric g1 = (ρ2 − 5)2dρ2 + ρ2dϕ2 embedded as
a surface of revolution. The metric g1 ⊕ (−du2 − dv2) has twistor distribution D with G2 symmetry. The
third figure is the print of the embedding for the ρ range: ρ ∈ [0, 2]. One sees that the embedding degenerates
at ρ = 0. The last picture gives the embedding for the maximally extend ρ range, ρ ∈ [−2, 2]

The three surfaces of revolution defined in Theorem 4, and depicted in Fig. 1 are
examples of surfaces which when rolling on the plane ‘without slipping or twisting’
have the velocity space Dv with G2 as the group of local symmetries. Other isometric
embeddings of these surfaces in R

3 may provide other examples. For example it would
be very instructive to find an isometric embedding in R

3 of the positive curvature region
0 < ρ ≤ 1, 0 ≤ ϕ < 2π of the metric g1o = ρ4dρ2 +ρ2dϕ2, or of the positive curvature
region 1 < ρ <

√
2 of the metric g1− = (ρ2 − 1)2dρ2 + ρ2dϕ2.

Remark 4. Although the region of negative curvature of the Riemann surface (Σ1, g1−)

can not be simply embedded as a surface of revolution in R
3, we can find such an

embedding for a portion of negative curvature region with a metric g1 = (ρ2 −5)2dρ2 +
ρ2dϕ2, which is homothetically equivalent to g1−. As it is evident from the proof of
Theorem 3 this metric is in the class of metrics g1, which together with the flat metric
g2 = du2 +dv2, form the split signature metric g = g1 ⊕ (−g2) with twistor distribution
having symmetry G2. For this metric we consider a negative curvature region given by
ϕ ∈ [0, 2π [, ρ ∈]0, 2[, and we isometrically embed it in R

3 via

X = ρ cos ϕ, Y = ρ sin ϕ, Z =
∫ ρ

0

√
(x2 − 6)(x2 − 4)dx .

The embedding is not well defined in ρ = 0, and the integral is not elementary.
Nevertheless we can plot the obtained surface of revolution, which is depicted in Fig. 2.
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