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geometry in dimension five and Cartan’s works on isoparametric hypersurfaces in spheres.
As observed by Bryant such a ternary form exists only in dimensions n, = 3k + 2, where
k = 1,2,4,8. In these dimensions it reduces the orthogonal group to the subgroups
H, C SO(ny), with H; = SO(3), H, = SU(3), H; = Sp(3) and Hg = F4. This enables studies
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1. Introduction

either the Levi-Civita or the characteristic connections.

The torsionless models for the H, geometries have the respective symmetry groups
G, = SU(3), G, = SU(3) x SU(3), G3 = SU(6) and G4 = Eg. The groups H, and G, constitute
a part of the ‘magic square’ for Lie groups. The ‘magic square’ Lie groups suggest studies of
ten other classes of special Riemannian geometries. Apart from the two exceptional cases,
they have the structure groups U(3), S(U(3) x U(3)), U(6), Es x SO(2), Sp(3) x SU(2),
SU(6) x SU(2), SO(12) x SU(2) and E; x SU(2) and should be considered in respective
dimensions 12, 18, 30, 54, 28, 40, 64 and 112. The two ‘exceptional’ cases are: SU(2) x SU(2)
geometries in dimension 8 and SO(10) x SO(2) geometries in dimension 32.

The case of SU(2) x SU(2) geometry in dimension 8 is examined closer. We determine
the tensor that reduces SO(8) to SU(2) x SU(2) leaving the more detailed studies of the
geometries based on the magic square ideas to the forthcoming paper.

© 2008 Published by Elsevier B.V.

In a recent paper [3] we studied 5-dimensional manifolds (M, g, ') equipped with the Riemannian metric tensor g; and

a 3-tensor Yy, such that

(1) T = Yo,
(ll) T,‘jj = O.

(111) Tiki Vimi + Yiji Viemi + Yiti Vimi = &ik&im + Lii&km + Li&jm -

It turns out that the quadratic condition (iii) selects from all the symmetric totally trace free 3-tensors in R> only such a one
whose stabilizer in SO(5) is the irreducible SO(3).

The geometry of Riemannian 5-manifolds (M°, g, 7) is particularly interesting if the tensor 7 satisfies the nearly
integrability [3] condition

(Vo T) (v, v, v) = 0. (1.1)
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In such a case (M°, g, T) is naturally equipped with a unique metric so(3)-valued connection V' whose torsion T is totally
skew symmetric. We call this connection the characteristic connection of the nearly integrable geometry (M°, g, 7). Existence
and uniqueness of the characteristic connection enable a classification of the nearly integrable geometries (M>, g, 1)
according to the algebraic properties of T and the curvature K of V7. In Ref. [3] examples were given of the nearly integrable
geometries (M°, g, T) with the characteristic connection V' having K and T of all the possible types from the above-
mentioned classification. In particular, a 7-parameter family of such geometries admitting at each point two SO(3)-invariant
vector spaces of V'-covariantly constant spinors was given. However, in this family of examples, the characteristic vV’
connection was flat.

Properties of T resemble a bit, properties of the tensor J, defining an almost hermitian structure on a Riemannian
manifold. For example, condition (iii) for 7 is an algebraic condition of the same sort as the almost hermitian condition

Jilik = —8i (1.2)
for J. Also, the nearly integrable condition (1.1) for 7 is similar to the nearly Kdhler condition

I
(Vi)(v) =0

for J. Since the almost hermitian condition (1.2) imposes a severe restriction on the dimension of the manifold to be even,
a natural question arises if there are some restrictions on the dimensions of R" in which one can have a tensor with the
properties (i)-(iii). More precisely we ask the following question:

In which dimensions n the Euclidean space (R", g) can be equipped with a tensor T satisfying conditions (i)-(iii)?

It is rather easy to show that dimensions n < 4 do not admit such a tensor. Following [3] we know that in dimension
n = 5 the tensor T may be defined by

B 1 x> — /3% NEYS V32
Tyx' XK = 5 det V33 V3 V3 (1.3)
V3% V3x! —2%

Thus, 7 is defined as a tensor whose components are coefficients of the homogeneous polynomial of third degree obtained
as the determinant of a generic 3 x 3 real symmetric trace free matrix.

2. Dimensions 5, 8, 14 and 26

Robert Bryant [4] remarks that other dimensions in which 7 with properties (i)-(iii) surely exists are: n = 8, n = 14 and
n = 26. This is essentially due to the fact that numbers 5, 8, 14 and 26 are values of the sequence n, =3k +2fork=1,2,4
and 8, respectively. These four values of k correspond to the only possible dimensions of the normed division algebras R, C,
H and 0. To fully explain Bryant’s remark we need some preparation.

Let K = R,C,H or O and let A € Ms,3(K) be a hermitian 3 x 3-matrix with entries in K. The word ‘hermitian’ here
means that the entries a; and a; of A are mutually conjugate in K, i.e. a; = a; fori,j = 1, 2, 3. In particular, the entries
ai, axy, asz € R.

We may formally write

det A= Z SEN 7TA157(1)027(2) A37(3) »

Tes3

which after expansion reads:
det A = a11a22033 — A12021033 — (13022031 — 011023032 + (13021032 + A12023031.

Note that despite the possible noncommutativity, or even nonassociativity, of the product, the values of the first four
monomials in the above formal expression are well defined. This is because among the three factors in each of the four
monomials, at least one is a real number aj;, the other two being either both real (in the first term) or conjugate to each other
(in the remaining three terms). Thus, the values of these four monomials are real numbers and do not depend on the order
of their factors and the order of the multiplication. Passing to the last two terms in the formula for det A we see, that a priori
there are a huge number of possibilities to order the factors and the brackets in these two terms. But the requirement that
the sum of these terms is real reduces this huge number to only 12 possibilities. It turns out that out of these 12 possibilities
only two are really different. They are all equal either to (aj3a23)as1 + aj3(aszazq) or to (az1asz)az + asq(azsasz). Note that
the first expression becomes the second under the transformation A — A. Moreover, such transformation does not affect
the values of the first four terms in det A. Summing up we have the following lemma.

Lemma 2.1. Given a hermitian matrix A € M3,3(K) with entries a; € K such that a; = ay,i,j = 1,2, 3, where K = R, C, H, O,
there are only two possibilities to assign a real value to the Weierstrass formula

det A=) SEN7TA17(1)G2r(2)B3n(3)

TES3
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for the determinant of A. These two possible values are given by

det; A = a11a22a33 — a12021033 — A13022031 — (11023032 + A13(a32021) + (@12a23)a3;
or by

dety A = a11a22a33 — A12021033 — A13022031 — G11023032 + A31(d23a12) + (A21032)a13.
In general det; A # det, Aif K = Hor O, but det; A — det, AwhenA — A

Let (eo, e1, €2, €3, €4, €5, €6, €7) be the unit octonions. We have: ef = 1 = —€, e 1 = euq3, eu6, = —evey,

nw#v=12,3,...,7, with additional relations resulting from the cyclic permutation of each triple (e, e,.+1, €,+3).
It is convenient to introduce

X! = X]EO + X6€1 + X9€2 + X10€4 + X]5€3 +X16€5 + X]7€6 + X18€7,
X* =x%eg + %' e +xey + x2eq + x1%3 + x%0es + x*leg + x%%e7,

X3 = x3e0 + x8e1 + x13ez + x14e4 + x23e3 + x24e5 + x25e6 + X26€7.

Then X', X2, X3 are three generic octonions. We can consider them to be the generic quaternions if ¥ = 0 for all
I = 15,16, 17, ..., 26, and three generic complex numbers if X = 0 forallI = 9,10,11,...,26.If ¥ = 0 for all
1=6,7,8,...,26then X', X2, X3 are three generic real numbers. Using this we define a 3 x 3 hermitian matrix
X — /3 V3x3 V3x2
A= V3X X 4+3 VX (2.1)

V3x V3x' —2x

in full analogy to the matrix entering the formula (1.3). Now, we have two ‘characteristic polynomials’: det;(A — Al) and
det, (A — AI). They can be written as:

det;(A— AD) = =A% — 3g(X, X)A + 271 (X, X, X),
det,(A— A = =23 — 3g(X, X)A + 21 (X, X, X),

where X)! =x,1=1,2,3,...,m = 3k+2and k = 1, 2, 4, 8. The bilinear form is:
gX,X) = () + () + - + (1) = gy'¥/

and the two ternary forms are
V. o 1 N 1
XX, X) = 5detlA and T»(X,X,X) = idetzA.

Now, we have the following proposition, which is our formulation of Bryant’s [4] remark.

Proposition2.2. If I,], K =1,2,3,...,m =3k + 2,k = 1,2, 4,8, then the tensors T}, and T}, given by

1P 7.(X, X, X)

~ :]aza
6 owodo

T;]]I( =
satisfy

(1) T = Ty,
(ii) 1 =0,
(ii) Yy Yo + i Yewr + Vi Y = &x&im + Suy8km + Ekigjm-

They reduce the GL(R™) group, via O(ny), to its subgroup H,, where H, is the irreducible SO(3) in SO(5) if k = 1, the irreducible
SU(3) in SO(8) if k = 2, the irreducible Sp(3) in SO(14) if k = 4 and the irreducible F4 in SO(26) if k = 8.

If k = 1, 2 the tensors T,}K and T,fK coincide. If k = 3, 4 they belong to the same O(ny) orbit and are related by the element
diag(1,1,1,1,1, -1, -1,,..., —1) of O(ny). For k = 3, 4 tensors T,}K and T,?K are not equivalent under the SO(n)-action.

The above proposition gives examples of a tensor with all the properties of tensor 7 in dimensions n = 5, 8, 14 and 26.
It is remarkable that it can be proven that these examples exhaust all the possibilities!
To discuss this statement we need to invoke Elie Cartan’s results on ‘isoparametric hypersurfaces in spheres’ [7].
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3. Isoparametric hypersurfaces in spheres

We recall (see. e.g. [ 14]) that a hypersurface in a real Riemannian manifold M of constant curvature is called isoparametric
iff it has constant principal curvatures. Tuglio Levi-Civita [ 13] knew that the number of such distinct curvatures was at most
two for the Euclidean space M = R3. The case of M = R" with arbitrary n > 3 is similar. It was shown by Beniamino Segre [15]
that irrespectively of n the number of distinct principal curvatures of an isoparametric hypersurface in M = R" is at most two.
Elie Cartan [6] extended this result to the isoparametric hypersurfaces in the hyperbolic spaces H" again showing that in such
a case the number of possible distinct principal curvatures is at most two. The situation is quite different for isoparametric
hypersurfaces in spheres S". In particular Cartan in Ref. [7] found examples of isoparametric hypersurfaces in spheres with
three different principal curvatures, each of which had the same multiplicity. He also introduced a homogeneous polynomial

F:R" >R
of degree p satisfying the differential equations

(Cii) AF=0 (3.1)

(i) [VF? = p? () + (D2 + -+ (HHPD (3.2)
and proved that all the isoparametric hypersurfaces in S*~! which have p different constant principal curvatures of the same
multiplicity are given by

Se={'eR"|F=cand (x')* + *)* + -+ x")* = 1}, (3.3)

i.e. that they are the level surfaces of such polynomials F restricted to the sphere.

Cartan found all the homogeneous harmonic polynomials of degree p = 3 satisfying condition (Ciii). In doing that he
proved [7] that such polynomials can exist only if n = n, = 5, 8, 14, 26. In these four dimensions he found that the most
general form of the polynomials is

ng
F= 3 7o,
1J,K=1

where 77, is one of the two tensors appearing in Proposition 2.2. Writing a generic homogeneous polynomial of degree p as
F = T,l,z__,,px’lx’z ...xP we see that it satisfies Cartan’s conditions (Cii)-(Ciii) iff the totally symmetric tensor Tip,...1, Satisfies

(Gi") Ty, =0
(Ciii/) TJ(}zb...jp TK21<3...1<,J)1 = 8(1K28J3K3 - + - 8JpKp) >

where g; = diag(1, 1,...,1). Note that in case p = 3 the above tensor reduces to 7y and conditions (Cii") and (Ciii’)
become exactly the respective conditions (ii) and (iii) of Proposition 2.2. Since Y is totally symmetric also the condition (i)
is satisfied. Thus, Cartan’s finding of all isoparametric hypersurfaces with three constant distinct principal curvatures of the
same multiplicity solves our problem of dimensions in which the tensor  may exist. Summarizing we have the following
theorem, which is a reformulation of the above-mentioned Cartan’s results.

Theorem 3.1. An R" with the standard Euclidean metric gy admits a tensor Yy, with the properties

(i) Yy = T,
i) 1 =0
(1i1) YVt Yo + Yo Yiomr + Y Vo = Ex8im + Euy&km + Exigm

ifandonlyif n = n, = 3k+2 fork = 1, 2, 4, 8. Modulo the action of the SO(n,) group all such tensors are given by Proposition 2.2.

4. Representations of SU(3), Sp(3) and F,4

It is known that there are real irreducible representations of the group SU(3) in dimensions:
1,8, 20, 27, 70.
Also, there are real irreducible representations of the group Sp(3) in dimensions:
1, 14, 21,70, 84, 90, 126, 189,512, 525
and there are real irreducible representations of the group F4 in dimensions:
1, 26, 52,273, 324, 1053, 1274, 4096, 8424.

To see how these representations appear we consider a vector space R", n, = 5, 8, 14, 26 equipped with the Riemannian
metric g and the corresponding tensor T,}K of Proposition 2.2. As we know the stabilizer H, of T is a subgroup of SO(ny),

which when ny is 5, 8, 14 and 26 is, respectively, SO(3), SU(3), Sp(3) and F,. Now, the tensor 7' can be used to decompose
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the tensor product representation ®? R™ of the group H onto the real irreducible components as follows. First, we define
an endomorphism

T Q*R% — Q% R, (4.1)

wi " 4 TI}M TI}LM W]L,

which preserves the decomposition ®?R* = A% R™* @ (O R™. Second, we look for its eigenspaces, which surely are H-
invariant. We have the following proposition.
Proposition 4.1. (1) If n, = 5 then
R*R* =Ni@°ANi@° Ol @Ol O,
where
P =(Se@°R° | 1(S)=14-S}={S=L-g, AER},
A3 ={Fe @R’ | T(F) =7 F} = s0(3),
O3 ={Se @R | T'(5) =-3 3},
N;={Fe®R’| T(F) = -8,
Qi =(Se @R’ | T'(5)=4-5).
The real vector spaces 5/\i2 c A\’R® and ® @1-2 C O R of respective dimensions i and j are irreducible representations of the
group SO(3).
(2) If ny = 8 then
®'R* =*Aje N 0 0l e 08 Oy,
where
SOI =S @R | T() =20 S} ={S=1-g reR),
SAE={Fe @ R®| T(F) =10 F} = su(3),
505 =15 @R | T(s) =—6-5},
SN3={Fe @ R®| T'(F) =8 - F},
503 =15 @ R®| T(5) =4-3).
The real vector spaces 8\ % C A R® and 8@} C (O*R8 of respective dimensions i and j are irreducible representations of the

group SU(3). The representations \3 and (D% are equivalent.
(3) If ny = 14 then

®2 R™ — 14/\ %1 ey 14/\ %0 ey 146% o) 14 %4@ 14@50’
where

HOl=(Se @R | T(5)=32-S) ={S=1-g, LR},

“A3 ={Fe @ R"™| T(F) =16 - F} = sp(3),

U, =(Se @RM| () =—-12-5),

UAZ ={Fe @R" | T(F) = -8 -F),

MO, ={Se @R | T(S) =4-5).

The real vector spaces A\ ? C A* R and *©? ¢ O R'™ of respective dimensions i and j are irreducible representations of the

group Sp(3).
(4) If n, = 26 then

®2 ]Rn" — 26/\§2 @26/\%73 GBZGO% GBZGO%G ®26©§24’
where

P =(Se@°R*®| 7(5)=56-S)={S=Ar-g, A €R),

BANL ={Fe ®R®| T(F) =28 F} = fa.

0% =15 @ R* | T(5) = -24-5),

N3 ={Fe @R | T(F)=-8-F},

802, =5 @*R® | 1(5) =4-5).
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26 A2 2 26 26,2 2 1526 L S ) ; : .
The real vector spaces ® \i C \°R® and °©; C O° R* of respective dimensions i and j are irreducible representations of the
group Fy.

Remark 4.2. According to this proposition we may identify spaces R™ with the representation spaces ""@ﬁk corresponding
to the eigenvalues 2 — n, of 7. Noting that the dimension of the group Hy is

dimH, =4k -1+ (k—1)log, k, k=1,2,4,8
and introducing s, = %k(k + 1), we see that

e the eigenvalues of ¥ corresponding to spaces "(©3 are 4 + 2ny,
the eigenvalues corresponding to spaces ™ A 2. b, Are 2+ n,

e the eigenvalues corresponding to spaces "™ A fSk +1-dimp,) T€ always —8,
o the eigenvalues corresponding to spaces " @szk are always +4.

We also note that we may identify the Lie algebras b of H, with the representations " A 3, , He:

5. H; structures on Riemannian manifolds

Definition 5.1. An H, structure on an n,-dimensional Riemannian manifold (M, g) is a structure defined by means of a rank
3 tensor field 7 satisfying

(i) Tyx = T,
(ii) 7y =0,
(iii) Yyt Yo + Yoyt T + Yiew Vo = Ex&im + Sy&km + Exigpm-

Definition 5.2. Two H, structures (M, g, 7) and (M, g, T) defined on two respective n,-manifolds M and M are (locally)
equivalent iff there exists a (local) diffeomorphism ¢ : M — M such that

¢"(® =g and ¢ (7)=7.

IfM =M, g =g, T = T the equivalence ¢ is called a (local) symmetry of (M, g, 7). The group of (local) symmetries is called
a symmetry group of (M, g, 7).

As we know the tensor field T reduces the structure group of the bundle of orthonormal frames over M to one of the groups
H, of Proposition 2.2. We also know that the Lie algebra b, of H; is isomorphic to b, ~ ”"Aﬁim  C ®?2 R™ of Proposition 4.1.
Thus, at each point, every element F of the Lie algebra b, may be considered to be an endomorphism of R™. This defines an
element

f =exp(F) € H, C SO(n) C GL(n, R)
and, point by point, induces the natural action p(f) of the group H; on the vector-valued 1-forms

0=(6",0%6 ..., 0% cR* QR (M)
by:

0> 0=pf)O) =f-6. (5.1)
This, enables for local description of an H, structure on M by means of a coframe

0= ()= (".66,...,60% (5.2)

on M, given up to the H, transformations (5.1).
For such a class of coframes the Riemannian metric g is

g=0+GE+6+ - +6,
and the tensor 7, reducing the structure group from SO(ny) to Hy, is
T = 1,006 (5.3)

where 7! is defined in Proposition 2.2.

Definition 5.3. Anorthonormal coframe (8', %, 83, ..., ™) in which the tensor 7 of an H; structure (M, g, 7) is of the form
(5.3) is called a coframe adapted to (M, g, T), an adapted coframe, for short.
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Given an H,, structure as above, we consider an arbitrary b.-valued connection on M. This may be locally represented by
means of an p-valued 1-form I" given by

=) =yE, a=1.2,...,dimH, (5.4)

where y* are 1-forms on M and for each « the symbols E, = (E,' ]) denote constant n; x n-matrices which form a basis of the
Lie algebra 6. The explicit expressions for E, are presented in Appendix A. The connection I, having values in b, C so(n),
is necessarily metric. Via the Cartan structure equations,

do + rind =1 (5.5)
dri+ riearj=r,, (5.6)

it defines the torsion 2-form T' and the .-curvature 2-form R’]. Using these forms we define the torsion tensor T’]K IS
(R™ @ A\*R™) and the p-curvature tensor ik € (5 ® A? R™), respectively, by

1
T = 5T’],ﬂ N

and
| 1 a kK 9" 1

R] = E KLQ VAN Ea]. (5.7)
The connection satisfies the first Bianchi identity

R, A0 =Dr (5.8)
and the second Bianchi identity

DR, =0, (5.9)
with the covariant differential defined by

Il __ | I i I I I K [ K
Dr'=dr'+ ' AT, DR, =dR,+ ¢ ARS — R AT
Since the H, preserves g and 7 we have the following proposition.

Proposition 5.4. Every b-valued connection I" of (5.4) is metric

r

V.(g) =0
and preserves tensor T

V(T)=0 WveTM.

6. Characteristic connection
LC
In this section we consider H, structures (M, g, T) with Levi-Civita connection /"€ so(n;) ® R"™ uniquely decomposable
according to

Ic 1

where I' € b, @ R* and T € A\> R™.
Such H, structures are interesting, since for them, contrary to the generic case, the decomposition (6.1) defines a unique
he-valued connection I'. Moreover, given the unique decomposition (6.1), we may rewrite the Cartan structure equations

ic!
do'+r1r A0 =0
LC
for the Levi-Civita connection I" into the form
1
1 _ [ K
do' + '\ n ¢ = iT]KQ’/\Q

and to interpret T as the totally skew symmetric torsion of I'.
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Definition 6.1. An h.-valued connection I" of an H; structure (M, g, ) admitting the unique decomposition
Ic 1 . n 3
F:F+§T, withI' e py @ R* and T € A\° R™

is called the characteristic connection.

. .. . R, . Lc . .
Since I' € b, ® R™ and T € A®R™ it is obvious from (6.1) that the Levi-Civita connection " of Hy structures which admit
characteristic connections must satisfy

Ic n 3 on,
re [ @ R™] +A\°R™, (6.2)

Moreover, since dim (b, ® R™) 4 dim(A* R™*) < dim(so(n,) ® R"™) then it is obvious that the unique decomposition (6.1) is
not possible for all H; structures. Our aim now is to characterize H structures admitting characteristic connection.
Following [3] we introduce the following definition.

Definition 6.2. An H, structure (M, g, T) is called nearly integrable iff
LC
Vv (v,v,v) =0 (6.3)
LC
for the Levi-Civita connection Vv and for every vector field v on M.
The condition (6.3), when written in an adapted coframe (5.2), is

Ic
Tmgi Tkym = 0, (6.4)
LC LC . R . Lc . .
where I'yy = 'yt denotes the so(ny)-valued 1-form corresponding to the Levi-Civita connection V. This motivates an
introduction of the map
7 :/\2 R ® R™ @4 R™
such that
, LC Ic
(D = 120 Tkom
ic ic ic
= I'wmp Yvxr + vt Vv + Ivw Viem
Ic Ic Ic
+ vy Yk + Tmxg Vime + Ty Tikm
Ic Ic ic
+ vk Y + vk Vime + vk Tym

I I Ic
+ v Y + T Tiax + D Yyma- (6.5)

Comparing this with (6.4) we have the following proposition.

Proposition 6.3. An H, structure (M, g, T) is nearly integrable if and only if its Levi-Civita connection ;Se ker 7.
It is worth noting that each of the last four rows of (6.5) resembles the L.h.s. of equality
Xuy Ve + X Vymr + Xoaw Yiewr = 0
satisfied by every matrix X € b = "AZ_ He: Thus, b, ® R™ C ker 7’. Due to the first equality in (6.5) we also have
A’ R™  ker 7. This proves the following lemma.
Lemma 6.4. Since
k @R™ C ker 7’ and A’R™ C ker 7’
then
([ @ R™] + A3 R™) C ker 7.

Thus, comparing this with (6.2) we have the following proposition.

Proposition 6.5. Among all H structures only the nearly integrable ones may admit characteristic connection.

It is known [3] that if n, = 5 then the nearly integrability condition is also sufficient for the existence of a characteristic
connection. To see that it is no longer true for all n, we need to see how the intersections [f, ® R™*]NA> R™ and the algebraic
sums [b, ® R™] + A> R™ depend on the dimension n,. After some algebra we arrive at the following proposition.
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Proposition 6.6. e If n, =5 or n, = 14 then
ker 7' = [ @ R™] @ A\ R™.
e If n, = 8 then
ker 7' = [su(3) @ RE ]+ A’R® and [su(3) @ REINAPRE =32,
e If n, = 26 then
ker 7' =[5 @R®TO N R® @ BN Z,.

e In particular, for n, = 5, 14 and 26 we have [b, ® R™] N A> R™ = {0}.

This implies the following theorem.

Theorem 6.7. In dimensions n, = 5 and n, = 14 the necessary and sufficient condition for an H structure (M, g, T) to admit a
characteristic connection is that (M, g, T) is nearly integrable

(év )(v,v,v) =0.

Proposition 6.6 also implies that the nearly integrable H; structures in dimension n, = 8 admit decomposition (6.1).
However, in this dimension condition (6.1) determines the connection I" and the torsion T up to an additional freedom. Due
to the 1-dimensional intersection [su(3) ® R®] N A R® = 8(D? we see that in such a case there is a 1-parameter family of
connections I"(1) € su(3) ® R® and 1-parameter family of skew symmetric torsions T(A) € A® R® such that

F=r0)+ %m). (6.6)

It is clear that for n, = 8, the requirement (6.1) uniquely determines I" € su(3) ® R® and T € A>R® only if we restrict

ourselves to the nearly integrable SU(3) structures for which the Levi-Civita connection 55 is in the 118-dimensional space
89 such that 8V @3(®? = ker 7. It follows that this space has the following decomposition under the SU(3)-action
8y = 2803, @ 28\ 3, ® 38O32. It is convenient to extend this notation and to introduce vector spaces "'V to be subspaces
of ker 7’ such that:

"y =ker v’ forn, =5, 14
By =280%, @28 N2, @333 Cker 77,
%y = [ RPN R®C ker 7.

Using these we have the following definition
LC
Definition 6.8. An H, structure (M, g, 7) is called restricted nearly integrable iff its Levi-Civita connection I"'e "V,

Remark 6.9. Note that for n, = 5 or n, = 14 the term: restricted nearly integrable is the same as: nearly integrable.

Looking again at Proposition 6.6 we see that the above restriction for the nearly integrable SU(3) or F4 structures in respective
dimensions n, = 8 and n, = 26 is precisely the one that gives the sufficient conditions for the existence and uniqueness of
the characteristic connection. Summarizing we have the following theorem.

Theorem 6.10. A necessary and sufficient condition for an Hy structure (M, g, 1) to admit a characteristic connection is that this
structure is restricted nearly integrable.

Remark 6.11. Note, that if n, = 5 then, out of the a priori 50 independent components of the Levi-Civita connection 55
the (restricted) nearly integrable condition (6.1) excludes 25. Thus, heuristically, the (restricted) nearly integrable SO(3)
structures constitute ‘a half of all the possible SO(3) structures in dimension 5.

If n, = 8 the Levi-Civita connection has 224 components. The restricted nearly integrable condition reduces it to 118. For
n, = 14 these numbers reduce from 1274 to 658. For n, = 26 the reduction is from 8450 to 3952.
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7. Classification of the restricted nearly integrable H, structures

We classify the possible types of the restricted nearly integrable H, structures according to the H, irreducible
decompositions of the spaces A R™ in which the torsion T of their characteristic connections resides. Using a computer
algebra package for Lie group computations ‘LiE’ [12] we easily arrive at the following proposition.

Proposition 7.1. Let (M, g, T) be a restricted nearly integrable H, structure. The Hy irreducible decomposition of the skew
symmetric torsion T of the characteristic connection for (M, g, ) is given by:

Te 5/\2695/@, forny =5,

eton e\ ke Olota), forn =

Te 26‘/189 @ Zé/84 @ /2\670 529 N 31, form =14,

T € ®Vi574 D Vygs53 ® © N\ 373, for my = 26.

Here ™ V; denotes irreducible j-dimensional representations of Hy which were not present in the Hy decomposition of Q% R™,

This provides an analog of the Gray-Hervella [10] classification for the restricted nearly integrable H, structures.
We close this section with a remark on possible types of the curvature R of the characteristic connections.

Remark 7.2. In the below formulae ”"Vj denote the j-dimensional irreducible representation space for H, which did not
appear in Proposition 4.1.

Ifny =5thenR e ’OQiD°N202°O2B°Ni0°O?

Ifn, =8 thenR e ®v, @ 3803, @ 28N 3, @430 02O?.

Ifne = 14thenR € Vo @ Vs, @21V 50 @ 1V, @ 21O @ 2 N %%ea YA @210, 0101

If e = 26 then R € **Vigyp5 © %V 096 © %V 1574 @ 2V 1053 @ 2V 1053 ® 220500 @ N 373 8 ° N5, ©2° O3 € 2°OF-

Note that, due to the restricted nearly integrability condition, it is rather unlikely that R may attain values in all of the
above irreducible parts.

8. Dimensions 12, 18, 28, 30, 40, 54, 64 and 112; the ‘exceptional’ 8 and 32

8.1. Torsionless models

It is obvious that the simplest restricted nearly integrable H, structures have the characteristic connection I" with
vanishing torsion T = 0. For them
LC n
=T € b ®@R%,

hence their Riemannian holonomy group is reduced from SO(n;) to the group Hy. Since H, C SO(n,) in the respective
dimensions n, = 5, 8, 14 and 26 are not present in the Berger list of the Riemannian holonomy groups [1], the only possible
restricted nearly integrable H; structures with T = 0 must be locally isometric to the symmetric spaces M = G, /H,. The Lie
group G, appearing here must have dimension dim G, = n, +dim H,. Looking at Cartan’s list [5] of the irreducible symmetric
spaces (see e.g. [2] pp. 312-317) we have the following theorem.

Theorem 8.1. All H; structures with vanishing torsion are locally isometric to one of the symmetric spaces
M= Gk/Hks

where the possible Lie groups G are given in the following table:

dim M Group Hy, Group Gy Group Gy, Group Gy,

ne=>5 S0(3) Su(3) SO(3) x o R° SL(3, R)

g =38 SU(3) SU(3) x SU(3) SU@3) x o RS SL(3,C)

=14  Sp(3) SuU(6) Sp(3) xp R4 SU*(6) ~ SL(3, H)
ne=26 F4 Eg Fy x p R2O Eg2® ~SL(3, 0)

Here p is the irreducible representation of Hy in R,

Remark 8.2. Let g, be the Lie algebra of the group G, of Theorem 8.1. We note that since the torsionless models for the H;
structures are the symmetric spaces M = G/Hj, then arbitrary restricted nearly integrable H, structures may be analyzed
in terms of a Cartan g.-valued connection on the Cartan bundle H, — P — M. In such a language the torsionless models with
respect to the b, connection are simply the flat models for the corresponding Cartan g,-valued connection on P.

Remark 8.3. According to [19] the manifold M = SU(3)/SO(3) is a unique irreducible Riemannian symmetric space
M = G/H with the property that (rank G — rankH) = 1 and that M is not isometric to an odd dimensional real Grassmann
manifold. Itis interesting to note [9] (see [ 19] p. 324) that the other compact torsionless H, structures correspond to manifolds
M = SU3), M = SU(6)/Sp(3) and M = Eg/F4, which are examples of a very few irreducible symmetric Riemannian
manifolds M = G/H with (rank G — rank H) = 2.
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8.2. The ‘magic square’

We now concentrate on the Lie algebras b, and g, corresponding to groups H, and G, appearing in the second and the
third columns of the table included in Theorem 8.1. We note that these Lie algebras constitute the first two columns of the
‘magic square’ [17,18]:

s0(3) su(3) sp(3) f4
su(3) 2su(3) su(6) LS
sp(3) su(6) s0(12) &7
fa 6 €7 €8

In agreement with the previous notation let us denote by Hy, Gy, $x and §, the compact Lie groups corresponding to the
Lie algebras of the first, the second, the third and the fourth respective columns of the magic square. Since G;/H, are the
torsionless compact models for H, geometries, it may seem reasonable to consider spaces 4, /G, and G, /4 as the torsionless
models for new special Riemannian geometries with a characteristic connection. Unfortunately the homogeneous spaces
g+/Gr and g,k /G are reducible. However, if we replace the second column in the magic square by

su(3) ®R
2s5u(3) ®R
su(6) ® R
g @R

then the Lie groups G, corresponding to these Lie algebras define the irreducible Riemannian symmetric spaces G /Gy.
Similarly if we replace the third column in the magic square by

sp(3) @ su(2)
su(6) @ su(2)
s50(12)® su(2)
e @ su(2)

then the Lie groups g, corresponding to these Lie algebras define the irreducible Riemannian symmetric spaces G, /4. Thus
starting from the second and the third columns of the table in Theorem 8.1, via the magic square, we arrived at 12 symmetric
spaces.

SU(3)/S0(3) Sp(3)/U(3) F4/(Sp(3) x SU(2))
SU(3) SU(6)/S(U(3) x U(3)) Eg/(SU(6) x SU(2))
SU(6)/Sp(3) | SO(12)/U(6) E;/(SO(12) x SU(2))
Eq/F4 E7/(Eg x SO(2)) Es/(E7 x SU(2))

These 12 symmetric spaces can be considered as torsionless models for special geometries on Riemannian manifolds M with
the following dimensions and structure groups:

dim M Structure group dim M Structure group dim M Structure group
Ny Hi 2+ 1) Extended Gy 4(ng +2) Extended G

5 SO(3) 12 uQ3) 28 Sp(3) x SU(2)
8 SU(3) 18 S(UB) x U(3)) 40 SU(6) x SU(2)
14 Sp(3) 30 u(6) 64 S0(12) x SU(2)
26 Fy4 54 Eg x SO(2) 112 E7 x SU(2)

A quick look at Cartan’s list of the irreducible symmetric spaces of compact type suggests that the special Riemannian
geometries appearing in this list should be supplemented by the two ‘exceptional’ possibilities:

(1) dim M = 32, with the structure group SO(10) x SO(2) and with the torsionless model of compact type M = Eg/(SO(10) x
S0(2))

(2) dimM = 8, with the structure group SU(2) x SU(2) and with the torsionless model of compact type M = G, /(SU(2) x
SU(2)).

Although these two possibilities are not implied by the magic square, we are convinced that their place is in the above table:
item (1) should stay in the second column for dim M in the row between dimensions 30 and 54, and item (2) should stay in
the third column for dim M in the ‘zeroth’ row, before dimension 28.

It is interesting if all these geometries admit characteristic connection. Also, we do not know which objects in R4I™M
reduce the orthogonal groups SO(dim M) to the above-mentioned structure groups. Are these symmetric tensors, as was in
the case of the groups H,?
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9. Examples in dimension 8

In the following sections we will briefly discuss the two different 8-dimensional cases, namely: the restricted nearly
integrable SU(3) geometries and the SU(2) x SU(2) geometries. In particular, we provide nontrivial examples of restricted
nearly integrable SU(3) structures. We also explain how to define an SU(2) x SU(2) structure by means of a symmetric
tensor of the sixth order.

9.1. SU(3) structures

It is interesting to note that in the decomposition of A R® onto the SU(3)-invariant components (see Proposition 7.1)
there exists a 1-dimensional subspace 8(®3. This space, in the adapted coframe of Definition 5.3, is spanned by a 3-form

Y=t AP +TA0 +13AB+C ANEO NGB, (9.1)
where (11, T2, 73) are 2-forms

T =0"AP+ AP+ AP
L =0"AP+0 AP+ V3P AP
3=0" AP + 20 A OP
spanning the 3-dimensional irreducible representation > A\ 3 =~ so(3) of SO(3).
Note that the 3-form  can be considered in R® without any reference to tensor 7. It is remarkable that this 3-form alone
reduces the GL(8, R) to the irreducible SU(3) in the same way as 7 does.! If one thinks that formula (9.1) is written in the

orthonormal coframe 6 then one gets the reduction from GL(8, R) via SO(8) to the irreducible SU(3). Thus, in dimension 8,
the Hy structure can be defined either in terms of the totally symmetric T or in terms of the totally skew symmetric .2

Remark 9.1. In this sense the 3-form i and the 2-forms (71, 73, 73) play the same role in the relations between SU(3)
structures in dimension eight and SO(3) structures in dimension five as the 3-form

P= AP+ AP +0370 +P AP AE
and the self-dual 2-forms
01 =0'"AO +6*A
o, =0 ANO + O NE?
o3 =0 AP + 6> n0*
play in the relations [ 16] between G structures in dimension seven and SU(2) structures in dimension four.

We also note that the SU(3)-invariant 3-form v can be used to find the explicit decomposition of an arbitrary 3-form w
in A2 R® onto the irreducible components mentioned in Proposition 7.1. Indeed, given an SU(3) structure (M, g, 7) on an

8-manifold M we may write an arbitrary 3-form w in the adapted coframe 6 of Definition 5.3 as w = %wm{@’ A& A O% Using

Y= éww{@’ A A 6% we associate with w a tensor Y(w)y = Yiwjk. Since ¥ (w) is an element of ®? RS, it may be analyzed

by means of the endomorphism 7 naturally associated with 7" = 7;,6'¢/6¥ via (4.1). It follows that the 3-form w is

ein 307 iff T(Y(w)) = 20y(w),
ein (O iff T(Y(w) = —6y(w),
ein PN, iff T(Y(w) = —8Y(w),
ein *Q% iff T(W() = 4¥(w).
Now, if we have a nearly integrable SU(3) structure in dimension 8, it is easy to check what is the type of its totally skew

symmetric torsion Ty. For this it suffices to consider a 3-form T = %T,]KG’ A @ A5 to associate with it y(T) and to apply the
endomorphism 7.

1 We note that Y is a stable form in dimension 8 and, as such, was considered by Nigel Hitchin in [11].

2 Simon Chiossi [8] asks if there is another situation in which a subgroup H € SO(n) of GL(n, R) is a stabilizer of either a totally symmetric tensor or,
independently, of a totally skew symmetric tensor. The answer is yes. The fifth exterior power of the 14-dimensional representation 14@% 4 0fSp(3) hasa
1-dimensional Sp(3)-invariant subspace. Thus, it defines a 5-form whose stabilizer under the action of GL(14, R) includes Sp(3) c SO(14). It turns out that
this 5-form alone, independently of tensor 7 of Section 2, reduces the GL(n, R), via SO(14) to Sp(3). The explicit expression for this form in the adapted
coframe of Section 5 is given in Appendix B.
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9.1.1. Structures with (8 + I)-dimensional symmetry group

In the following we will apply the following construction.

Let G be an (8 + I)-dimensional Lie group with a Lie subgroup H of dimension | < 8 = dim SU(3). We arrange a labeling
of a left invariant coframe (¢, y*) on G in such a way that the vector fields X,, @ = 1, 2, ..., |, of the frame (e;, X,) dual to
(@', y*) generate H. Suppose now that the groups G and H are such that the following tensors

g=g00 = (0')° + (6°)* + ()* + (0")* + (6°)* + (0°)* + (¢")* + (%)
; 6 — V36" V3O +i6%) V3O +if)
T = Ty = - det V3@ —i6®) 6 +V30* V3O +i6P) (9.2)
V3@ —i6) V36! —i6P) —-20°
are invariant on G when Lie transported along the flows of vector fields X,. In such a case both g and T project to well

defined nondegenerate tensors on the 8-dimensional homogeneous space M = G/H. These projected tensors, which we will
also respectively denote by g and 7, define the SU(3) structure (M, g, ) on M.

9.1.2. Restricted nearly integrable structures with maximal symmetry groups
It follows that the restricted nearly integrable SU(3) structures with maximal symmetry groups are locally equivalent to
the torsionless models of Theorem 8.1. Thus the possible maximal symmetry groups G are:

Gi-0 = SU(3) x SU(3), Gi—o =SUB3) x,R® or Gj;-o=SL(3,C).

The three cases are distinguishable by means of the sign of a real constant A, which is related to the Ricci scalar of the
Levi-Civita/characteristic connection of the corresponding torsionless SU(3) structure.

We illustrate this statement by using the left invariant coframe (¢, *) on G discussed in the preceding section. Here it
satisfies the following differential system

[ 1 _ I I K _ pl
do' +r'an¢ =0, dr\+riArf=r,

where the characteristic connection matrix FJ’ is related to the 1-forms y*, ¢ =1, 2, ..., 8, via:
0 -~ 2 Ly _\/3,3 A ) _yf
3
1 3 2 2 5 4 7 14
0o - V- R S N B
Y 14 Y Y YV Y i 14 /3
2 3 1 6 14 7
0 2 0 — —
14 Y Y 14 8 73 Y
14
y3 _y2 _2y1 0 0 _7 _VG _2y5
I'=y"E, = , , 3 6 , (9.3)
NEIERVELY 0 0 0 —y V3y 0
3
4 5 6 |4 8 1 2
— A 0 —
14 14 1; 73 14 14 14
5 4 7 14 6 6 1 3
vy 3 0o -
Y 14 8 14 /3 Y Y 14 Y
6 14 7 5 2 3
— 2 0 — 0
14 \/§ 14 YV 14 14
and the curvature R} is given by
R = )L K“E,
- ,12 o
where the 2-forms «“ are given by
Kl=0"AP -2 NG +0° A0
KP=0'"ANP —P NP+ V3PN —F NG
=0 AP+ VIONP +P AP+ AP
K* =40 AO® +20° NG —20° NGB
(9.4)

K =0"AG +P AN+ 200 NGB
KB=0"AP —P AP+ NG — V3P NG

K =—20"A0° +20° NGO +40° A B

iE=V3P AP+ P NG + 0" A6 /3607 A 6°).
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Now, the system guarantees that the Lie derivatives of the structural tensors g and 7 of (9.2) with respect to all vector fields
X, dual on G to y* vanish:

ang = O, LXDI T =0.
Thus, the quotient spaces are equipped with SU(3) structures locally equivalent to the natural SU(3) structures on
Mj~0 = SU(3), Mj—o = R?, M; <o = SL(3, ©)/SU(3).

Since in such cases the Riemannian holonomy group is reduced to SU(3), the Riemannian curvature coincides with the
curvature of the characteristic connection. The Ricci tensor of these curvatures is Einstein, Ric = Ag.

9.1.3. Examples with 11-dimensional symmetry group and torsion in 8 @%7

Below we present a 2-parameter family of restricted nearly integrable SU(3) structures which are a local deformation
of the torsionless model M;.o, = SU(3). These structures have a 11-dimensional symmetry group G described by the
Maurer-Cartan coframe (&', y', y2, ¥*) defined below.

!
d91:y1/\92—}—yz/\93—|—)/3/\94+\/§)/3/\95+%1(8
d6?> = —y' A" = PP A+ VB AP+ P A — ki®
de® = 2y A — P RO — PP AP — ki

k
d94:2)/1A@3+)/2/\92—)/3A91+§K7
1 5 2 2 3 1 k 4 7
—de® = — - — =2
ﬁde Y NG —y AB 6(K+K)
deS =yt A0 — 2 A+ 2k — K> — 2(k + 7t)87 A BB
do’ = -y ' AP + P A + 2k — )K? +2(k+ 7t)6° A 68
de® =12 AP — P A0 + (2k — Ok — 2(k + 70)6° A 67
dy' = > Ay + (k4 150 (t — 2k)k! + (k + 15¢) (k — )6° A 67
dy? = =y Ay + (k4 150)(t — 2k)k* — (k+ 15t) (k — £)6° A 6°
dy? = y' Ay? + (k+ 150)(t — 2k)&> + (k+ 156) (k — )67 A 65

The 2-forms k* appearing here are given in (9.4); k and t are real constants.
It is easy to check that in all directions spanned by the three vector fields X, dual to y* we have

ang = 0, LXa T = O,

where the structural tensors g and 7 are given by (9.2). Thus the quotient 8-manifold M = G/H, where H is generated by X,,
is equipped with an SU(3) structure (M, g, 7). As mentioned above, this structure is restricted nearly integrable. It has the
characteristic connection I" given by (9.3) with

V= (k—0@*+V36°), Y =k-00, 5= (k-1
Y =20—k6*, Y =V3(t—-ko.
The torsion T of I" is of a pure type. It lies in the 27-dimensional representation 8(3,. The torsion 3-form T reads:
T=tO@APAPR+OANPAYT +0 AP AEC+ VO AP AP +P AP A
—PAPNT V3P AP NG —20° NG AE —156° A6 AGP).

Remarkably this form is coclosed, so the Ricci tensor Ric” of the characteristic connection is symmetric. Moreover, it is
diagonal,

Ric” = diag(h, A, A, A, A, i, i, 1),

with two constant eigenvalues
5
A = 12(k* 4 15kt — 8t%), w=12 <k2 + §kt> )

These two eigenvalues coincide whent = O and t = %k. In the first case the SU(3) structure is locally equivalent to the
torsionless model M, o = SU(3). The case

t 5/
= —k
3
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isinteresting since it provides an example of a restricted nearly integrable SU(3) structure with the characteristic connection
I satisfying the Einstein equations

136
RiCF == T kzg

and having torsion of a nontrivial pure type 8®3,.
We further note that for all values of t and k the Ricci tensor for the Levi-Civita connection of this structure is also diagonal,

Ric' = diag(A', ', &', A, A, ', i/, i),
with eigenvalues given by A’ = A + 3t%, / = u + 115¢2. This Ricci tensor is Einstein in the torsionless case t = 0 and when

t 1Ol
= —k.
13

In this later case the Ricci tensor reads

i _ 16128 ,
169

Ric

9.1.4. Examples with 9-dimensional symmetry group and vectorial torsion

Let G be a 9-dimensional group with a left invariant coframe (¢, y!) on it as in Section 9.1.1. Let (e;, X;) be a basis of
vector fields on G dual to (&', ¥'). We assume that (¢, y!) satisfies the following differential system

1 1 1 1 1
do' = y' A 6* — Etlel AO3 + 5“92 ANO*— —— P NG+ 5@93 NG + itze“ A 6°

23
1 1 1 1 1
2_ 1,91, Sl g4 1 .05 1 e o34 ~epd3anb_ - 7
d? = —y' A0 +2t19 N, +2ﬁt19 N, +2t19 N, +2t26 N, 2t294/\9
1
de® = 2y NG + —t,6° A O°
14 ﬁl
1
do* =29 NP — — P NG
Y «/§1
de® = it191 A6 — itﬂ A65— it292 NG+ it193 A6+ ineﬁ NCA
V3 V3 V3 V3 V3
1 1 1 1 1
6 __ .1 7, .0l 12 3, 1.3 6 7 5 7
de® =y A6 +2r29 /\94+2t20 . +2r19 N 2t164A9 +2f3t19 .
1 1 1 1 1
7 _ 1 6 , L.l 3 1.2 L By A 6 5 6
do’ = Y N +2t29 N 2[’26 A 6 2t19 AO 2t164/\9 Zﬁt16 N

de® = —t293 NG
1 1 1 1 1
dy' = _étfel NG+ gmzel NG 6““92 AOT + 6(3@ — 4P A G* — 6&96 N

Here the real parameters tq, t; are constants.

Let H be a 1-parameter subgroup of G generated by the vector field X;. Now we consider g and 7 of (9.2). It is easy to
check that the above differential equations for the system (¢, ') guarantee that on G the Lie derivatives with respect to X;
of g and 7 identically vanish:

LxlgEO, Lx1 T =0.

Thus on the homogeneous space M = G/H we have an SU(3) structure (M, g, 7). This SU(3) structure has the following
properties.

e Itis arestricted nearly integrable structure.
o It has a 9-dimensional symmetry group G.
e Its characteristic connection is given by (9.3), where

1 1 1 1 1
2 1 3 2 4 5 3
=——t,0', = —t,6%, = -0 — —66° + —t;6°,
V4 2 1 Y 2 1 Y 2 2 «/§2 +2 1
1 1 3
Y=ouf.  P=-onlf. Y =-uf. = _é—t197'
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e The skew symmetric torsion T of I" is of purely ‘vectorial’ type: T € (2. Explicitly the torsion 3-form is

T=t (—%elA92A05+91A96A98+02A97A98+i93A94A95—ie%eﬁmw)

V3 V3
1 1
+t (—01 /\65M96+—92A95A97+93A94/\93).
*\V3 73
e The Ricci tensor Ric” of the characteristic connection is symmetric:
1 2
—5(4& + ) 0 0 0 0 0 —3ht 0
1 2
0 —§(4r% +t) 0 0 0 30t 0 0
7
0 0 —§t§ 0 0 0 0 0
7
Ric" = 0 0 0 - grf 0 0 0 0
0 0 0 0o - 0 0 0
2 1
0 30t 0 0 0 —§(4t% +t2) 0 0
2 1
-3t 0 0 0 0 0 —§(4t$+t§) 0
0 0 0 0 0 0 0 —t
hence the torsion 3-form T is coclosed.
e The Ricci tensor Ric™“ of the Levi-Civita connection is
7é(t%+t%) 0 0 0 0 0 *gtltZ
0 —é(r%ﬂ%) 0 0 0 gtltz 0
0 0 %(713& +3t2) 0 0 0 0
0 0 0 1(—13@ +363) 0 0 0
RiclC — 6 1
0 0 0 0 é(3t§ +2t2) 0 0 -
0 %mz 0 0 0 7é(t%+t%) 0
_gm 0 0 0 0 0 —%(t%ﬂ%)
0 0 0 0 LIS 0 0

2V3

1163

1,
—t
50

We note that if t; = 0 or t, = 0 both the Ricci tensors Ric” and Ric** in the example above are diagonal. Below we present

another 2-parameter family of examples with this property.
Now the 9-dimensional group G has the basis of the left invariant forms (¢, y!) such that:

1 1 3cy/3
do' =y AP — 0> A O + (t — 4o) 793/\97-%*6'4/\964-(:7\/_95/\96
2 2 6c—t
1 1 3c/3
d92:_ylAe1+c91A08+(t—4c)(293A96—294A97+62‘/_t<95w7>

de® = 2" NG +2c(0" AT + P AO° 6 N OP)
do* =29 A +2c(0' AP — P NG — 0 N OP)
s bc—t

V3
1
d96=y1/\97+(t—4c)(291/\94+

de (CRVNC NN

3c/3

91/\95+192/\93> N
6c—t 2

3“/%92 A 95> 468 A 6P

1 1
do’ = —y' A5 + (t — 40) (91/\93—92/\94—1—
2 2 6¢

d® = 20" AP + (dc— )P A —2c0° A O
1
dy' = (2c—1) (—cé’] A+ 5(4c — 0P AN —c® A 97> ,

where c and t are constants. The homogeneous space M = G/H, where H is a 1-dimensional subgroup of G generated by X;
dual to y!, is equipped with a restricted nearly integrable SU(3) structure (M, g, 7) via (9.2). The characteristic connection
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is given by (9.3) with
162-18¢ .
J3 6c—t 7
1
Y = i(t_ 2000°, Y5 =—c?, Y =Qc—0)0*, y¥=+3c0"

1
v:=c0, 3 =ct, y4:§(t_25)g4_|_

In this 2-parameter family of examples the skew symmetric torsion is again of purely vectorial type T € 8Q32; its
corresponding 3-form is given by

1 1
T—t 791A95A96+—92A95A97+93A94A98>.
(ﬁ V3

As announced above both the Ricci tensors are now diagonal for all values of ¢ and t. Introducing the eigenvalues

e %[(Gc —0? =201, p=4cBc—0),

A= % [(6c—t)2— gtz], W= %(GC—t)z, V = % [(66—t)2+%t2]
we have
Ric” = diag(A, A, i, 0,y A, A, ), Ric = diag(W/, A, v/, v, W/, A, AL ).
Of course the group G is a symmetry group of this restricted nearly integrable SU(3) structure.
We close this section with the following theorem, whose proof based on the Bianchi identities, is purely computational.

Theorem 9.2. Let (M, g, T) be an arbitrary restricted nearly integrable SU(3) structure in dimension eight. Assume that the
torsion T of the characteristic connection of this structure is of purely vectorial type, T € 8(3. Then the 3-form T corresponding
to the torsion is coclosed

d(«T) = 0.
This theorem, in particular, implies that the Ricci tensor of the characteristic connection for such structures is symmetric.

9.2. SU(2) x SU(2) structures

In this section we consider SU(2) x SU(2) structures in dimension eight modeled on the torsionless structure G, /(SU(2) x
SU(2)). The approach presented here should be useful in studies of the other exceptional case concerning the SO(10) x SO(2)
structures in dimension 32.

In full analogy with H; structures we start with the identification of R® with a space of the antisymmetric block matrices

My7(R) 3 (X) = (0_3;? 04‘1‘4) , in which the matrices o € M3,4(R) have 3 rows and 4 columns. The entries of « satisfy the

following four relations

Q16 — 34 — 035 = 0, Oz — 37 + a5 =0,

aze + o7 +og =0, o35 + o7 —opg = 0. (9.5)
These four relations reduce the 12 free parameters present in an arbitrary 3 x 4 matrix to 8 parameters. Now defining

M = {Lo?) € My (®) : 1(X) = (“3*3 o

o 04X4’> with « satisfying (9.5)} , (9.6)

we have an isomorphism ¢ : R® — M® between the vector spaces R® and M®.

Now we define a representation p of the group SU(2) x SU(2) in R®, which will enable us to define an SU(2) x SU(2)
structure in dimension eight.

We use two different representations of SU(2) in dimension seven: The representation p; generated by 7 x 7-matrices

h; = exp(tis;)), i=1,2,3, t; € R(nosummation!),

such that
0 0 0 O 0 O 0 0 0 0 O 0 0 O
0 0 0 O 0 0 0 0 0 0 O 0 0 O
0 0 0 O 0 O 0 0 0 0 O 0 0 O
0 0 0 O % 0 0 0 0 0 O 0 % 0
S1= 1 ) Sy = 11,

0 00 —— 0 O 0 0 0 0 O 0 0 =
2 1 1 2
0 0 0 O 0O 0 —= 0O 00 —= 0 0 O

1 2 2 1
0 0 0 O 0o - O O 00 0 —— 0 O

2 2
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0 00 0 O 0 0
0 00 O 0 0 0
0 00 0 O 0 0
0 00 0 O 0 %
S3 = 1 )
0 00 O 0O —=- 0
1 2
0O 00 0 = 0 0
1 2
0 00 — 0 0 0
2
and the representation p, generated by 7 x 7 matrices
xi = exp(tioy), i=1,2,3, 1; € R(nosummation!),
such that
0 -1 0 0 O 0 0 0 01 O 0O 0 O
1 0 0 0 O 0 0 0 0 0 O 0O 0 O
0 0 0 0 O 0 0 -1 0 0 O 0 0 O
1 1
0 0 0O 0 O 0 —3 0 0 0 O 0 5 0
o1 = 1 ) 03 = 11,
0O 0 0 0 O —3 0 0 0 0 O 0 0 ~3
1 1
0 0 0 O 3 0 0 0 0 O ~3 0O 0 O
1 1
0O 0 0 = 0O 0 0 0O 00 O = 0 O
2 2
0 0 0O O oO 0 0
0O 0 1 0 O 0 0
0 -1 0 0 O 0 0
1
0 0 0 O ~3 0 0
O3 =
*lo 0 0o X 0o o o
2 1
0O 0 0 0O O 0 —=
1 2
O 0 o0 O = o0
2
We note that
[sj, skl = €gksis [0}, ok] = €0, [si,0i1=0, i,j,k=1,2,3,

where € is the Levi-Civita symbol in 3-dimensions.
Now, we consider all the 7 x 7-matrices of the form

h = h(t1, ta, t3, T1, T273) = hih2hs X1 X2 X3-

They constitute a 7-dimensional representation p; of the full group SU(2) x SU(2).
Remarkably, he(X)ht is an element of M8 for all the elements ¢(X) of M®. Moreover, due to the fact that [s;, o;] = 0 for all
i, j, the map

(SU(2) x SU(2)) x M® > (h, t(X)) > hu(X)ht € M®

is a good action of SU(2) x SU(2) on M®. Thus, using the isomorphism ¢ we get the 8-dimensional representation o of
SU(2) x SU(2) given by

R® 5 X > p(h)X = ¢ [(X)h'] € RE. (9.7)
Given an element X € R® we consider its characteristic polynomial
Py () = det(t(X) — Al)
= -7 —6g(X, X)A° — 9g(X, X)?2> + 2y(X, X, X, X, X, X)A. (9.8)
This polynomial is invariant under the SU(2) x SU(2)-action given by the representation p of (9.7),
Pz () = Px(A).

Thus, all the coefficients of P; (1), which are multilinear in X, are SU(2) x SU(2)-invariant.



1166 P. Nurowski / Journal of Geometry and Physics 58 (2008) 1148-1170

It is convenient to use a basis e, in R® such that the isomorphism : : R® — M? takes the form:

0 0 0 X+ X3 X+ V38 2
0 0 0 X' —V3 X V3 VB8 28
0 0 0 —2x’ X' — /3% - =3 =240
X=xXe> 1(X) = |- V3"  x'+3¢ 2% 0 0 0 0
X =3 X — V38 x4+ V3% 0 0 0 0
X =3 X+ X+ 0 0 0 0
2x! —2x° 2x° 0 0 0 0

With this choice the bilinear form g of (9.8) reads:

gX.X) = (") + () + ()2 + )2 + () + () + () + (¥
The 6-linear form y of (9.8) defines a tensor yyuy via

yX, X, X, X, X, X) = VX ¥R
This tensor has the following properties.

o It reduces GL(8, R), via SO(8), to SU(2) x SU(2).
e The 6th order polynomial

=y X, X, X, X, X)
of variablesx/, 1= 1, 2, ..., 8, satisfies
(@) Ad = —72g(X,X)?
(b) V&> = —720g(X, X)?
() XV =66.
The properties (a)-(c) show that & cannot be interpreted as the Cartan polynomial (3.1) and (3.2) defining an

isoparametric hypersurface in S7. But we can modify it so that the redefined polynomial satisfies (3.1) and (3.2). Indeed,
using properties (a)-(c) it is easy to see that the 6th order homogeneous polynomial F = & + g(X, X)> is a solution of

(Cii)) AF=0
(Ciii) |VF]* = 6%g(X, X)°.
Thus, via (3.3), the polynomial F defines an isoparametric hypersurface in S” which has p = 6 distinct constant principal

eigenvalues. Note that since both ¢ and g(X, X) are SU(2) x SU(2)-invariant, the polynomial F is also so. Hence a stabilizer,
under the action of GL(8, R), of a 6th order symmetric tensor Yy defined by

F=¢ +g(;(, )_2)3 = T()?, X, X, X, X, )?) = TUKLMNx'x’xKxLxMxN (9.9)
contains the group SU(2) x SU(2). Actually we have the following proposition.

Proposition 9.3. The 6th order symmetric tensor Tyxmy defined above reduces the GL(8, R) group, via SO(8), to the irreducible
SU(2) x SU(2) associated with the representation p of (9.7).
Following the case of H structures we use the tensor jxmy 0f (9.9) to define an endomorphism
T QR — Q°RS, (9.10)
N 52
w > > Timnrg Tiomnpg W',
which preserves the decomposition ®*R8 = A?R® @& (O?R3. Its eigenspaces, are SU(2) x SU(2)-invariant and define
representations of dimension 1, 5, 6, 7, 9, 15, 21. Explicitly we have the following proposition.

Proposition 9.4. The SU(2) x SU(2) irreducible decomposition of ®* R® is given by
Q'R = O1© 050 O3 & O3 &N\ &/ @ATs,
where
O} =(Sec@°R® | 1(S) =175-S}) ={S=A-g, A €R},
Q2 ={Se@°R®| 7(5) = 215},
Ne={Fe®°R® | T(F) =35 F} = su(2) ® su(2),
AN ={Fe ®@°R®| T(F) = —25-F},
Qs ={Se @ R*| 7(5) =75},
Nis = {F € @R® | T(F) = —49-F},
O3 =(5e @R | ¥(s) =27-5).
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C (O* R8 of respective dimensions i and j are irreducible representations of the group

2 258 2
i CA\“R® and ©;

The real vector spaces \;

SU(2) x SU(2).

i=1,2,3, where

i

R

is isomorphic to the Lie algebra su(2) & su(2) represented as the Lie subalgebra of 8 x 8-matrices.

2
6’
In this 8-dimensional representation p’ the bases of the two su(2) algebras are, respectively, Z' and

Remark 9.5. Note that A

0
0
/3

-1
3 -3

V3
-3
0

3

0

0

0

(32]

—

— O O O

3000

O_ﬁ‘I_.O

0]30

-2 0 0

0
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and we have
(5, 50 = —ep X, [50 5= -, (5L 501=0, ijk=1,23.

Of course the Lie algebra representation o’ is the derivative of the 8-dimensional representation p of SU(2) x SU(2)
considered in (9.7).

Now, we define the SU(2) x SU(2) structure on an 8-manifold as a structure equipped with the Riemannian metric g and the
6-tensor 7', which in an orthonormal coframe €' is givenby T = 7yjun8'¢ 6“6"0MON with Yy of (9.9). Having this, we may
use the above proposition (and the basis of /\é = su(2) ® su(2) given above) as the starting point for addressing the question
about the description of such structures in terms of (su(2) @ su(2))-valued connections. Regardless of the open question if
and when the characteristic connection for such structures exists, the torsionless models here will locally be isometric to
the symmetric spaces G,/(SU(2) x SU(2)), R® = [(SU(2) x SU(2)) x, R8]/(SU(2) x SU(2)) and G%/(SU(Z) x SU(2)) with
the standard SU(2) x SU(2) structure on them.
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Appendix A. Basis for the n;-dimensional representations of the Lie algebras b,

Here we give the explicit formulae for the generic elements X,, of the Lie algebras b in terms of the n; x n; antisymmetric
matrices. We denote the basis of the Lie algebra b, by E,, @ = 1, 2, ..., dim H; and write

Xn, = X°Eq.

The explicit form of the matrices E, for each value of n, = 5, 8, 14 and 26 can be read off from the formulae below.
For n, = 5 we have:

0 —x! —x* = =33
x! 0 =X X /3%

Xs=| x* P 0 2 0 ) (A1)
X3 x> —2x' 0 0

V3¢ V3¢ 0 0 0

For n, = 8 we have:

0 —x! B Y A —x° —x5
8
x! 0 3 R 3 X o
8 V3
2 3 1 6 X 7
X X 0 2x 0 X - —X
3 2 1 X8 \/5 5
X —X —2x 0 0 — ﬁ —X —2x
Xg = A2
5T1V3E V3@ 0 0 0 N 0 (A.2)
3
4 5 6 X 3 1 2
X X —X — X 0 —X X
x8 V3
X x4 7 X8 V38 X! 0 —x
X8
X8 x 2%° 0 —x? P 0
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For n, = 14 we have:

X14

0 i 2 3 _V38 4 _0 8 0 _x10 _x1 _x12
8
X
X! 0 3 2 _J/32 - Ay _ = 11 _x12 9 15 _4l0_,16
8 17 18
X X X
x? x 0 2x! 0 X8 -— —x x13 x4 -—
V3 V3 V3
3 2 1 b 5 XV x'8 13 14
X —X —2x 0 0 -— —X —2x -— -— X X
V3 3 3
V353 3x% 0 0 0 -8 V3x8 0 —xV7 —x18 V3x13 3k
8
X
4 B 48 8 0 ! 2 _x19 20 12 1t
8 V3
X
N A 7 X8 _J/3x8 51 0 3 X12 11 X16 _ 419 15 _ 20
8 18 17
X X X
x8 — x 2%° 0 —x? X 0 —x14 x13 - —
V3 " V3 V3
X
N K1 _x13 17 19 _x12 14 0 K21 ! O
V3
2 14 x18 18 20 11 13 21 1
x10 x! —X ﬁ b% X X —X —X 0 —x° —X
X7 £18
11 X0 4 x15 K13 V3x13 12 X164 19 X! O 0 ¥ 452
X X
£12 x10 1 416 K14 Vx4 11 15 4 420 _ - X! 7 21 0
17 V3 18 V3 8
X X X
X13 XI5 2511 0 414 _,10 _y2 NG 3 _
V3 V3 V3
X18 X17 X8
14 £16 2512 0 _x13 _ 2 NG 2 3
V3 V3 NE]

Where Z4 — x4 +X7 + X21, 29 — X9 + X15 +X20,Z]0 — x]O + x16 _ X19.
The size of the formula for X;4 forces us to skip the 26-dimensional representation of f4. It can be easily obtained by
looking for the Lie algebra element stabilizing 7! of Proposition 2.2.

Appendix B. A 5-form reducing GL(14, R) to Sp(3) c SO(14)
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(A3)

An explicit expression for a nonzero element ¢ of the only 1-dimensional Sp(3)-invariant subspace in \° 143, is written
below. This 5-form reduces GL(14, R) to Sp(3) C SO(3) and, in the adapted coframe of Section 5, contains 129 terms as

follows:

¢ = 120V30' NP AP AC AP —240V30' AP AP AP NG —192v30' AP AP AP AN

—144V30" AN AP AOO NG — 720" AGEAGC NG AOM 14400 AP A5 A G A H13
—S540' AP A AT AP L T200 AP A G AO ABE — 36001 AGP AR NG ABTC

— 1620 AP AR AT AOZ — 180 AP A AOE AO™ —3600" AP AGAE ABGE

— 144 AP A AP ANOB —T200 AP A AOO A O™ —120v301 AP AP AP NGB

— 48V AP AP AP O 2430 NG AG° ABO NG —2160" AGP A A A O
+2880' AP AB A AT —3600" AP A AP AO0 — 16201 A3 A G AOMT A G2
—180 AP AT AP AP — 540 AP AB AT AL T20' NP A AOZAOE
+120V30" AP A AT NG +36V30 AT AP AT NG + 12730 AG AP AP AT
—T7200 NP A AP AOC — 180 AP AP AN A —T200 NP ABE NG NGO

+1440" AG* NGB A O A B — 720301 AP AEE AP A — 10830 AP ABS ABT AR
—6V30 AP AP AP A — 144V30" AP A G AE° AO% 4+ 19230 AP AGT A AN
—24V3OVAP AP AP AP + 48V AP AP AOC AP + 1440 AO® AT NG AT

+ 720" AP AT A0 A0 12880 AP ABE NG AOT 21601 A A G ABOIO A B2
—540' AP A NG A 7200 AP A0 AO2 NG —36002 AP AP AOT ABE
—108P AP AP ANOT AP —36PP AP A AOZ A+ 1203 AP AP AT AP
+36V3P AP AP AT AP +12V3P AP AP A2 A —3606* AP AP A ABGO
—1620° AP AP AT ANOZ — 182 AP AP AOB A0 —2166* AP A0 AO° NG
+288P AP AG AOO AT —T20P NP A NGO AO™ 14407 AP AR AOIO NG
+120V3P AP AP AP A +48V3P AP AP AP AOE +24V3P AP AP AOC A O™
+324P NP AOT AOTT NG + 182 AOP NG AOE AO™ £ 5407 AOH NGB AOT AOM
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—T2P AP AP AOZ A — 144302 A0 A° AP AOZ + 1923 AP AP NG AN
—240V3P AP AT AP A —324V3P AP AT AT AP — 63 AP AT AOB A G
—18V3P AP AP AT AOY +24V3P AP AP AOZAOE +1086° AE° NG AOT ABE
+360°2 AN AOZAOM +2880° AT AR ABP AOT +21602 AOT NGB ABO A

+240P AP AT AP AO™ — 4862 AOO NG AO NG +120V3P AP A AP NG
+96V3P AP AP ACAOT +T2V3P AP AP AP A2 £ 7203 A AP AP AT

— 144 AP AP AOONOP 154 AP AT AT A T2 AP AT NG AOB
+360°P AP AP AN +16203 N APB AOTANOZ L7203 AN APB NGB AOM
+24V3P AP AP AP A0 —48VIP AP AP AOOAOE —18V3P AP A AT A O™
+24V3P AP AT AOZ AP +120V33 AP AP A AOC —54360° A6° AB NG A G2
+108P AP AR AT A 136 AP AR AOP A+ 14402 AOT AB AP AOP

+ 2P AN AP AOONOY 6P AP AOP AOP A0+ 120 AOO A O A O3 A QM
—18V3 AP AP AT AOM £ 24V AP AP AP AOE —24V3P AP A A AOM
+48V3P AP AT AP NG — T2V AP AP AT A2+ 9630 AP A AOO AN
+ 1444 NP AP AP NOZ +T720° NO AR AOOAO™ —1080* A O AR AOT AOP

—360 AT ABAOZAOM - 180 AP A0 A AOM 430 AOT AG2 AG A O
—192V3° AP AT AP AT —144V3P AP AT A0 A2 + 483 AP APB A AO
+24V3P AP AP AOC A" £ 363 AT AP AOT AOE + 1203 AT AP AO2AOM
+108v36° AP A AT AOZ — 63 AP AOC AP AO4—36° A0 AO AG AOM
—3600° A" AP AP A —1620° AT AB AOT A —180° A O AR A AGOM
—108F° AP A AT A2 —360° AB° AO10 AB12 NG+ 4867 AB° AOT AOZABGT
+240" AOOAOTAOP A —12B AP AT AP A —60° A0 AB1Z NG AOM.
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