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a b s t r a c t

The paper is based on relations between a ternary symmetric form defining the SO(3)
geometry in dimension five and Cartan’s works on isoparametric hypersurfaces in spheres.
As observed by Bryant such a ternary form exists only in dimensions nk = 3k + 2, where
k = 1, 2, 4, 8. In these dimensions it reduces the orthogonal group to the subgroups
Hk ⊂ SO(nk), with H1 = SO(3), H2 = SU(3), H4 = Sp(3) and H8 = F4. This enables studies
of special Riemannian geometries with structure groups Hk in dimensions nk.

The necessary and sufficient conditions for theHk geometries to admit the characteristic
connection are given. As an illustration nontrivial examples of SU(3) geometries in
dimension 8 admitting characteristic connection are provided. Among them are the
examples having nonvanishing torsion and satisfying Einstein equations with respect to
either the Levi-Civita or the characteristic connections.

The torsionless models for the Hk geometries have the respective symmetry groups
G1 = SU(3), G2 = SU(3) × SU(3), G3 = SU(6) and G4 = E6. The groups Hk and Gk constitute
a part of the ‘magic square’ for Lie groups. The ‘magic square’ Lie groups suggest studies of
ten other classes of special Riemannian geometries. Apart from the two exceptional cases,
they have the structure groups U(3), S(U(3) × U(3)), U(6), E6 × SO(2), Sp(3) × SU(2),
SU(6) × SU(2), SO(12) × SU(2) and E7 × SU(2) and should be considered in respective
dimensions 12, 18, 30, 54, 28, 40, 64 and 112. The two ‘exceptional’ cases are: SU(2)×SU(2)
geometries in dimension 8 and SO(10) × SO(2) geometries in dimension 32.

The case of SU(2) × SU(2) geometry in dimension 8 is examined closer. We determine
the tensor that reduces SO(8) to SU(2) × SU(2) leaving the more detailed studies of the
geometries based on the magic square ideas to the forthcoming paper.

© 2008 Published by Elsevier B.V.

1. Introduction

In a recent paper [3] we studied 5-dimensional manifolds (M5, g,Υ) equipped with the Riemannianmetric tensor gij and
a 3-tensor Υijk such that
(i) Υijk = Υ(ijk),
(ii) Υijj = 0,
(iii) ΥjkiΥlmi + ΥljiΥkmi + ΥkliΥjmi = gjkglm + gljgkm + gklgjm.

It turns out that the quadratic condition (iii) selects from all the symmetric totally trace free 3-tensors in R5 only such a one
whose stabilizer in SO(5) is the irreducible SO(3).

The geometry of Riemannian 5-manifolds (M5, g,Υ) is particularly interesting if the tensor Υ satisfies the nearly
integrability [3] condition

(
LC
∇vΥ)(v, v, v) ≡ 0. (1.1)
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In such a case (M5, g,Υ) is naturally equipped with a unique metric so(3)-valued connection ∇
T whose torsion T is totally

skew symmetric. We call this connection the characteristic connection of the nearly integrable geometry (M5, g,Υ). Existence
and uniqueness of the characteristic connection enable a classification of the nearly integrable geometries (M5, g,Υ)
according to the algebraic properties of T and the curvature K of ∇T . In Ref. [3] examples were given of the nearly integrable
geometries (M5, g,Υ) with the characteristic connection ∇

T having K and T of all the possible types from the above-
mentioned classification. In particular, a 7-parameter family of such geometries admitting at each point two SO(3)-invariant
vector spaces of ∇

T-covariantly constant spinors was given. However, in this family of examples, the characteristic ∇
T

connection was flat.
Properties of Υ resemble a bit, properties of the tensor J, defining an almost hermitian structure on a Riemannian

manifold. For example, condition (iii) for Υ is an algebraic condition of the same sort as the almost hermitian condition

JijJjk = −gik (1.2)

for J. Also, the nearly integrable condition (1.1) for Υ is similar to the nearly Kähler condition

(
LC
∇vJ)(v) ≡ 0

for J. Since the almost hermitian condition (1.2) imposes a severe restriction on the dimension of the manifold to be even,
a natural question arises if there are some restrictions on the dimensions of Rn in which one can have a tensor with the
properties (i)–(iii). More precisely we ask the following question:

In which dimensions n the Euclidean space (Rn, g) can be equipped with a tensor Υ satisfying conditions (i)–(iii)?

It is rather easy to show that dimensions n ≤ 4 do not admit such a tensor. Following [3] we know that in dimension
n = 5 the tensor Υ may be defined by

Υijkx
ixjxk =

1
2
det

x5 −
√
3x4

√
3x3

√
3x2

√
3x3 x5 +

√
3x4

√
3x1

√
3x2

√
3x1 −2x5

 . (1.3)

Thus, Υ is defined as a tensor whose components are coefficients of the homogeneous polynomial of third degree obtained
as the determinant of a generic 3 × 3 real symmetric trace free matrix.

2. Dimensions 5, 8, 14 and 26

Robert Bryant [4] remarks that other dimensions in which Υ with properties (i)–(iii) surely exists are: n = 8, n = 14 and
n = 26. This is essentially due to the fact that numbers 5, 8, 14 and 26 are values of the sequence nk = 3k + 2 for k = 1, 2, 4
and 8, respectively. These four values of k correspond to the only possible dimensions of the normed division algebras R, C,
H and O. To fully explain Bryant’s remark we need some preparation.

Let K = R,C,H or O and let A ∈ M3×3(K) be a hermitian 3 × 3-matrix with entries in K. The word ‘hermitian’ here
means that the entries aij and aji of A are mutually conjugate in K, i.e. aji = aij for i, j = 1, 2, 3. In particular, the entries
a11, a22, a33 ∈ R.

We may formally write

det A =
∑
π∈S3

sgnπa1π(1)a2π(2)a3π(3),

which after expansion reads:

det A = a11a22a33 − a12a21a33 − a13a22a31 − a11a23a32 + a13a21a32 + a12a23a31.

Note that despite the possible noncommutativity, or even nonassociativity, of the product, the values of the first four
monomials in the above formal expression are well defined. This is because among the three factors in each of the four
monomials, at least one is a real number aii, the other two being either both real (in the first term) or conjugate to each other
(in the remaining three terms). Thus, the values of these four monomials are real numbers and do not depend on the order
of their factors and the order of the multiplication. Passing to the last two terms in the formula for det Awe see, that a priori
there are a huge number of possibilities to order the factors and the brackets in these two terms. But the requirement that
the sum of these terms is real reduces this huge number to only 12 possibilities. It turns out that out of these 12 possibilities
only two are really different. They are all equal either to (a12a23)a31 + a13(a32a21) or to (a21a32)a13 + a31(a23a12). Note that
the first expression becomes the second under the transformation A → A. Moreover, such transformation does not affect
the values of the first four terms in det A. Summing up we have the following lemma.

Lemma 2.1. Given a hermitian matrix A ∈ M3×3(K) with entries aij ∈ K such that aji = aij, i, j = 1, 2, 3, where K = R,C,H,O,
there are only two possibilities to assign a real value to the Weierstrass formula

det A =
∑
π∈S3

sgnπa1π(1)a2π(2)a3π(3)
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for the determinant of A. These two possible values are given by

det1 A = a11a22a33 − a12a21a33 − a13a22a31 − a11a23a32 + a13(a32a21) + (a12a23)a31

or by

det2 A = a11a22a33 − a12a21a33 − a13a22a31 − a11a23a32 + a31(a23a12) + (a21a32)a13.

In general det1 A 6= det2 A if K = H or O, but det1 A → det2 A when A → A.

Let (e0, e1, e2, e3, e4, e5, e6, e7) be the unit octonions. We have: e20 = 1 = −e2µ, eµeµ+1 = eµ+3, eµeν = −eνeµ,
µ 6= ν = 1, 2, 3, . . . , 7, with additional relations resulting from the cyclic permutation of each triple (eµ, eµ+1, eµ+3).

It is convenient to introduce

X1
= x1e0 + x6e1 + x9e2 + x10e4 + x15e3 + x16e5 + x17e6 + x18e7,

X2
= x2e0 + x7e1 + x11e2 + x12e4 + x19e3 + x20e5 + x21e6 + x22e7,

X3
= x3e0 + x8e1 + x13e2 + x14e4 + x23e3 + x24e5 + x25e6 + x26e7.

Then X1, X2, X3 are three generic octonions. We can consider them to be the generic quaternions if xI = 0 for all
I = 15, 16, 17, . . . , 26, and three generic complex numbers if xI = 0 for all I = 9, 10, 11, . . . , 26. If xI = 0 for all
I = 6, 7, 8, . . . , 26 then X1, X2, X3 are three generic real numbers. Using this we define a 3 × 3 hermitian matrix

A =

x5 −
√
3x4

√
3X3

√
3X2

√
3X3

x5 +
√
3x4

√
3X1

√
3X2 √

3X1
−2x5

 (2.1)

in full analogy to the matrix entering the formula (1.3). Now, we have two ‘characteristic polynomials’: det1(A − λI) and
det2(A − λI). They can be written as:

det1(A − λI) = −λ3 − 3g(EX, EX)λ+ 2Υ1(EX, EX, EX),

det2(A − λI) = −λ3 − 3g(EX, EX)λ+ 2Υ2(EX, EX, EX),

where (EX)I = xI , I = 1, 2, 3, . . . , nk = 3k + 2 and k = 1, 2, 4, 8. The bilinear form is:

g(EX, EX) = (x1)2 + (x2)2 + · · · + (xnk)2 = gIJx
IxJ

and the two ternary forms are

Υ1(EX, EX, EX) =
1
2
det1 A and Υ2(EX, EX, EX) =

1
2
det2 A.

Now, we have the following proposition, which is our formulation of Bryant’s [4] remark.

Proposition 2.2. If I, J, K = 1, 2, 3, . . . , nk = 3k + 2, k = 1, 2, 4, 8, then the tensors Υ1
IJK and Υ2

IJK given by

Υ a
IJK =

1
6
∂3Υa(EX, EX, EX)

∂xI∂xJ∂xK
a = 1, 2,

satisfy

(i) Υ a
IJK = Υ a

(IJK),
(ii) Υ a

IJJ = 0,
(iii) Υ a

JKIΥ
a
LMI + Υ a

LJIΥ
a
KMI + Υ a

KLIΥ
a
JMI = gJKgLM + gLJgKM + gKLgJM.

They reduce the GL(Rnk) group, via O(nk), to its subgroup Hk, where Hk is the irreducible SO(3) in SO(5) if k = 1, the irreducible
SU(3) in SO(8) if k = 2, the irreducible Sp(3) in SO(14) if k = 4 and the irreducible F4 in SO(26) if k = 8.

If k = 1, 2 the tensors Υ1
IJK and Υ2

IJK coincide. If k = 3, 4 they belong to the same O(nk) orbit and are related by the element
diag(1, 1, 1, 1, 1,−1,−1, , . . . ,−1) of O(nk). For k = 3, 4 tensors Υ1

IJK and Υ2
IJK are not equivalent under the SO(nk)-action.

The above proposition gives examples of a tensor with all the properties of tensor Υ in dimensions n = 5, 8, 14 and 26.
It is remarkable that it can be proven that these examples exhaust all the possibilities!

To discuss this statement we need to invoke Elie Cartan’s results on ‘isoparametric hypersurfaces in spheres’ [7].
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3. Isoparametric hypersurfaces in spheres

We recall (see. e.g. [14]) that a hypersurface in a real RiemannianmanifoldM of constant curvature is called isoparametric
iff it has constant principal curvatures. Tuglio Levi-Civita [13] knew that the number of such distinct curvatures was at most
two for the Euclidean spaceM = R3. The case ofM = Rn with arbitrary n > 3 is similar. It was shown by Beniamino Segre [15]
that irrespectively of n the number of distinct principal curvatures of an isoparametric hypersurface inM = Rn is atmost two.
Elie Cartan [6] extended this result to the isoparametric hypersurfaces in the hyperbolic spacesHn again showing that in such
a case the number of possible distinct principal curvatures is at most two. The situation is quite different for isoparametric
hypersurfaces in spheres Sn. In particular Cartan in Ref. [7] found examples of isoparametric hypersurfaces in spheres with
three different principal curvatures, each of which had the samemultiplicity. He also introduced a homogeneous polynomial

F : Rn
→ R

of degree p satisfying the differential equations

(Cii) 4F = 0 (3.1)

(Ciii) | E∇F|2 = p2((x1)2 + (x2)2 + · · · + (xn)2)(p−1) (3.2)

and proved that all the isoparametric hypersurfaces in Sn−1 which have p different constant principal curvatures of the same
multiplicity are given by

Sc = {xI ∈ Rn
| F = c and (x1)2 + (x2)2 + · · · + (xn)2 = 1}, (3.3)

i.e. that they are the level surfaces of such polynomials F restricted to the sphere.
Cartan found all the homogeneous harmonic polynomials of degree p = 3 satisfying condition (Ciii). In doing that he

proved [7] that such polynomials can exist only if n = nk = 5, 8, 14, 26. In these four dimensions he found that the most
general form of the polynomials is

F =

nk∑
I,J,K=1

Υ a
IJKx

IxJxK,

where Υ a
IJK is one of the two tensors appearing in Proposition 2.2. Writing a generic homogeneous polynomial of degree p as

F = ΥI1 I2...Ipx
I1xI2 . . . xIp we see that it satisfies Cartan’s conditions (Cii)–(Ciii) iff the totally symmetric tensor ΥI1 I2...Ip satisfies

(Cii′) ΥJJJ3 J4...Jp = 0
(Ciii′) ΥJ(J2 J3...JpΥK2K3...Kp)J = g(J2K2gJ3K3 . . . gJpKp),

where gIJ = diag(1, 1, . . . , 1). Note that in case p = 3 the above tensor reduces to ΥIJK and conditions (Cii′) and (Ciii′)
become exactly the respective conditions (ii) and (iii) of Proposition 2.2. Since ΥIJK is totally symmetric also the condition (i)
is satisfied. Thus, Cartan’s finding of all isoparametric hypersurfaces with three constant distinct principal curvatures of the
same multiplicity solves our problem of dimensions in which the tensor Υ may exist. Summarizing we have the following
theorem, which is a reformulation of the above-mentioned Cartan’s results.

Theorem 3.1. An Rn with the standard Euclidean metric gIJ admits a tensor ΥIJK with the properties

(i) ΥIJK = Υ(IJK),
(ii) ΥIJJ = 0,
(iii) ΥJKIΥLMI + ΥLJIΥKMI + ΥKLIΥJMI = gJKgLM + gLJgKM + gKLgJM

if and only if n = nk = 3k+2 for k = 1, 2, 4, 8. Modulo the action of the SO(nk) group all such tensors are given by Proposition 2.2.

4. Representations of SU(3), Sp(3) and F4

It is known that there are real irreducible representations of the group SU(3) in dimensions:

1, 8, 20, 27, 70.

Also, there are real irreducible representations of the group Sp(3) in dimensions:

1, 14, 21, 70, 84, 90, 126, 189, 512, 525

and there are real irreducible representations of the group F4 in dimensions:

1, 26, 52, 273, 324, 1053, 1274, 4096, 8424.

To see how these representations appear we consider a vector space Rnk , nk = 5, 8, 14, 26 equipped with the Riemannian
metric g and the corresponding tensor Υ1

IJK of Proposition 2.2. As we know the stabilizer Hk of Υ1 is a subgroup of SO(nk),
which when nk is 5, 8, 14 and 26 is, respectively, SO(3), SU(3), Sp(3) and F4. Now, the tensor Υ1 can be used to decompose
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the tensor product representation
⊗2 Rnk of the group Hk onto the real irreducible components as follows. First, we define

an endomorphism

Υ̂ :
⊗2 Rnk −→

⊗2 Rnk , (4.1)

W IK Υ̂
7−→ 4Υ1

IJMΥ1
KLMW

JL,

which preserves the decomposition
⊗2 Rnk =

∧2 Rnk ⊕
⊙2 Rnk . Second, we look for its eigenspaces, which surely are Hk-

invariant. We have the following proposition.

Proposition 4.1. (1) If nk = 5 then⊗2 Rnk =
5∧ 2

3 ⊕
5∧ 2

7 ⊕
5⊙2

1 ⊕
5⊙2

5 ⊕
5⊙2

9,

where
5⊙2

1 = {S ∈
⊗2 R5

| Υ̂(S) = 14 · S} = {S = λ · g, λ ∈ R},

5∧ 2
3 = {F ∈

⊗2 R5
| Υ̂(F) = 7 · F} = so(3),

5⊙2
5 = {S ∈

⊗2 R5
| Υ̂(S) = −3 · S},

5∧ 2
7 = {F ∈

⊗2 R5
| Υ̂(F) = −8 · F},

5⊙2
9 = {S ∈

⊗2 R5
| Υ̂(S) = 4 · S}.

The real vector spaces 5∧2
i ⊂

∧2 R5 and 5⊙2
j ⊂

⊙2 R5 of respective dimensions i and j are irreducible representations of the
group SO(3).
(2) If nk = 8 then⊗2 Rnk =

8∧ 2
8 ⊕

8∧ 2
20 ⊕

8⊙2
1 ⊕

8⊙2
8 ⊕

8⊙2
27,

where
8⊙2

1 = {S ∈
⊗2 R8

| Υ̂(S) = 20 · S} = {S = λ · g, λ ∈ R},

8∧ 2
8 = {F ∈

⊗2 R8
| Υ̂(F) = 10 · F} = su(3),

8⊙2
8 = {S ∈

⊗2 R8
| Υ̂(S) = −6 · S},

8∧ 2
20 = {F ∈

⊗2 R8
| Υ̂(F) = −8 · F},

8⊙2
27 = {S ∈

⊗2 R8
| Υ̂(S) = 4 · S}.

The real vector spaces 8∧ 2
i ⊂

∧2 R8 and 8⊙2
j ⊂

⊙2 R8 of respective dimensions i and j are irreducible representations of the
group SU(3). The representations

∧2
8 and

⊙2
8 are equivalent.

(3) If nk = 14 then⊗2 Rnk =
14∧ 2

21 ⊕
14∧ 2

70 ⊕
14⊙2

1 ⊕
14⊙2

14 ⊕
14⊙2

90,

where
14⊙2

1 = {S ∈
⊗2 R14

| Υ̂(S) = 32 · S} = {S = λ · g, λ ∈ R},

14∧ 2
21 = {F ∈

⊗2 R14
| Υ̂(F) = 16 · F} = sp(3),

14⊙2
14 = {S ∈

⊗2 R14
| Υ̂(S) = −12 · S},

14∧ 2
70 = {F ∈

⊗2 R14
| Υ̂(F) = −8 · F},

14⊙2
90 = {S ∈

⊗2 R14
| Υ̂(S) = 4 · S}.

The real vector spaces 14∧ 2
i ⊂

∧2 R14 and 14⊙2
j ⊂

⊙2 R14 of respective dimensions i and j are irreducible representations of the
group Sp(3).
(4) If nk = 26 then⊗2 Rnk =

26∧ 2
52 ⊕

26∧ 2
273 ⊕

26⊙2
1 ⊕

26⊙2
26 ⊕

26⊙2
324,

where
26⊙2

1 = {S ∈
⊗2 R26

| Υ̂(S) = 56 · S} = {S = λ · g, λ ∈ R},

26∧ 2
52 = {F ∈

⊗2 R26
| Υ̂(F) = 28 · F} = f4,

26⊙2
26 = {S ∈

⊗2 R26
| Υ̂(S) = −24 · S},

26∧ 2
273 = {F ∈

⊗2 R26
| Υ̂(F) = −8 · F},

26⊙2
324 = {S ∈

⊗2 R26
| Υ̂(S) = 4 · S}.
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The real vector spaces 26∧ 2
i ⊂

∧2 R26 and 26⊙2
j ⊂

⊙2 R26 of respective dimensions i and j are irreducible representations of the
group F4.

Remark 4.2. According to this proposition we may identify spaces Rnk with the representation spaces nk⊙2
nk
corresponding

to the eigenvalues 2 − nk of Υ̂ . Noting that the dimension of the group Hk is

dimHk = 4k − 1 + (k − 1) log2 k, k = 1, 2, 4, 8

and introducing sk =
9
2 k(k + 1), we see that

• the eigenvalues of Υ̂ corresponding to spaces nk⊙2
1 are 4 + 2nk,

• the eigenvalues corresponding to spaces nk∧ 2
dimHk

are 2 + nk,
• the eigenvalues corresponding to spaces nk∧ 2

(sk+1−dimHk)
are always −8,

• the eigenvalues corresponding to spaces nk⊙2
sk
are always +4.

We also note that we may identify the Lie algebras hk of Hk with the representations nk∧ 2
dimHk

.

5. Hk structures on Riemannian manifolds

Definition 5.1. An Hk structure on an nk-dimensional Riemannian manifold (M, g) is a structure defined by means of a rank
3 tensor field Υ satisfying

(i) ΥIJK = Υ(IJK),
(ii) ΥIJJ = 0,
(iii) ΥJKIΥLMI + ΥLJIΥKMI + ΥKLIΥJMI = gJKgLM + gLJgKM + gKLgJM.

Definition 5.2. Two Hk structures (M, g,Υ) and (M̄, ḡ, Ῡ) defined on two respective nk-manifolds M and M̄ are (locally)
equivalent iff there exists a (local) diffeomorphism φ : M → M̄ such that

φ∗(ḡ) = g and φ∗(Ῡ) = Υ .

If M̄ = M, ḡ = g, Ῡ = Υ the equivalence φ is called a (local) symmetry of (M, g,Υ). The group of (local) symmetries is called
a symmetry group of (M, g,Υ).

As we know the tensor field Υ reduces the structure group of the bundle of orthonormal frames overM to one of the groups
Hk of Proposition 2.2. We also know that the Lie algebra hk of Hk is isomorphic to hk '

nkΛ2
dimHk

⊂ ⊗
2 Rnk of Proposition 4.1.

Thus, at each point, every element F of the Lie algebra hk may be considered to be an endomorphism of Rnk . This defines an
element

f = exp(F) ∈ Hk ⊂ SO(nk) ⊂ GL(nk,R)

and, point by point, induces the natural action ρ(f ) of the group Hk on the vector-valued 1-forms

θ = (θ1, θ2, θ3, . . . , θnk) ∈ Rnk ⊗ Ω1(M)

by:

θ 7→ θ̃ = ρ(f )(θ) = f · θ. (5.1)

This, enables for local description of an Hk structure on M by means of a coframe

θ = (θI) = (θ1, θ2, θ3, . . . , θnk) (5.2)

on M, given up to the Hk transformations (5.1).
For such a class of coframes the Riemannian metric g is

g = θ21 + θ22 + θ23 + · · · + θ2nk ,

and the tensor Υ , reducing the structure group from SO(nk) to Hk, is

Υ = Υ1
IJKθ

IθJθK, (5.3)

where Υ1 is defined in Proposition 2.2.

Definition 5.3. An orthonormal coframe (θ1, θ2, θ3, . . . , θnk) inwhich the tensorΥ of anHk structure (M, g,Υ) is of the form
(5.3) is called a coframe adapted to (M, g,Υ), an adapted coframe, for short.
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Given an Hk structure as above, we consider an arbitrary hk-valued connection on M. This may be locally represented by
means of an hk-valued 1-form Γ given by

Γ = (Γ I
J) = γαEα, α = 1, 2, . . . , dimHk, (5.4)

where γα are 1-forms onM and for each α the symbols Eα = (Eα
I
J) denote constant nk ×nk-matrices which form a basis of the

Lie algebra hk. The explicit expressions for Eα are presented in Appendix A. The connection Γ , having values in hk ⊂ so(nk),
is necessarily metric. Via the Cartan structure equations,

dθI + Γ I
J ∧ θ

J
= T I (5.5)

dΓ I
J + Γ I

K ∧ Γ K
J = RI

J, (5.6)

it defines the torsion 2-form T I and the hk-curvature 2-form RI
J . Using these forms we define the torsion tensor T I

JK ∈

(Rnk ⊗
∧2 Rnk) and the hk-curvature tensor rαJK ∈ (hk ⊗

∧2 Rnk), respectively, by

T I
=

1
2
T I

JKθ
J
∧ θK

and

RI
J =

1
2
rαKLθ

K
∧ θLEα

I
J. (5.7)

The connection satisfies the first Bianchi identity

RI
J ∧ θ

J
= DT I (5.8)

and the second Bianchi identity

DRI
J = 0, (5.9)

with the covariant differential defined by

DT I
= dT I

+ Γ I
J ∧ T J, DRI

J = dRI
J + Γ I

K ∧ RK
J − RI

K ∧ Γ K
J .

Since the Hk preserves g and Υ we have the following proposition.

Proposition 5.4. Every hk-valued connection Γ of (5.4) is metric
Γ

∇v(g) ≡ 0

and preserves tensor Υ

Γ

∇v(Υ) ≡ 0 ∀v ∈ TM.

6. Characteristic connection

In this section we consider Hk structures (M, g,Υ) with Levi-Civita connection
LC
Γ∈ so(nk) ⊗ Rnk uniquely decomposable

according to

LC
Γ= Γ +

1
2
T, (6.1)

where Γ ∈ hk ⊗ Rnk and T ∈
∧3 Rnk .

Such Hk structures are interesting, since for them, contrary to the generic case, the decomposition (6.1) defines a unique
hk-valued connection Γ . Moreover, given the unique decomposition (6.1), we may rewrite the Cartan structure equations

dθI +
LC
Γ

I

J ∧ θ
J
= 0

for the Levi-Civita connection
LC
Γ into the form

dθI + Γ I
J ∧ θ

J
=

1
2
T I

JKθ
J
∧ θK

and to interpret T as the totally skew symmetric torsion of Γ .
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Definition 6.1. An hk-valued connection Γ of an Hk structure (M, g,Υ) admitting the unique decomposition

LC
Γ= Γ +

1
2
T, with Γ ∈ hk ⊗ Rnk and T ∈

∧3 Rnk

is called the characteristic connection.

Since Γ ∈ hk ⊗ Rnk and T ∈
∧3 RnK it is obvious from (6.1) that the Levi-Civita connection

LC
Γ of Hk structures which admit

characteristic connections must satisfy

LC
Γ∈ [hk ⊗ Rnk ] +

∧3 Rnk . (6.2)

Moreover, since dim(hk ⊗Rnk) + dim(
∧3 Rnk) < dim(so(nk) ⊗Rnk) then it is obvious that the unique decomposition (6.1) is

not possible for all Hk structures. Our aim now is to characterize Hk structures admitting characteristic connection.
Following [3] we introduce the following definition.

Definition 6.2. An Hk structure (M, g,Υ) is called nearly integrable iff

(
LC
∇vΥ)(v, v, v) ≡ 0 (6.3)

for the Levi-Civita connection
LC
∇ and for every vector field v on M.

The condition (6.3), when written in an adapted coframe (5.2), is

LC
ΓM(JIΥKL)M ≡ 0, (6.4)

where
LC
ΓMJ =

LC
ΓMJKθ

K denotes the so(nk)-valued 1-form corresponding to the Levi-Civita connection
LC
∇ . This motivates an

introduction of the map

Υ ′
:
∧2 Rnk ⊗ Rnk 7→

⊙4 Rnk

such that

Υ ′(
LC
Γ)IJKL = 12

LC
ΓM(JIΥKL)M

=
LC
ΓMJIΥMKL +

LC
ΓMKIΥJML +

LC
ΓMLIΥJKM

+
LC
ΓMIJΥMKL +

LC
ΓMKJΥIML +

LC
ΓMLJΥIKM

+
LC
ΓMIKΥMJL +

LC
ΓMJKΥIML +

LC
ΓMLKΥIJM

+
LC
ΓMILΥMJK +

LC
ΓMJLΥIMK +

LC
ΓMKLΥIJM. (6.5)

Comparing this with (6.4) we have the following proposition.

Proposition 6.3. An Hk structure (M, g,Υ) is nearly integrable if and only if its Levi-Civita connection
LC
Γ∈ kerΥ ′.

It is worth noting that each of the last four rows of (6.5) resembles the l.h.s. of equality

XMJΥMKL + XMKΥJML + XMLΥJKM = 0

satisfied by every matrix X ∈ hk =
nk∧ 2

dimHk
. Thus, hk ⊗ Rnk ⊂ kerΥ ′. Due to the first equality in (6.5) we also have∧3 Rnk ⊂ kerΥ ′. This proves the following lemma.

Lemma 6.4. Since

hk ⊗ Rnk ⊂ kerΥ ′ and
∧3 Rnk ⊂ kerΥ ′

then

([hk ⊗ Rnk ] +
∧3 Rnk) ⊂ kerΥ ′.

Thus, comparing this with (6.2) we have the following proposition.

Proposition 6.5. Among all Hk structures only the nearly integrable ones may admit characteristic connection.

It is known [3] that if nk = 5 then the nearly integrability condition is also sufficient for the existence of a characteristic
connection. To see that it is no longer true for all nk we need to see how the intersections [hk ⊗Rnk ]∩

∧3 Rnk and the algebraic
sums [hk ⊗ Rnk ] +

∧3 Rnk depend on the dimension nk. After some algebra we arrive at the following proposition.
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Proposition 6.6. • If nk = 5 or nk = 14 then

kerΥ ′
= [hk ⊗ Rnk ] ⊕

∧3 Rnk .

• If nk = 8 then

kerΥ ′
= [su(3) ⊗ R8

] +
∧3 R8 and [su(3) ⊗ R8

] ∩
∧3 R8

=
8⊙2

1 .

• If nk = 26 then

kerΥ ′
= [f4 ⊗ R26

] ⊕
∧3 R26

⊕
26∧ 2

52 .

• In particular, for nk = 5, 14 and 26 we have [hk ⊗ Rnk ] ∩
∧3 Rnk = {0}.

This implies the following theorem.

Theorem 6.7. In dimensions nk = 5 and nk = 14 the necessary and sufficient condition for an Hk structure (M, g,Υ) to admit a
characteristic connection is that (M, g,Υ) is nearly integrable

(
LC
∇vΥ)(v, v, v) ≡ 0.

Proposition 6.6 also implies that the nearly integrable Hk structures in dimension nk = 8 admit decomposition (6.1).
However, in this dimension condition (6.1) determines the connection Γ and the torsion T up to an additional freedom. Due
to the 1-dimensional intersection [su(3) ⊗ R8

] ∩
∧3 R8

=
8⊙2

1 we see that in such a case there is a 1-parameter family of
connections Γ(λ) ∈ su(3) ⊗ R8 and 1-parameter family of skew symmetric torsions T(λ) ∈

∧3 R8 such that

LC
Γ= Γ(λ) +

1
2
T(λ). (6.6)

It is clear that for nk = 8, the requirement (6.1) uniquely determines Γ ∈ su(3) ⊗ R8 and T ∈
∧3 R8 only if we restrict

ourselves to the nearly integrable SU(3) structures for which the Levi-Civita connection
LC
Γ is in the 118-dimensional space

8V such that 8V ⊕
8⊙2

1 = kerΥ ′. It follows that this space has the following decomposition under the SU(3)-action
8V = 2 8⊙2

27 ⊕ 2 8∧ 2
20 ⊕ 3 8⊙2

8. It is convenient to extend this notation and to introduce vector spaces nkV to be subspaces
of kerΥ ′ such that:

nkV = kerΥ ′ for nk = 5, 14
8V = 2 8⊙2

27 ⊕ 2 8∧ 2
20 ⊕ 3 8⊙2

8  kerΥ ′,

26V = [f4 ⊗ R26
] ⊕

∧3 R26 kerΥ ′.

Using these we have the following definition

Definition 6.8. An Hk structure (M, g,Υ) is called restricted nearly integrable iff its Levi-Civita connection
LC
Γ∈

nkV .

Remark 6.9. Note that for nk = 5 or nk = 14 the term: restricted nearly integrable is the same as: nearly integrable.

Looking again at Proposition 6.6we see that the above restriction for the nearly integrable SU(3)or F4 structures in respective
dimensions nk = 8 and nk = 26 is precisely the one that gives the sufficient conditions for the existence and uniqueness of
the characteristic connection. Summarizing we have the following theorem.

Theorem 6.10. A necessary and sufficient condition for an Hk structure (M, g,Υ) to admit a characteristic connection is that this
structure is restricted nearly integrable.

Remark 6.11. Note, that if nk = 5 then, out of the a priori 50 independent components of the Levi-Civita connection
LC
Γ ,

the (restricted) nearly integrable condition (6.1) excludes 25. Thus, heuristically, the (restricted) nearly integrable SO(3)
structures constitute ‘a half’ of all the possible SO(3) structures in dimension 5.

If nk = 8 the Levi-Civita connection has 224 components. The restricted nearly integrable condition reduces it to 118. For
nk = 14 these numbers reduce from 1274 to 658. For nk = 26 the reduction is from 8450 to 3952.
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7. Classification of the restricted nearly integrable Hk structures

We classify the possible types of the restricted nearly integrable Hk structures according to the Hk irreducible
decompositions of the spaces

∧3 Rnk in which the torsion T of their characteristic connections resides. Using a computer
algebra package for Lie group computations ‘LiE’ [12] we easily arrive at the following proposition.

Proposition 7.1. Let (M, g,Υ) be a restricted nearly integrable Hk structure. The Hk irreducible decomposition of the skew
symmetric torsion T of the characteristic connection for (M, g,Υ) is given by:
• T ∈

5∧ 2
7 ⊕

5∧ 2
3, for nk = 5,

• T ∈
8⊙2

27 ⊕
8∧ 2

20 ⊕
8⊙2

8 ⊕
8⊙2

1, for nk = 8,
• T ∈

14V189 ⊕
14V84 ⊕

14∧ 2
70 ⊕

14∧ 2
21, for nk = 14,

• T ∈
26V1274 ⊕

26V1053 ⊕
26∧ 2

273, for nk = 26.

Here nkV j denotes irreducible j-dimensional representations of Hk which were not present in the Hk decomposition of
⊗2 Rnk .

This provides an analog of the Gray–Hervella [10] classification for the restricted nearly integrable Hk structures.
We close this section with a remark on possible types of the curvature R of the characteristic connections.

Remark 7.2. In the below formulae nkV j denote the j-dimensional irreducible representation space for Hk which did not
appear in Proposition 4.1.
• If nk = 5 then R ∈

5⊙2
9 ⊕

5∧ 2
7 ⊕ 2 5⊙2

5 ⊕
5∧ 2

3 ⊕
5⊙2

1
• If nk = 8 then R ∈

8V70 ⊕ 3 8⊙2
27 ⊕ 2 8∧ 2

20 ⊕ 4 8⊙2
8 ⊕

8⊙2
1.

• If nk = 14 then R ∈
14V525 ⊕

14V512 ⊕ 2 14V189 ⊕
14V126 ⊕ 2 14⊙2

90 ⊕ 2 14∧ 2
70 ⊕

14∧ 2
21 ⊕ 2 14⊙2

14 ⊕
14⊙2

1.
• If nk = 26 then R ∈

26V8424 ⊕
26V4096 ⊕

26V1274 ⊕
26V1053 ⊕

26V ′

1053 ⊕ 2 26⊙2
324 ⊕

26∧ 2
273 ⊕

26∧ 2
52 ⊕

26⊙2
26 ⊕

26⊙2
1.

Note that, due to the restricted nearly integrability condition, it is rather unlikely that R may attain values in all of the
above irreducible parts.

8. Dimensions 12, 18, 28, 30, 40, 54, 64 and 112; the ‘exceptional’ 8 and 32

8.1. Torsionless models

It is obvious that the simplest restricted nearly integrable Hk structures have the characteristic connection Γ with
vanishing torsion T ≡ 0. For them

LC
Γ= Γ ∈ hk ⊗ Rnk ,

hence their Riemannian holonomy group is reduced from SO(nk) to the group Hk. Since Hk ⊂ SO(nk) in the respective
dimensions nk = 5, 8, 14 and 26 are not present in the Berger list of the Riemannian holonomy groups [1], the only possible
restricted nearly integrable Hk structures with T ≡ 0 must be locally isometric to the symmetric spaces M = Gk/Hk. The Lie
group Gk appearing heremust have dimension dimGk = nk +dimHk. Looking at Cartan’s list [5] of the irreducible symmetric
spaces (see e.g. [2] pp. 312–317) we have the following theorem.

Theorem 8.1. All Hk structures with vanishing torsion are locally isometric to one of the symmetric spaces

M = Gk/Hk,

where the possible Lie groups G are given in the following table:

dimM Group Hk Group Gk Group Gk Group Gk

nk = 5 SO(3) SU(3) SO(3)×ρ R5 SL(3,R)
nk = 8 SU(3) SU(3) × SU(3) SU(3)×ρ R8 SL(3,C)
nk = 14 Sp(3) SU(6) Sp(3)×ρ R14 SU∗(6) ' SL(3,H)
nk = 26 F4 E6 F4 ×ρ R26 E−26

6 ' SL(3,O)

Here ρ is the irreducible representation of Hk in Rnk .

Remark 8.2. Let gk be the Lie algebra of the group Gk of Theorem 8.1. We note that since the torsionless models for the Hk

structures are the symmetric spaces M = Gk/Hk, then arbitrary restricted nearly integrable Hk structures may be analyzed
in terms of a Cartan gk-valued connection on the Cartan bundle Hk → P → M. In such a language the torsionlessmodels with
respect to the hk connection are simply the flat models for the corresponding Cartan gk-valued connection on P.

Remark 8.3. According to [19] the manifold M = SU(3)/SO(3) is a unique irreducible Riemannian symmetric space
M = G/H with the property that (rankG − rankH) = 1 and that M is not isometric to an odd dimensional real Grassmann
manifold. It is interesting to note [9] (see [19] p. 324) that the other compact torsionlessHk structures correspond tomanifolds
M = SU(3), M = SU(6)/Sp(3) and M = E6/F4, which are examples of a very few irreducible symmetric Riemannian
manifolds M = G/H with (rankG − rankH) = 2.
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8.2. The ‘magic square’

We now concentrate on the Lie algebras hk and gk corresponding to groups Hk and Gk appearing in the second and the
third columns of the table included in Theorem 8.1. We note that these Lie algebras constitute the first two columns of the
‘magic square’ [17,18]:

so(3) su(3) sp(3) f4
su(3) 2su(3) su(6) e6
sp(3) su(6) so(12) e7
f4 e6 e7 e8

In agreement with the previous notation let us denote by Hk, Gk, Gk and G̃k the compact Lie groups corresponding to the
Lie algebras of the first, the second, the third and the fourth respective columns of the magic square. Since Gk/Hk are the
torsionless compact models for Hk geometries, it may seem reasonable to consider spaces Gk/Gk and G̃k/Gk as the torsionless
models for new special Riemannian geometries with a characteristic connection. Unfortunately the homogeneous spaces
Gk/Gk and G̃k/Gk are reducible. However, if we replace the second column in the magic square by

su(3) ⊕ R

2su(3)⊕R
su(6) ⊕ R

e6 ⊕ R

then the Lie groups Gk corresponding to these Lie algebras define the irreducible Riemannian symmetric spaces Gk/Gk.
Similarly if we replace the third column in the magic square by

sp(3) ⊕ su(2)
su(6) ⊕ su(2)
so(12)⊕su(2)
e7 ⊕ su(2)

then the Lie groups Gk corresponding to these Lie algebras define the irreducible Riemannian symmetric spaces G̃k/Gk. Thus
starting from the second and the third columns of the table in Theorem 8.1, via themagic square, we arrived at 12 symmetric
spaces.

SU(3)/SO(3) Sp(3)/U(3) F4/(Sp(3) × SU(2))
SU(3) SU(6)/S(U(3) × U(3)) E6/(SU(6) × SU(2))
SU(6)/Sp(3) SO(12)/U(6) E7/(SO(12) × SU(2))
E6/F4 E7/(E6 × SO(2)) E8/(E7 × SU(2))

These 12 symmetric spaces can be considered as torsionless models for special geometries on RiemannianmanifoldsMwith
the following dimensions and structure groups:

dimM Structure group dimM Structure group dimM Structure group
nk Hk 2(nk + 1) Extended Gk 4(nk + 2) Extended Gk

5 SO(3) 12 U(3) 28 Sp(3) × SU(2)
8 SU(3) 18 S(U(3) × U(3)) 40 SU(6) × SU(2)
14 Sp(3) 30 U(6) 64 SO(12) × SU(2)
26 F4 54 E6 × SO(2) 112 E7 × SU(2)

A quick look at Cartan’s list of the irreducible symmetric spaces of compact type suggests that the special Riemannian
geometries appearing in this list should be supplemented by the two ‘exceptional’ possibilities:

(1) dimM = 32,with the structure group SO(10)×SO(2) andwith the torsionlessmodel of compact typeM = E6/(SO(10)×
SO(2))

(2) dimM = 8, with the structure group SU(2) × SU(2) and with the torsionless model of compact type M = G2/(SU(2) ×

SU(2)).

Although these two possibilities are not implied by themagic square, we are convinced that their place is in the above table:
item (1) should stay in the second column for dimM in the row between dimensions 30 and 54, and item (2) should stay in
the third column for dim M in the ‘zeroth’ row, before dimension 28.

It is interesting if all these geometries admit characteristic connection. Also, we do not know which objects in RdimM

reduce the orthogonal groups SO(dimM) to the above-mentioned structure groups. Are these symmetric tensors, as was in
the case of the groups Hk?
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9. Examples in dimension 8

In the following sections we will briefly discuss the two different 8-dimensional cases, namely: the restricted nearly
integrable SU(3) geometries and the SU(2) × SU(2) geometries. In particular, we provide nontrivial examples of restricted
nearly integrable SU(3) structures. We also explain how to define an SU(2) × SU(2) structure by means of a symmetric
tensor of the sixth order.

9.1. SU(3) structures

It is interesting to note that in the decomposition of
∧3 R8 onto the SU(3)-invariant components (see Proposition 7.1)

there exists a 1-dimensional subspace 8⊙2
1. This space, in the adapted coframe of Definition 5.3, is spanned by a 3-form

ψ = τ1 ∧ θ6 + τ2 ∧ θ7 + τ3 ∧ θ8 + θ6 ∧ θ7 ∧ θ8, (9.1)

where (τ1, τ2, τ3) are 2-forms

τ1 = θ1 ∧ θ4 + θ2 ∧ θ3 +
√
3θ1 ∧ θ5

τ2 = θ1 ∧ θ3 + θ4 ∧ θ2 +
√
3θ2 ∧ θ5

τ3 = θ1 ∧ θ2 + 2θ4 ∧ θ3

spanning the 3-dimensional irreducible representation 5∧ 2
3 ' so(3) of SO(3).

Note that the 3-formψ can be considered in R8 without any reference to tensorΥ . It is remarkable that this 3-form alone
reduces the GL(8,R) to the irreducible SU(3) in the same way as Υ does.1 If one thinks that formula (9.1) is written in the
orthonormal coframe θ then one gets the reduction from GL(8,R) via SO(8) to the irreducible SU(3). Thus, in dimension 8,
the Hk structure can be defined either in terms of the totally symmetric Υ or in terms of the totally skew symmetric ψ.2

Remark 9.1. In this sense the 3-form ψ and the 2-forms (τ1, τ2, τ3) play the same role in the relations between SU(3)
structures in dimension eight and SO(3) structures in dimension five as the 3-form

φ = σ1 ∧ θ5 + σ2 ∧ θ6 + σ3 ∧ θ7 + θ5 ∧ θ6 ∧ θ7

and the self-dual 2-forms

σ1 = θ1 ∧ θ3 + θ4 ∧ θ2

σ2 = θ4 ∧ θ1 + θ3 ∧ θ2

σ3 = θ1 ∧ θ2 + θ3 ∧ θ4

play in the relations [16] between G2 structures in dimension seven and SU(2) structures in dimension four.

We also note that the SU(3)-invariant 3-form ψ can be used to find the explicit decomposition of an arbitrary 3-form ω
in
∧3 R8 onto the irreducible components mentioned in Proposition 7.1. Indeed, given an SU(3) structure (M, g,Υ) on an

8-manifold M we may write an arbitrary 3-form ω in the adapted coframe θ of Definition 5.3 as ω =
1
6ωIJKθ

I
∧ θJ ∧ θK . Using

ψ =
1
6ψIJKθ

I
∧ θJ ∧ θK , we associate with ω a tensorψ(ω)IJ = ψIKLωJKL. Sinceψ(ω) is an element of

⊗2 R8, it may be analyzed
by means of the endomorphism Υ̂ naturally associated with Υ = ΥIJKθ

IθJθK via (4.1). It follows that the 3-form ω is

• in 8⊙2
1 iff Υ̂(ψ(ω)) = 20ψ(ω),

• in 8⊙2
8 iff Υ̂(ψ(ω)) = −6ψ(ω),

• in 8∧ 2
20 iff Υ̂(ψ(ω)) = −8ψ(ω),

• in 8⊙2
27 iff Υ̂(ψ(ω)) = 4ψ(ω).

Now, if we have a nearly integrable SU(3) structure in dimension 8, it is easy to check what is the type of its totally skew
symmetric torsion TIJK . For this it suffices to consider a 3-form T =

1
6 TIJKθ

I
∧ θJ ∧ θK , to associate with itψ(T) and to apply the

endomorphism Υ̂ .

1We note that ψ is a stable form in dimension 8 and, as such, was considered by Nigel Hitchin in [11].
2 Simon Chiossi [8] asks if there is another situation in which a subgroup H ⊂ SO(n) of GL(n,R) is a stabilizer of either a totally symmetric tensor or,

independently, of a totally skew symmetric tensor. The answer is yes. The fifth exterior power of the 14-dimensional representation 14⊙2
14 of Sp(3) has a

1-dimensional Sp(3)-invariant subspace. Thus, it defines a 5-formwhose stabilizer under the action of GL(14,R) includes Sp(3) ⊂ SO(14). It turns out that
this 5-form alone, independently of tensor Υ of Section 2, reduces the GL(n,R), via SO(14) to Sp(3). The explicit expression for this form in the adapted
coframe of Section 5 is given in Appendix B.
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9.1.1. Structures with (8 + l)-dimensional symmetry group
In the following we will apply the following construction.
Let G be an (8 + l)-dimensional Lie group with a Lie subgroup H of dimension l ≤ 8 = dim SU(3). We arrange a labeling

of a left invariant coframe (θI, γα) on G in such a way that the vector fields Xα, α = 1, 2, . . . , l, of the frame (eI, Xα) dual to
(θI, γα) generate H. Suppose now that the groups G and H are such that the following tensors

g = gIJθ
IθJ = (θ1)2 + (θ2)2 + (θ3)2 + (θ4)2 + (θ5)2 + (θ6)2 + (θ7)2 + (θ8)2

Υ = ΥIJK =
1
2
det

 θ5 −
√
3θ4

√
3(θ3 + iθ8)

√
3(θ2 + iθ7)

√
3(θ3 − iθ8) θ5 +

√
3θ4

√
3(θ1 + iθ6)

√
3(θ2 − iθ7)

√
3(θ1 − iθ6) −2θ5

 (9.2)

are invariant on G when Lie transported along the flows of vector fields Xα. In such a case both g and Υ project to well
defined nondegenerate tensors on the 8-dimensional homogeneous spaceM = G/H. These projected tensors, which wewill
also respectively denote by g and Υ , define the SU(3) structure (M, g,Υ) on M.

9.1.2. Restricted nearly integrable structures with maximal symmetry groups
It follows that the restricted nearly integrable SU(3) structures with maximal symmetry groups are locally equivalent to

the torsionless models of Theorem 8.1. Thus the possible maximal symmetry groups G are:

Gλ>0 = SU(3) × SU(3), Gλ=0 = SU(3)×ρ R8 or Gλ<0 = SL(3,C).

The three cases are distinguishable by means of the sign of a real constant λ, which is related to the Ricci scalar of the
Levi-Civita/characteristic connection of the corresponding torsionless SU(3) structure.

We illustrate this statement by using the left invariant coframe (θI, γα) on G discussed in the preceding section. Here it
satisfies the following differential system

dθI + Γ I
J ∧ θ

J
= 0, dΓ I

J + Γ I
K ∧ Γ K

J = RI
J,

where the characteristic connection matrix Γ I
J is related to the 1-forms γα, α = 1, 2, . . . , 8, via:

Γ = γαEα =



0 −γ1
−γ2

−γ3
−

√
3γ3

−γ4
−γ5

−γ6

γ1 0 −γ3 γ2
−

√
3γ2

−γ5
−γ4

− γ7
−
γ8
√
3

γ2 γ3 0 2γ1 0 γ6
−
γ8
√
3

−γ7

γ3
−γ2

−2γ1 0 0 −
γ8
√
3

−γ6
−2γ5

√
3γ3

√
3γ2 0 0 0 −γ8

√
3γ6 0

γ4 γ5
−γ6 γ8

√
3

γ8 0 −γ1 γ2

γ5 γ4
+ γ7 γ8

√
3

γ6
−

√
3γ6 γ1 0 −γ3

γ6 γ8
√
3

γ7 2γ5 0 −γ2 γ3 0



, (9.3)

and the curvature RI
J is given by

R = −
λ

12
καEα,

where the 2-forms κα are given by

κ1 = θ1 ∧ θ2 − 2θ3 ∧ θ4 + θ6 ∧ θ7

κ2 = θ1 ∧ θ3 − θ2 ∧ θ4 +
√
3θ2 ∧ θ5 − θ6 ∧ θ8

κ3 = θ1 ∧ θ4 +
√
3θ1 ∧ θ5 + θ2 ∧ θ3 + θ7 ∧ θ8

κ4 = 4θ1 ∧ θ6 + 2θ2 ∧ θ7 − 2θ3 ∧ θ8

κ5 = θ1 ∧ θ7 + θ2 ∧ θ6 + 2θ4 ∧ θ8

κ6 = θ1 ∧ θ8 − θ3 ∧ θ6 + θ4 ∧ θ7 −
√
3θ5 ∧ θ7

κ7 = −2θ1 ∧ θ6 + 2θ2 ∧ θ7 + 4θ3 ∧ θ8

κ8 =
√
3(θ2 ∧ θ8 + θ3 ∧ θ7 + θ4 ∧ θ6 +

√
3θ5 ∧ θ6).

(9.4)
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Now, the system guarantees that the Lie derivatives of the structural tensors g and Υ of (9.2) with respect to all vector fields
Xα dual on G to γα vanish:

LXαg = 0, LXαΥ ≡ 0.

Thus, the quotient spaces are equipped with SU(3) structures locally equivalent to the natural SU(3) structures on

Mλ>0 = SU(3), Mλ=0 = R8, Mλ<0 = SL(3,C)/SU(3).

Since in such cases the Riemannian holonomy group is reduced to SU(3), the Riemannian curvature coincides with the
curvature of the characteristic connection. The Ricci tensor of these curvatures is Einstein, Ric = λg.

9.1.3. Examples with 11-dimensional symmetry group and torsion in 8⊙2
27

Below we present a 2-parameter family of restricted nearly integrable SU(3) structures which are a local deformation
of the torsionless model Mλ>0 = SU(3). These structures have a 11-dimensional symmetry group G described by the
Maurer–Cartan coframe (θI, γ1, γ2, γ3) defined below.

dθ1 = γ1
∧ θ2 + γ2

∧ θ3 + γ3
∧ θ4 +

√
3γ3

∧ θ5 +
k

√
3
κ8

dθ2 = −γ1
∧ θ1 − γ2

∧ θ4 +
√
3γ2

∧ θ5 + γ3
∧ θ3 − kκ6

dθ3 = −2γ1
∧ θ4 − γ2

∧ θ1 − γ3
∧ θ2 − kκ5

dθ4 = 2γ1
∧ θ3 + γ2

∧ θ2 − γ3
∧ θ1 +

k

2
κ7

1
√
3
dθ5 = −γ2

∧ θ2 − γ3
∧ θ1 −

k

6
(2κ4 + κ7)

dθ6 = γ1
∧ θ7 − γ2

∧ θ8 + (2k − t)κ3 − 2(k + 7t)θ7 ∧ θ8

dθ7 = −γ1
∧ θ6 + γ3

∧ θ8 + (2k − t)κ2 + 2(k + 7t)θ6 ∧ θ8

dθ8 = γ2
∧ θ6 − γ3

∧ θ7 + (2k − t)κ1 − 2(k + 7t)θ6 ∧ θ7

dγ1
= γ2

∧ γ3
+ (k + 15t)(t − 2k)κ1 + (k + 15t)(k − t)θ6 ∧ θ7

dγ2
= −γ1

∧ γ3
+ (k + 15t)(t − 2k)κ2 − (k + 15t)(k − t)θ6 ∧ θ8

dγ3
= γ1

∧ γ2
+ (k + 15t)(t − 2k)κ3 + (k + 15t)(k − t)θ7 ∧ θ8.

The 2-forms κα appearing here are given in (9.4); k and t are real constants.
It is easy to check that in all directions spanned by the three vector fields Xα dual to γα we have

LXαg = 0, LXαΥ = 0,

where the structural tensors g and Υ are given by (9.2). Thus the quotient 8-manifoldM = G/H, where H is generated by Xα,
is equipped with an SU(3) structure (M, g,Υ). As mentioned above, this structure is restricted nearly integrable. It has the
characteristic connection Γ given by (9.3) with

γ4
= (k − t)(θ4 +

√
3θ5), γ5

= (k − t)θ3, γ6
= (k − t)θ2,

γ7
= 2(t − k)θ4, γ8

=
√
3(t − k)θ1.

The torsion T of Γ is of a pure type. It lies in the 27-dimensional representation 8⊙2
27. The torsion 3-form T reads:

T = t(θ1 ∧ θ2 ∧ θ8 + θ1 ∧ θ3 ∧ θ7 + θ1 ∧ θ4 ∧ θ6 +
√
3θ1 ∧ θ5 ∧ θ6 + θ2 ∧ θ3 ∧ θ6

− θ2 ∧ θ4 ∧ θ7 +
√
3θ2 ∧ θ5 ∧ θ7 − 2θ3 ∧ θ4 ∧ θ8 − 15θ6 ∧ θ7 ∧ θ8).

Remarkably this form is coclosed, so the Ricci tensor RicΓ of the characteristic connection is symmetric. Moreover, it is
diagonal,

RicΓ
= diag(λ,λ,λ,λ,λ,µ,µ,µ),

with two constant eigenvalues

λ = 12(k2 + 15kt − 8t2), µ = 12
(
k2 +

5
3
kt
)

.

These two eigenvalues coincide when t = 0 and t =
5
3 k. In the first case the SU(3) structure is locally equivalent to the

torsionless model Mλ>0 = SU(3). The case

t =
5
3
k
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is interesting since it provides an example of a restricted nearly integrable SU(3) structurewith the characteristic connection
Γ satisfying the Einstein equations

RicΓ
=

136
3

k2g

and having torsion of a nontrivial pure type 8⊙2
27.

We further note that for all values of t and k the Ricci tensor for the Levi-Civita connection of this structure is also diagonal,

RicLC = diag(λ′,λ′,λ′,λ′,λ′,µ′,µ′,µ′),

with eigenvalues given by λ′
= λ+ 3t2, µ′

= µ+ 115t2. This Ricci tensor is Einstein in the torsionless case t = 0 and when

t =
10
13

k.

In this later case the Ricci tensor reads

RicLC =
16128
169

k2g.

9.1.4. Examples with 9-dimensional symmetry group and vectorial torsion
Let G be a 9-dimensional group with a left invariant coframe (θI, γ1) on it as in Section 9.1.1. Let (eI, X1) be a basis of

vector fields on G dual to (θI, γ1). We assume that (θI, γ1) satisfies the following differential system

dθ1 = γ1
∧ θ2 −

1
2
t1θ

1
∧ θ3 +

1
2
t1θ

2
∧ θ4 −

1
2
√
3
t1θ

2
∧ θ5 +

1
2
t2θ

3
∧ θ7 +

1
2
t2θ

4
∧ θ6

dθ2 = −γ1
∧ θ1 +

1
2
t1θ

1
∧ θ4 +

1
2
√
3
t1θ

1
∧ θ5 +

1
2
t1θ

2
∧ θ3 +

1
2
t2θ

3
∧ θ6 −

1
2
t2θ

4
∧ θ7

dθ3 = −2γ1
∧ θ4 +

1
√
3
t1θ

4
∧ θ5

dθ4 = 2γ1
∧ θ3 −

1
√
3
t1θ

3
∧ θ5

dθ5 =
1

√
3
t1θ

1
∧ θ2 −

1
√
3
t2θ

1
∧ θ6 −

1
√
3
t2θ

2
∧ θ7 +

1
√
3
t1θ

3
∧ θ4 +

1
√
3
t1θ

6
∧ θ7

dθ6 = γ1
∧ θ7 +

1
2
t2θ

1
∧ θ4 +

1
2
t2θ

2
∧ θ3 +

1
2
t1θ

3
∧ θ6 −

1
2
t1θ

4
∧ θ7 +

1
2
√
3
t1θ

5
∧ θ7

dθ7 = −γ1
∧ θ6 +

1
2
t2θ

1
∧ θ3 −

1
2
t2θ

2
∧ θ4 −

1
2
t1θ

3
∧ θ7 −

1
2
t1θ

4
∧ θ6 −

1
2
√
3
t1θ

5
∧ θ6

dθ8 = −t2θ
3
∧ θ4

dγ1
= −

1
6
t21θ

1
∧ θ2 +

1
6
t1t2θ

1
∧ θ6 +

1
6
t1t2θ

2
∧ θ7 +

1
6
(3t22 − 4t21)θ

3
∧ θ4 −

1
6
t21θ

6
∧ θ7.

Here the real parameters t1, t2 are constants.
Let H be a 1-parameter subgroup of G generated by the vector field X1. Now we consider g and Υ of (9.2). It is easy to

check that the above differential equations for the system (θI, γ1) guarantee that on G the Lie derivatives with respect to X1
of g and Υ identically vanish:

LX1g ≡ 0, LX1Υ ≡ 0.

Thus on the homogeneous space M = G/H we have an SU(3) structure (M, g,Υ). This SU(3) structure has the following
properties.

• It is a restricted nearly integrable structure.
• It has a 9-dimensional symmetry group G.
• Its characteristic connection is given by (9.3), where

γ2
= −

1
2
t1θ

1, γ3
=

1
2
t1θ

2, γ4
=

1
2
t2θ

4
−

1
√
3
t2θ

5
+

1
2
t1θ

8,

γ5
=

1
2
t2θ

3, γ6
= −

1
2
t1θ

6, γ7
= −t2θ

4, γ8
= −

√
3
2

t1θ
7.
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• The skew symmetric torsion T of Γ is of purely ‘vectorial’ type: T ∈
8⊙2

8. Explicitly the torsion 3-form is

T = t1

(
−

2
√
3
θ1 ∧ θ2 ∧ θ5 + θ1 ∧ θ6 ∧ θ8 + θ2 ∧ θ7 ∧ θ8 +

1
√
3
θ3 ∧ θ4 ∧ θ5 −

2
√
3
θ5 ∧ θ6 ∧ θ7

)
+ t2

( 1
√
3
θ1 ∧ θ5 ∧ θ6 +

1
√
3
θ2 ∧ θ5 ∧ θ7 + θ3 ∧ θ4 ∧ θ8

)
.

• The Ricci tensor RicΓ of the characteristic connection is symmetric:

RicΓ
=



−
1
3
(4t21 + t22) 0 0 0 0 0 −

2
3
t1t2 0

0 −
1
3
(4t21 + t22) 0 0 0

2
3
t1t2 0 0

0 0 −
7
3
t21 0 0 0 0 0

0 0 0 −
7
3
t21 0 0 0 0

0 0 0 0 −t21 0 0 0

0
2
3
t1t2 0 0 0 −

1
3
(4t21 + t22) 0 0

−
2
3
t1t2 0 0 0 0 0 −

1
3
(4t21 + t22) 0

0 0 0 0 0 0 0 −t21



;

hence the torsion 3-form T is coclosed.
• The Ricci tensor RicLC of the Levi-Civita connection is

RicLC =



−
1
6

(t21 + t22) 0 0 0 0 0 −
4
3
t1t2 0

0 −
1
6

(t21 + t22) 0 0 0
4
3
t1t2 0 0

0 0
1
6

(−13t21 + 3t22) 0 0 0 0 0

0 0 0
1
6

(−13t21 + 3t22) 0 0 0 0

0 0 0 0
1
6

(3t21 + 2t22) 0 0 −
1

2
√
3
t1t2

0
4
3
t1t2 0 0 0 −

1
6

(t21 + t22) 0 0

−
4
3
t1t2 0 0 0 0 0 −

1
6

(t21 + t22) 0

0 0 0 0 −
1

2
√
3
t1t2 0 0

1
2
t22



.

We note that if t1 = 0 or t2 = 0 both the Ricci tensors RicΓ and RicLC in the example above are diagonal. Belowwe present
another 2-parameter family of examples with this property.

Now the 9-dimensional group G has the basis of the left invariant forms (θI, γ1) such that:

dθ1 = γ1
∧ θ2 − cθ2 ∧ θ8 + (t − 4c)

(
1
2
θ3 ∧ θ7 +

1
2
θ4 ∧ θ6 +

3c
√
3

6c − t
θ5 ∧ θ6

)

dθ2 = −γ1
∧ θ1 + cθ1 ∧ θ8 + (t − 4c)

(
1
2
θ3 ∧ θ6 −

1
2
θ4 ∧ θ7 +

3c
√
3

6c − t
θ5 ∧ θ7

)
dθ3 = −2γ1

∧ θ4 + 2c(θ1 ∧ θ7 + θ2 ∧ θ6 + θ4 ∧ θ8)

dθ4 = 2γ1
∧ θ3 + 2c(θ1 ∧ θ6 − θ2 ∧ θ7 − θ3 ∧ θ8)

dθ5 =
6c − t
√
3

(θ1 ∧ θ6 + θ2 ∧ θ7)

dθ6 = γ1
∧ θ7 + (t − 4c)

(
1
2
θ1 ∧ θ4 +

3c
√
3

6c − t
θ1 ∧ θ5 +

1
2
θ2 ∧ θ3

)
− cθ7 ∧ θ8

dθ7 = −γ1
∧ θ6 + (t − 4c)

(
1
2
θ1 ∧ θ3 −

1
2
θ2 ∧ θ4 +

3c
√
3

6c − t
θ2 ∧ θ5

)
+ cθ6 ∧ θ8

dθ8 = −2cθ1 ∧ θ2 + (4c − t)θ3 ∧ θ4 − 2cθ6 ∧ θ7

dγ1
= (2c − t)

(
−cθ1 ∧ θ2 +

1
2
(4c − t)θ3 ∧ θ4 − cθ6 ∧ θ7

)
,

where c and t are constants. The homogeneous space M = G/H, where H is a 1-dimensional subgroup of G generated by X1
dual to γ1, is equipped with a restricted nearly integrable SU(3) structure (M, g,Υ) via (9.2). The characteristic connection
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is given by (9.3) with

γ2
= cθ7, γ3

= cθ6, γ4
=

1
2
(t − 2c)θ4 +

1
√
3
t2 − 18c2

6c − t
θ5,

γ5
=

1
2
(t − 2c)θ3, γ6

= −cθ2, γ7
= (2c − t)θ4, γ8

=
√
3cθ1.

In this 2-parameter family of examples the skew symmetric torsion is again of purely vectorial type T ∈
8⊙2

8; its
corresponding 3-form is given by

T = t
( 1

√
3
θ1 ∧ θ5 ∧ θ6 +

1
√
3
θ2 ∧ θ5 ∧ θ7 + θ3 ∧ θ4 ∧ θ8

)
.

As announced above both the Ricci tensors are now diagonal for all values of c and t. Introducing the eigenvalues

λ =
1
3

[(6c − t)2 − 2t2], µ = 4c(3c − t),

λ′
=

1
3

[
(6c − t)2 −

3
2
t2
]
, µ′

=
1
3
(6c − t)2, ν′

=
1
3

[
(6c − t)2 +

1
2
t2
]

we have
RicΓ

= diag(λ,λ,µ,µ,µ,λ,λ,µ), RicLC = diag(λ′,λ′, ν′, ν′,µ′,λ′,λ′, ν′).

Of course the group G is a symmetry group of this restricted nearly integrable SU(3) structure.
We close this section with the following theorem, whose proof based on the Bianchi identities, is purely computational.

Theorem 9.2. Let (M, g,Υ) be an arbitrary restricted nearly integrable SU(3) structure in dimension eight. Assume that the
torsion T of the characteristic connection of this structure is of purely vectorial type, T ∈

8⊙2
8. Then the 3-form T corresponding

to the torsion is coclosed

d(∗T) ≡ 0.

This theorem, in particular, implies that the Ricci tensor of the characteristic connection for such structures is symmetric.

9.2. SU(2) × SU(2) structures

In this sectionwe consider SU(2)×SU(2) structures in dimension eightmodeled on the torsionless structureG2/(SU(2)×
SU(2)). The approach presented here should be useful in studies of the other exceptional case concerning the SO(10)×SO(2)
structures in dimension 32.

In full analogy with Hk structures we start with the identification of R8 with a space of the antisymmetric block matrices

M7×7(R) 3 ι(EX) =

(
03×3 α

−αt 04×4,

)
, in which the matrices α ∈ M3×4(R) have 3 rows and 4 columns. The entries of α satisfy the

following four relations
α16 − α34 − α25 = 0, α26 − α37 + α15 = 0,
α36 + α27 + α14 = 0, α35 + α17 − α24 = 0. (9.5)

These four relations reduce the 12 free parameters present in an arbitrary 3 × 4 matrix to 8 parameters. Now defining

M8
=

{
ι(EX) ∈ M7×7(R) : ι(EX) =

(
03×3 α
−αt 04×4,

)
with α satisfying (9.5)

}
, (9.6)

we have an isomorphism ι : R8
→ M8 between the vector spaces R8 andM8.

Now we define a representation ρ of the group SU(2) × SU(2) in R8, which will enable us to define an SU(2) × SU(2)
structure in dimension eight.

We use two different representations of SU(2) in dimension seven: The representation ρ1 generated by 7 × 7-matrices
hi = exp(tisi), i = 1, 2, 3, ti ∈ R (no summation!),

such that

s1 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0
1
2

0 0

0 0 0 −
1
2

0 0 0

0 0 0 0 0 0 −
1
2

0 0 0 0 0
1
2

0


, s2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0
1
2

0

0 0 0 0 0 0
1
2

0 0 0 −
1
2

0 0 0

0 0 0 0 −
1
2

0 0


,
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s3 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
1
2

0 0 0 0 0 −
1
2

0

0 0 0 0
1
2

0 0

0 0 0 −
1
2

0 0 0


,

and the representation ρ2 generated by 7 × 7 matrices

χi = exp(τiσi), i = 1, 2, 3, τi ∈ R (no summation!),

such that

σ1 =



0 −1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 −
1
2

0 0 0 0 0 −
1
2

0

0 0 0 0
1
2

0 0

0 0 0
1
2

0 0 0


, σ2 =



0 0 1 0 0 0 0
0 0 0 0 0 0 0

−1 0 0 0 0 0 0

0 0 0 0 0
1
2

0

0 0 0 0 0 0 −
1
2

0 0 0 −
1
2

0 0 0

0 0 0 0
1
2

0 0


,

σ3 =



0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0

0 0 0 0 −
1
2

0 0

0 0 0
1
2

0 0 0

0 0 0 0 0 0 −
1
2

0 0 0 0 0
1
2

0


.

We note that

[sj, sk] = εijksi, [σj,σk] = εijkσi, [si,σj] = 0, i, j, k = 1, 2, 3,

where εijk is the Levi-Civita symbol in 3-dimensions.
Now, we consider all the 7 × 7-matrices of the form

h = h(t1, t2, t3, τ1, τ2τ3) = h1h2h3χ1χ2χ3.

They constitute a 7-dimensional representation ρ7 of the full group SU(2) × SU(2).
Remarkably, hι(EX)ht is an element ofM8 for all the elements ι(EX) ofM8. Moreover, due to the fact that [si,σj] = 0 for all

i, j, the map

(SU(2) × SU(2)) ×M8
3 (h, ι(EX)) 7→ hι(EX)ht

∈ M8

is a good action of SU(2) × SU(2) on M8. Thus, using the isomorphism ι we get the 8-dimensional representation ρ of
SU(2) × SU(2) given by

R8
3 EX 7→ ρ(h)EX = ι−1

[hι(EX)ht
] ∈ R8. (9.7)

Given an element EX ∈ R8 we consider its characteristic polynomial

PEX(λ) = det(ι(EX) − λI)

= −λ7 − 6g(EX, EX)λ5 − 9g(EX, EX)2λ3 + 2γ(EX, EX, EX, EX, EX, EX)λ. (9.8)

This polynomial is invariant under the SU(2) × SU(2)-action given by the representation ρ of (9.7),

Pρ(h)EX(λ) = PEX(λ).

Thus, all the coefficients of PEX(λ), which are multilinear in EX, are SU(2) × SU(2)-invariant.
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It is convenient to use a basis eI in R8 such that the isomorphism ι : R8
→ M8 takes the form:

EX = xIeI 7→ ι(EX) =



0 0 0 −x3 +
√
3x4 −x5 +

√
3x6 −x7 +

√
3x8 −2x1

0 0 0 −x1 −
√
3x2 x7 +

√
3x8 −x5 −

√
3x6 2x3

0 0 0 −2x7 x1 −
√
3x2 −x3 −

√
3x4 −2x5

x3 −
√
3x4 x1 +

√
3x2 2x7 0 0 0 0

x5 −
√
3x6 −x7 −

√
3x8 −x1 +

√
3x2 0 0 0 0

x7 −
√
3x8 x5 +

√
3x6 x3 +

√
3x4 0 0 0 0

2x1 −2x3 2x5 0 0 0 0


.

With this choice the bilinear form g of (9.8) reads:
g(EX, EX) = (x1)2 + (x2)2 + (x3)2 + (x4)2 + (x5)2 + (x6)2 + (x7)2 + (x8)2.

The 6-linear form γ of (9.8) defines a tensor γIJKLMN via
γ(EX, EX, EX, EX, EX, EX) = γIJKLMNx

IxJxKxLxMxN.

This tensor has the following properties.
• It reduces GL(8,R), via SO(8), to SU(2) × SU(2).
• The 6th order polynomial

Φ = γ(EX, EX, EX, EX, EX, EX)

of variables xI , I = 1, 2, . . . , 8, satisfies

(a) 4Φ = −72g(EX, EX)2

(b) | E∇Φ|
2

= −72Φg(EX, EX)2

(c) EX E∇Φ = 6Φ.

The properties (a)–(c) show that Φ cannot be interpreted as the Cartan polynomial (3.1) and (3.2) defining an
isoparametric hypersurface in S7. But we can modify it so that the redefined polynomial satisfies (3.1) and (3.2). Indeed,
using properties (a)–(c) it is easy to see that the 6th order homogeneous polynomial F = Φ + g(EX, EX)3 is a solution of

(Cii) 4F = 0
(Ciii) | E∇F|2 = 62g(EX, EX)5.

Thus, via (3.3), the polynomial F defines an isoparametric hypersurface in S7 which has p = 6 distinct constant principal
eigenvalues. Note that since both Φ and g(EX, EX) are SU(2) × SU(2)-invariant, the polynomial F is also so. Hence a stabilizer,
under the action of GL(8,R), of a 6th order symmetric tensor ΥIJKLMN defined by

F = Φ + g(EX, EX)3 = Υ(EX, EX, EX, EX, EX, EX) = ΥIJKLMNx
IxJxKxLxMxN (9.9)

contains the group SU(2) × SU(2). Actually we have the following proposition.

Proposition 9.3. The 6th order symmetric tensor ΥIJKLMN defined above reduces the GL(8,R) group, via SO(8), to the irreducible
SU(2) × SU(2) associated with the representation ρ of (9.7).

Following the case of Hk structures we use the tensor ΥIJKLMN of (9.9) to define an endomorphism

Υ̂ :
⊗2 R8

−→
⊗2 R8, (9.10)

W IK Υ̂
7−→

52

25 ΥIJMNPQΥKLMNPQW
JL,

which preserves the decomposition
⊗2 R8

=
∧2 R8

⊕
⊙2 R8. Its eigenspaces, are SU(2) × SU(2)-invariant and define

representations of dimension 1, 5, 6, 7, 9, 15, 21. Explicitly we have the following proposition.

Proposition 9.4. The SU(2) × SU(2) irreducible decomposition of
⊗2 R8 is given by⊗2 R8

=
⊙2

1 ⊕
⊙2

5 ⊕
⊙2

9 ⊕
⊙2

21 ⊕
∧2

6 ⊕
∧2

7 ⊕
∧2

15,

where⊙2
1 = {S ∈

⊗2 R8
| Υ̂(S) = 175 · S} = {S = λ · g, λ ∈ R},⊙2

5 = {S ∈
⊗2 R8

| Υ̂(S) = −21 · S},∧2
6 = {F ∈

⊗2 R8
| Υ̂(F) = 35 · F} = su(2) ⊕ su(2),∧2

7 = {F ∈
⊗2 R8

| Υ̂(F) = −25 · F},⊙2
9 = {S ∈

⊗2 R8
| Υ̂(S) = 7 · S},∧2

15 = {F ∈
⊗2 R8

| Υ̂(F) = −49 · F},⊙2
21 = {S ∈

⊗2 R8
| Υ̂(S) = 27 · S}.
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The real vector spaces
∧2

i ⊂
∧2 R8 and

⊙2
j ⊂

⊙2 R8 of respective dimensions i and j are irreducible representations of the group
SU(2) × SU(2).

Remark 9.5. Note that
∧2

6, is isomorphic to the Lie algebra su(2)⊕su(2) represented as the Lie subalgebra of 8×8-matrices.
In this 8-dimensional representation ρ′ the bases of the two su(2) algebras are, respectively, Σ L

i and ΣR
i , i = 1, 2, 3, where

Σ L
1 =

1
4



0 0 −5
√
3 0 0 0 0

0 0 −
√
3 3 0 0 0 0

5
√
3 0 0 0 0 0 0

−
√
3 −3 0 0 0 0 0 0

0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 6
0 0 0 0 2 0 0 0
0 0 0 0 0 −6 0 0


,

Σ L
2 =

1
4



0 0 0 0 −5
√
3 0 0

0 0 0 0
√
3 −3 0 0

0 0 0 0 0 0 −1 −
√
3

0 0 0 0 0 0 3
√
3 −3

5 −
√
3 0 0 0 0 0 0

−
√
3 3 0 0 0 0 0 0

0 0 1 −3
√
3 0 0 0 0

0 0
√
3 3 0 0 0 0


,

Σ L
3 =

1
4



0 0 0 0 0 0 −1
√
3

0 0 0 0 0 0 −3
√
3 −3

0 0 0 0 5
√
3 0 0

0 0 0 0
√
3 3 0 0

0 0 −5 −
√
3 0 0 0 0

0 0 −
√
3 −3 0 0 0 0

1 3
√
3 0 0 0 0 0 0

−
√
3 3 0 0 0 0 0 0


,

ΣR
1 =

1
4



0 0 0 0 0 0 −1
√
3

0 0 0 0 0 0
√
3 1

0 0 0 0 1
√
3 0 0

0 0 0 0
√
3 −1 0 0

0 0 −1 −
√
3 0 0 0 0

0 0 −
√
3 1 0 0 0 0

1 −
√
3 0 0 0 0 0 0

−
√
3 −1 0 0 0 0 0 0


,

ΣR
2 =

1
4



0 0 0 0 1 −
√
3 0 0

0 0 0 0 −
√
3 −1 0 0

0 0 0 0 0 0 1
√
3

0 0 0 0 0 0
√
3 −1

−1
√
3 0 0 0 0 0 0

√
3 1 0 0 0 0 0 0
0 0 −1 −

√
3 0 0 0 0

0 0 −
√
3 1 0 0 0 0


,

ΣR
3 =

1
4



0 0 1 −
√
3 0 0 0 0

0 0
√
3 1 0 0 0 0

−1 −
√
3 0 0 0 0 0 0

√
3 −1 0 0 0 0 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2
0 0 0 0 −2 0 0 0
0 0 0 0 0 −2 0 0
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and we have

[Σ L
j ,Σ L

k ] = −εijkΣ
L
i , [ΣR

j ,ΣR
k ] = −εijkΣ

R
i , [Σ L

i ,ΣR
j ] = 0, i, j, k = 1, 2, 3.

Of course the Lie algebra representation ρ′ is the derivative of the 8-dimensional representation ρ of SU(2) × SU(2)
considered in (9.7).

Now, we define the SU(2)×SU(2) structure on an 8-manifold as a structure equippedwith the Riemannianmetric g and the
6-tensorΥ , which in an orthonormal coframe θI is given byΥ = ΥIJKLMNθ

IθJθKθLθMθN withΥIJKLMN of (9.9). Having this, wemay
use the above proposition (and the basis of

∧2
6 = su(2)⊕ su(2) given above) as the starting point for addressing the question

about the description of such structures in terms of (su(2) ⊕ su(2))-valued connections. Regardless of the open question if
and when the characteristic connection for such structures exists, the torsionless models here will locally be isometric to
the symmetric spaces G2/(SU(2) × SU(2)), R8

= [(SU(2) × SU(2))×ρ R8
]/(SU(2) × SU(2)) and G2

2/(SU(2) × SU(2)) with
the standard SU(2) × SU(2) structure on them.

Acknowledgements

This paper owes much to the discussion with Robert Bryant I had during the RIMS Symposium ”Developments of Cartan
Geometry and Related Mathematical Problems” held in Kyoto in October 2005. I am very grateful to Tohru Morimoto for
inviting me to this symposium.

I warmly thank Thomas Friedrich for directing my attention to special Riemannian geometries, and Ilka Agricola for
answering many questions concerned with the representation theory.

Appendix A. Basis for the nk-dimensional representations of the Lie algebras hk

Herewe give the explicit formulae for the generic elements Xnk of the Lie algebras hk in terms of the nk ×nk antisymmetric
matrices. We denote the basis of the Lie algebra hk by Eα, α = 1, 2, . . . , dimHk and write

Xnk = xαEα.

The explicit form of the matrices Eα for each value of nk = 5, 8, 14 and 26 can be read off from the formulae below.
For nk = 5 we have:

X5 =


0 −x1 −x2 −x3 −

√
3x3

x1 0 −x3 x2 −
√
3x2

x2 x3 0 2x1 0
x3 −x2 −2x1 0 0

√
3x3

√
3x2 0 0 0

 . (A.1)

For nk = 8 we have:

X8 =



0 −x1 −x2 −x3 −
√
3x3 −x4 −x5 −x6

x1 0 −x3 x2 −
√
3x2 −x5 −x4 − x7 −

x8
√
3

x2 x3 0 2x1 0 x6 −
x8
√
3

−x7

x3 −x2 −2x1 0 0 −
x8
√
3

−x6 −2x5
√
3x3

√
3x2 0 0 0 −x8

√
3x6 0

x4 x5 −x6
x8
√
3

x8 0 −x1 x2

x5 x4 + x7
x8
√
3

x6 −
√
3x6 x1 0 −x3

x6
x8
√
3

x7 2x5 0 −x2 x3 0



. (A.2)
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For nk = 14 we have:

X14 =



0 −x1 −x2 −x3 −
√
3x3 −x4 −x5 −x6 −x9 −x10 −x11 −x12 −x13 −x14

x1 0 −x3 x2 −
√
3x2 −x5 −x4 − x7 −

x8
√
3

−x11 −x12 −x9 − x15 −x10 − x16 −
x17
√
3

−
x18
√
3

x2 x3 0 2x1 0 x6 −
x8
√
3

−x7 x13 x14 −
x17
√
3

−
x18
√
3

−x15 −x16

x3 −x2 −2x1 0 0 −
x8
√
3

−x6 −2x5 −
x17
√
3

−
x18
√
3

−x13 −x14 −2x11 −2x12
√
3x3

√
3x2 0 0 0 −x8

√
3x6 0 −x17 −x18

√
3x13

√
3x14 0 0

x4 x5 −x6
x8
√
3

x8 0 −x1 x2 −x19 −x20 x12 −x11 −x14 x13

x5 x4 + x7
x8
√
3

x6 −
√
3x6 x1 0 −x3 x12 −x11 x16 − x19 −x15 − x20 −

x18
√
3

x17
√
3

x6
x8
√
3

x7 2x5 0 −x2 x3 0 −x14 x13 −
x18
√
3

x17
√
3

z10 −z9

x9 x11 −x13
x17
√
3

x17 x19 −x12 x14 0 x21 −x1 x5 x2 −x6

x10 x12 −x14
x18
√
3

x18 x20 x11 −x13 −x21 0 −x5 −x1 x6 x2

x11 x9 + x15
x17
√
3

x13 −
√
3x13 −x12 −x16 + x19

x18
√
3

x1 x5 0 x7 + x21 −x3 −
x8
√
3

x12 x10 + x16
x18
√
3

x14 −
√
3x14 x11 x15 + x20 −

x17
√
3

−x5 x1 −x7 − x21 0
x8
√
3

−x3

x13
x17
√
3

x15 2x11 0 x14
x18
√
3

−z10 −x2 −x6 x3 −
x8
√
3

0 z4

x14
x18
√
3

x16 2x12 0 −x13 −
x17
√
3

z9 x6 −x2
x8
√
3

x3 −z4 0



,

(A.3)

where z4 = x4 + x7 + x21, z9 = x9 + x15 + x20, z10 = x10 + x16 − x19.
The size of the formula for X14 forces us to skip the 26-dimensional representation of f4. It can be easily obtained by

looking for the Lie algebra element stabilizing Υ1 of Proposition 2.2.

Appendix B. A 5-form reducing GL(14,R) to Sp(3) ⊂ SO(14)

An explicit expression for a nonzero elementφ of the only 1-dimensional Sp(3)-invariant subspace in
∧5 14⊙2

14 is written
below. This 5-form reduces GL(14,R) to Sp(3) ⊂ SO(3) and, in the adapted coframe of Section 5, contains 129 terms as
follows:

φ = 120
√
3θ1 ∧ θ2 ∧ θ3 ∧ θ4 ∧ θ5 − 240

√
3θ1 ∧ θ2 ∧ θ5 ∧ θ6 ∧ θ7 − 192

√
3θ1 ∧ θ2 ∧ θ5 ∧ θ9 ∧ θ11

− 144
√
3θ1 ∧ θ2 ∧ θ5 ∧ θ10 ∧ θ12 − 72θ1 ∧ θ2 ∧ θ6 ∧ θ9 ∧ θ14 + 144θ1 ∧ θ2 ∧ θ6 ∧ θ10 ∧ θ13

− 54θ1 ∧ θ2 ∧ θ7 ∧ θ11 ∧ θ14 + 72θ1 ∧ θ2 ∧ θ7 ∧ θ12 ∧ θ13 − 360θ1 ∧ θ2 ∧ θ8 ∧ θ9 ∧ θ10

− 162θ1 ∧ θ2 ∧ θ8 ∧ θ11 ∧ θ12 − 18θ1 ∧ θ2 ∧ θ8 ∧ θ13 ∧ θ14 − 360θ1 ∧ θ3 ∧ θ4 ∧ θ6 ∧ θ8

− 144θ1 ∧ θ3 ∧ θ4 ∧ θ9 ∧ θ13 − 72θ1 ∧ θ3 ∧ θ4 ∧ θ10 ∧ θ14 − 120
√
3θ1 ∧ θ3 ∧ θ5 ∧ θ6 ∧ θ8

− 48
√
3θ1 ∧ θ3 ∧ θ5 ∧ θ9 ∧ θ13 − 24

√
3θ1 ∧ θ3 ∧ θ5 ∧ θ10 ∧ θ14 − 216θ1 ∧ θ3 ∧ θ6 ∧ θ9 ∧ θ12

+ 288θ1 ∧ θ3 ∧ θ6 ∧ θ10 ∧ θ11 − 360θ1 ∧ θ3 ∧ θ7 ∧ θ9 ∧ θ10 − 162θ1 ∧ θ3 ∧ θ7 ∧ θ11 ∧ θ12

− 18θ1 ∧ θ3 ∧ θ7 ∧ θ13 ∧ θ14 − 54θ1 ∧ θ3 ∧ θ8 ∧ θ11 ∧ θ14 + 72θ1 ∧ θ3 ∧ θ8 ∧ θ12 ∧ θ13

+ 120
√
3θ1 ∧ θ4 ∧ θ5 ∧ θ7 ∧ θ8 + 36

√
3θ1 ∧ θ4 ∧ θ5 ∧ θ11 ∧ θ13 + 12

√
3θ1 ∧ θ4 ∧ θ5 ∧ θ12 ∧ θ14

− 720θ1 ∧ θ4 ∧ θ6 ∧ θ9 ∧ θ10 − 18θ1 ∧ θ4 ∧ θ6 ∧ θ13 ∧ θ14 − 72θ1 ∧ θ4 ∧ θ8 ∧ θ9 ∧ θ14

+ 144θ1 ∧ θ4 ∧ θ8 ∧ θ10 ∧ θ13 − 720
√
3θ1 ∧ θ5 ∧ θ6 ∧ θ9 ∧ θ10 − 108

√
3θ1 ∧ θ5 ∧ θ6 ∧ θ11 ∧ θ12

− 6
√
3θ1 ∧ θ5 ∧ θ6 ∧ θ13 ∧ θ14 − 144

√
3θ1 ∧ θ5 ∧ θ7 ∧ θ9 ∧ θ12 + 192

√
3θ1 ∧ θ5 ∧ θ7 ∧ θ10 ∧ θ11

− 24
√
3θ1 ∧ θ5 ∧ θ8 ∧ θ9 ∧ θ14 + 48

√
3θ1 ∧ θ5 ∧ θ8 ∧ θ10 ∧ θ13 + 144θ1 ∧ θ6 ∧ θ7 ∧ θ9 ∧ θ13

+ 72θ1 ∧ θ6 ∧ θ7 ∧ θ10 ∧ θ14 + 288θ1 ∧ θ6 ∧ θ8 ∧ θ9 ∧ θ11 + 216θ1 ∧ θ6 ∧ θ8 ∧ θ10 ∧ θ12

− 54θ1 ∧ θ9 ∧ θ10 ∧ θ11 ∧ θ14 + 72θ1 ∧ θ9 ∧ θ10 ∧ θ12 ∧ θ13 − 360θ2 ∧ θ3 ∧ θ4 ∧ θ7 ∧ θ8

− 108θ2 ∧ θ3 ∧ θ4 ∧ θ11 ∧ θ13 − 36θ2 ∧ θ3 ∧ θ4 ∧ θ12 ∧ θ14 + 120
√
3θ2 ∧ θ3 ∧ θ5 ∧ θ7 ∧ θ8

+ 36
√
3θ2 ∧ θ3 ∧ θ5 ∧ θ11 ∧ θ13 + 12

√
3θ2 ∧ θ3 ∧ θ5 ∧ θ12 ∧ θ14 − 360θ2 ∧ θ3 ∧ θ6 ∧ θ9 ∧ θ10

− 162θ2 ∧ θ3 ∧ θ6 ∧ θ11 ∧ θ12 − 18θ2 ∧ θ3 ∧ θ6 ∧ θ13 ∧ θ14 − 216θ2 ∧ θ3 ∧ θ7 ∧ θ9 ∧ θ12

+ 288θ2 ∧ θ3 ∧ θ7 ∧ θ10 ∧ θ11 − 72θ2 ∧ θ3 ∧ θ8 ∧ θ9 ∧ θ14 + 144θ2 ∧ θ3 ∧ θ8 ∧ θ10 ∧ θ13

+ 120
√
3θ2 ∧ θ4 ∧ θ5 ∧ θ6 ∧ θ8 + 48

√
3θ2 ∧ θ4 ∧ θ5 ∧ θ9 ∧ θ13 + 24

√
3θ2 ∧ θ4 ∧ θ5 ∧ θ10 ∧ θ14

+ 324θ2 ∧ θ4 ∧ θ7 ∧ θ11 ∧ θ12 + 18θ2 ∧ θ4 ∧ θ7 ∧ θ13 ∧ θ14 + 54θ2 ∧ θ4 ∧ θ8 ∧ θ11 ∧ θ14
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− 72θ2 ∧ θ4 ∧ θ8 ∧ θ12 ∧ θ13 − 144
√
3θ2 ∧ θ5 ∧ θ6 ∧ θ9 ∧ θ12 + 192

√
3θ2 ∧ θ5 ∧ θ6 ∧ θ10 ∧ θ11

− 240
√
3θ2 ∧ θ5 ∧ θ7 ∧ θ9 ∧ θ10 − 324

√
3θ2 ∧ θ5 ∧ θ7 ∧ θ11 ∧ θ12 − 6

√
3θ2 ∧ θ5 ∧ θ7 ∧ θ13 ∧ θ14

− 18
√
3θ2 ∧ θ5 ∧ θ8 ∧ θ11 ∧ θ14 + 24

√
3θ2 ∧ θ5 ∧ θ8 ∧ θ12 ∧ θ13 + 108θ2 ∧ θ6 ∧ θ7 ∧ θ11 ∧ θ13

+ 36θ2 ∧ θ6 ∧ θ7 ∧ θ12 ∧ θ14 + 288θ2 ∧ θ7 ∧ θ8 ∧ θ9 ∧ θ11 + 216θ2 ∧ θ7 ∧ θ8 ∧ θ10 ∧ θ12

+ 24θ2 ∧ θ9 ∧ θ11 ∧ θ12 ∧ θ14 − 48θ2 ∧ θ10 ∧ θ11 ∧ θ12 ∧ θ13 + 120
√
3θ3 ∧ θ4 ∧ θ5 ∧ θ6 ∧ θ7

+ 96
√
3θ3 ∧ θ4 ∧ θ5 ∧ θ9 ∧ θ11 + 72

√
3θ3 ∧ θ4 ∧ θ5 ∧ θ10 ∧ θ12 + 72θ3 ∧ θ4 ∧ θ6 ∧ θ9 ∧ θ14

− 144θ3 ∧ θ4 ∧ θ6 ∧ θ10 ∧ θ13 + 54θ3 ∧ θ4 ∧ θ7 ∧ θ11 ∧ θ14 − 72θ3 ∧ θ4 ∧ θ7 ∧ θ12 ∧ θ13

+ 360θ3 ∧ θ4 ∧ θ8 ∧ θ9 ∧ θ10 + 162θ3 ∧ θ4 ∧ θ8 ∧ θ11 ∧ θ12 + 72θ3 ∧ θ4 ∧ θ8 ∧ θ13 ∧ θ14

+ 24
√
3θ3 ∧ θ5 ∧ θ6 ∧ θ9 ∧ θ14 − 48

√
3θ3 ∧ θ5 ∧ θ6 ∧ θ10 ∧ θ13 − 18

√
3θ3 ∧ θ5 ∧ θ7 ∧ θ11 ∧ θ14

+ 24
√
3θ3 ∧ θ5 ∧ θ7 ∧ θ12 ∧ θ13 + 120

√
3θ3 ∧ θ5 ∧ θ8 ∧ θ9 ∧ θ10 − 54

√
3θ3 ∧ θ5 ∧ θ8 ∧ θ11 ∧ θ12

+ 108θ3 ∧ θ6 ∧ θ8 ∧ θ11 ∧ θ13 + 36θ3 ∧ θ6 ∧ θ8 ∧ θ12 ∧ θ14 + 144θ3 ∧ θ7 ∧ θ8 ∧ θ9 ∧ θ13

+ 72θ3 ∧ θ7 ∧ θ8 ∧ θ10 ∧ θ14 − 6θ3 ∧ θ9 ∧ θ12 ∧ θ13 ∧ θ14 + 12θ3 ∧ θ10 ∧ θ11 ∧ θ13 ∧ θ14

− 18
√
3θ4 ∧ θ5 ∧ θ6 ∧ θ11 ∧ θ14 + 24

√
3θ4 ∧ θ5 ∧ θ6 ∧ θ12 ∧ θ13 − 24

√
3θ4 ∧ θ5 ∧ θ7 ∧ θ9 ∧ θ14

+ 48
√
3θ4 ∧ θ5 ∧ θ7 ∧ θ10 ∧ θ13 − 72

√
3θ4 ∧ θ5 ∧ θ8 ∧ θ9 ∧ θ12 + 96

√
3θ4 ∧ θ5 ∧ θ8 ∧ θ10 ∧ θ11

+ 144θ4 ∧ θ6 ∧ θ8 ∧ θ9 ∧ θ13 + 72θ4 ∧ θ6 ∧ θ8 ∧ θ10 ∧ θ14 − 108θ4 ∧ θ7 ∧ θ8 ∧ θ11 ∧ θ13

− 36θ4 ∧ θ7 ∧ θ8 ∧ θ12 ∧ θ14 − 18θ4 ∧ θ9 ∧ θ10 ∧ θ13 ∧ θ14 + 3θ4 ∧ θ11 ∧ θ12 ∧ θ13 ∧ θ14

− 192
√
3θ5 ∧ θ6 ∧ θ7 ∧ θ9 ∧ θ11 − 144

√
3θ5 ∧ θ6 ∧ θ7 ∧ θ10 ∧ θ12 + 48

√
3θ5 ∧ θ6 ∧ θ8 ∧ θ9 ∧ θ13

+ 24
√
3θ5 ∧ θ6 ∧ θ8 ∧ θ10 ∧ θ14 + 36

√
3θ5 ∧ θ7 ∧ θ8 ∧ θ11 ∧ θ13 + 12

√
3θ5 ∧ θ7 ∧ θ8 ∧ θ12 ∧ θ14

+ 108
√
3θ5 ∧ θ9 ∧ θ10 ∧ θ11 ∧ θ12 − 6

√
3θ5 ∧ θ9 ∧ θ10 ∧ θ13 ∧ θ14 −

√
3θ5 ∧ θ11 ∧ θ12 ∧ θ13 ∧ θ14

− 360θ6 ∧ θ7 ∧ θ8 ∧ θ9 ∧ θ10 − 162θ6 ∧ θ7 ∧ θ8 ∧ θ11 ∧ θ12 − 18θ6 ∧ θ7 ∧ θ8 ∧ θ13 ∧ θ14

− 108θ6 ∧ θ9 ∧ θ10 ∧ θ11 ∧ θ13 − 36θ6 ∧ θ9 ∧ θ10 ∧ θ12 ∧ θ14 + 48θ7 ∧ θ9 ∧ θ11 ∧ θ12 ∧ θ13

+ 24θ7 ∧ θ10 ∧ θ11 ∧ θ12 ∧ θ14 − 12θ8 ∧ θ9 ∧ θ11 ∧ θ13 ∧ θ14 − 6θ8 ∧ θ10 ∧ θ12 ∧ θ13 ∧ θ14.
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