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Abstract. The geometry ofP, the bundle of null directions over an Einstein spacetime, is studied.
The full set of invariants of the naturalG-structure onP is constructed using the Cartan method of
equivalence. This leads to an extension ofP which is an elliptic fibration over the spacetime.
Examples are given which show that such an extension, although natural, is not unique. A
reinterpretation of the Petrov classification in terms of the fibres of an extension ofP is presented.

PACS numbers: 0420, 0240, 0420C, 0420J

1. Introduction

In 1922 Elie Cartan made the following observation [1].

From a geometric viewpoint, it is worthwhile to note an interesting property. At
each pointA [of a conformally non-flat space-time] there exist four privileged null
directions [. . . ]. They can becharacterized as follows: Any one of these directions,
sayAA′, is invariant under transport around an infinitesimal parallelogram one of
whose sides isAA′ and the other of whose sides is along an arbitrary null direction at
A. In the case of ds2 corresponding to a single attractive mass (ds2 of Schwarzschild)
the four privileged directions reduce to two (degenerate) directions which correspond
to null rays pointing to or from the centre of attraction#.

This remark implicitly anticipates elements of the so-called Petrov classification, the elegant
contemporary formulation of which owes much to the work of Roger Penrose. In this
formulation the anti-selfdual part of the Weyl tensor at a spacetime point corresponds to a
totally symmetric spinorCABCD and a null direction at a point is defined uniquely in terms of

a spinorξA(z) = ( 1
z

)
. Then the Cartan (principal) null directions correspond to the solutions

of the following equation:

CABCDξ
AξBξCξD = 0, (1)
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for z ∈ C∪{∞} defining the spinorξA. This equation, being fourth order inz, always has four
roots,zi say, but some of them may be repeated. Multiple roots correspond to coincidences
between the corresponding Cartan null directions. The Petrov classification (or the Cartan–
Petrov–Penrose classification [1, 10, 11] as it perhaps should be properly called) of metrics at
a given spacetime point is based on these results. One says that the metric is algebraically
general at a point if its Weyl tensor defines four distinct Cartan directions there. Otherwise the
metric is algebraically special. The following five possibilities may occur:

• z1, z2, z3, z4 all different←→ four distinct Cartan directions←→ Petrov type I.
• z1 = z2, z3, z4 different←→ three distinct Cartan directions←→ Petrov type II.
• z1 = z2 6= z3 = z4←→ two pairs of distinct Cartan directions←→ Petrov type D.
• z1 = z2 = z3, z4 different←→ two distinct Cartan directions←→ Petrov type III.
• z1 = z2 = z3 = z4←→ one Cartan direction←→ Petrov type N.

This classification can be reinterpreted as follows. Consider a curve

w2 = CABCDξAξBξCξD (2)

in C2 with coordinates(w, z) or, better, a compact Riemann surfaceT associated with a
double-valued functionw(z) =

√
CABCDξAξBξCξD onC ∪ {∞} ∼= S2. It is well known that

the topology ofT depends on the roots of (1) and corresponds to a two-dimensional torusT2

if all zi are distinct. If some coincidences between the roots occur then we have the following
possibilities.T has the topology of a torus with one vanishing cycle in Petrov type II, it has
the topology of two spheres touching each other in two different points in Petrov type D, it has
the topology of a sphere with a distinguished point in Petrov type III, and it has the topology
of two spheres touching each other in a single point in Petrov type N.

It turns out that equation (2), which seems to be artificially added, appears naturally in the
Einstein theory [8, 9]. A fibratioñP can be defined over the spacetime, each fibre having the
topology of the associated surfaceT , with the Einstein equations taking an interesting form on
the total space [8, 9]. In this paper we extend the results of [8, 9] by showing how the fibration
P̃ can be defined by using natural objects on the Penrose bundle of null directionsP over the
spacetime.

We recall that given a four-dimensional Lorentzian manifold(M, g) and its bundle of null
directionsP one naturally defines a class of six 1-forms [(F, F̄ , T ,3,E, Ē)] on it having the
following properties [6, 7] (see also section 5 of the present paper):

(a) 3, T are real- andF,E are complex-valued 1-forms onP.
(b) F ∧ F̄ ∧ T ∧3 ∧ E ∧ Ē 6= 0 at each pointp of P.
(c) Two sets of forms(F, F̄ , T ,3,E, Ē) and(F ′, F̄ ′, T ′,3′, E′, Ē′) are in the same class

iff

3 = 1

A
3′, (3)

F = eiϕ(F ′ + ȳ3′), (4)

T = A(T ′ + ȳF̄ ′ + yF ′ + yȳ3′), (5)

E = 1

w
E′, (6)

whereA > 0,ϕ (real)y,w 6= 0 (complex) are arbitrary functions onP. This defines a certain
G-structure onP. This structure can be studied using the Cartan method of equivalence.
In this paper we solve the Cartan equivalence problem for thisG-structure. We show that
this naturally leads to an elliptic fibratioñP associated with the Einstein spacetime i.e. to the
association of an elliptic curve (2) with each point of the spacetime. The extension ofP to
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P̃ was obtained previously in [8, 9] by the continuation of solutions of a certain differential
systemI, defined initially only on an open set ofR6. Such an extension is natural but, as is
discussed below, not unique.

The paper is organized as follows. Section 2 contains notation and definitions. Section 3
defines the differential systemI. Section 4 gives examples of solutions of the differential
systemI corresponding to all vacuums of type N. Section 5 uses the Cartan method of
equivalence to obtain the differential system of section 4 from the natural objects defined
on the bundle of null directions over the spacetime. The results of section 5 are applied in
section 6 to give an effective algorithm for checking whether two metrics are isometrically
equivalent. In section 7 a way ofassociating an elliptic curve with any point of a conformally
non-flat Einstein spacetime is presented. The elliptic fibration associated in this way with any
conformally non-flat Einstein spacetime constitutes a double branch cover of the bundle of
null directions. This natural extension ofP is not unique and in section 8 some examples of
Einstein spacetimes, with different extension ofP, are exhibited.

2. Basic definitions

We briefly recall the definitions of the geometrical objects we need in the following. LetM
be a four-dimensional oriented and time-oriented manifold equipped with a Lorentzian metric
g of signature(+,+,+,−). It is convenient to introduce a null frame(m, m̄, k, l) onM with
a dual coframeθ i = (θ1, θ2, θ3, θ4

) = (M, M̄,K,L) so that†

g = gij θ iθj = 2(MM̄ −KL). (7)

Giveng andθ i the connection 1-forms0ij = gik0kj are uniquely defined by

dθ i = −0ij ∧ θj , 0ij + 0ji = 0. (8)

The connection coefficients0ijk are determined by the relation0ij = 0ijkθk‡. Using them we
define the curvature 2-formsRki , the Riemann tensorRijkl , the Ricci tensorRij and the Ricci
scalarR by

Rki = 1
2R

k
imj θ

m ∧ θj = d0ki + 0kj ∧ 0ji, Rij = Rkikj , R = gijRij .
We also introduce the traceless Ricci tensor by

Sij = Rij − 1
4gijR.

Note that the vanishing ofSij is equivalent to the Einstein equationsRij = λgij for the metric
g. We define the Weyl tensorCijkl by

Cijkl = Rijkl + 1
3Rgi[kgl]j +Rj [kgl]i +Ri[lgk]j ,

and its spinorial coefficients9µ by

R23 = 94M̄ ∧K +93(L ∧K −M ∧ M̄) +
(
92 + 1

12R
)
L ∧M

+1
2S33M ∧K + 1

2S32(L ∧K +M ∧ M̄) + 1
2S22L ∧ M̄,

R14 =
(−92 − 1

12R
)
M̄ ∧K −91(L ∧K −M ∧ M̄)−90L ∧M

− 1
2S11M ∧K − 1

2S41(L ∧K +M ∧ M̄)− 1
2S44L ∧ M̄,

1
2(R43−R12) = 93M̄ ∧K +

(
92 − 1

24R
)
(L ∧K −M ∧ M̄) +91L ∧M

+1
2S31M ∧K + 1

4(S12 + S34)(L ∧K +M ∧ M̄) + 1
2S42L ∧ M̄.

(9)

† Expressions such asθiθj mean the symmetrized tensor product, e.g.θiθj = 1
2(θ

i ⊗ θj + θj ⊗ θi ). Also, we will
denote by round (respectively square) brackets the symmetrization (respectively antisymmetrization) of indices, e.g.
a(ik) = 1

2(aik + aki ), a[ik] = 1
2(aik − aki ), etc.

‡ We lower and raise indices by means of the metric and its inverse.



258 P Nurowski et al

3. The differential system

Here we quote the major results from [8] which will be used in this paper. They describe the
properties of a system of six 1-forms onR6 which determine a conformally non-flat Lorentzian
4-metric satisfying Einstein equations.

Theorem 1. Let P0 be an open subset ofR6. Suppose that onP0 we have six 1-forms
(F, F̄ , T ,3,E, Ē) which satisfy the following conditions:

(a) T ,3 are real- andF,E are complex-valued 1-forms.
(b) F ∧ F̄ ∧ T ∧3 ∧ E ∧ Ē 6= 0 at each pointp ofP0.
(c) There exist complex-valued 1-forms� and0 onP0, and a certain complex functionα on
P0 such that

dF = (�− �̄) ∧ F +E ∧ T + 0̄ ∧3
dT = 0 ∧ F + 0̄ ∧ F̄ − (� + �̄) ∧ T
d3 = Ē ∧ F +E ∧ F̄ + (� + �̄) ∧3
dE = 2� ∧ E + F̄ ∧ T + α3 ∧ F.

(10)

Then

(a) P0 is locally foliated by two-dimensional manifoldsSx , which are tangent to the real
distributionV defined by

F(V) = T (V) = 3(V) = 0.

(b) The degenerate metric

G = 2(F F̄ − T3) (11)

on P0 has the signature(+,+,+,−, 0, 0) and is preserved when Lie-transported along
any leafSx of the foliation{Sx}.

(c) The four-dimensional spaceM of all leaves of the foliation{Sx} is naturally equipped
with a Lorentzian conformally non-flat metricg which is Einstein (Sij = 0) and is defined
by projectingG fromP0 toM.

The Einstein property of the metricg was proven in [8] by using the integrability conditions
for the system (10). We summarize them in the following proposition.

Proposition 1. If (F, F̄ , T ,3,E, Ē) satisfy (10) then there exist complex functionsa, h on
P0, and a real constantλ, such that

d0 = 20 ∧� + αT ∧ F̄ + a(T ∧3 + F ∧ F̄ ) + h3 ∧ F
d� = E ∧ 0 − (α + 1

2λ
)
(T ∧3 + F ∧ F̄ ) + a3 ∧ F. (12)

Moreover,

dα = α1F + γ4F̄ + γ1T + α43− 2aE,
da = a1F + α4F̄ + α1T + a43 + hE − (3α + λ)0 − 2a�,
dh = h1F − a4F̄ − a1T + h43 + 4a0 − 4h�,

(13)

where the possible forms of� and0 are

� = ω1F + ω2F̄ + ω3T + ω43,

0 = γ1F − 4ω4F̄ − 4ω1T + γ43− (3α + λ)E
(14)

andγ1, γ4, α1, α4, a1, a4, h1, h4, ω1, ω2, ω3, ω4 are certain complex functions onP0.

The next result gives a geometric interpretation of the functionsα, h and the constantλ.
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Proposition 2. The spinorial coefficients for the Weyl tensor of the metricg onM read

90 = h, 91 = −a, 92 = −α − 1
3λ, 93 = 0, 94 = −1.

The metric is of Petrov type D iff

a = 0, and h = −(3α + λ)2 (15)

and of type N iff

h = a = 0, and λ = −3α. (16)

The metric is algebraically special iffI 3 = 27J 2, where

I = −h + 1
3(3α + λ)2, and J = a2 + 1

27(3α + λ)3 + 1
3h(3α + λ).

From now on the differential systemI of the forms(F, F̄ , T ,3,E, Ē) satisfying equations
(10) onP0 will be denoted by(I,P0).

4. Type-N vacuum solutions

In this section we present some specific examples of the differential systems(I,P0). We exhibit
the forms(F, F̄ , T ,3,EĒ)which, via theorem 1, correspond to type-N vacuum(α = λ = 0)
solutions of the Einstein equations. These examples illustrate the way in which well known
solutions appear in this formalism.

Example 1. LetP0 be an open set ofR6 with coordinates(Z, Z̄, U, V, z, z̄), whereU,V are
real andZ, z are complex. Consider the following 1-forms onP0:

F = dZ̄ + z dU

T = dU
3 = dV + z dZ + z̄ dZ̄ +

[
zz̄− 1

2

(
Z2 + Z̄2

)]
dU

E = dz +Z dU.

(17)

It is a matter of straightforward calculation to check that these forms constitute a solution
to the system (10) withα = λ = � = 0 = 0.

One also easily checks that althoughF, T ,3,E depend on six real coordinates, the metric

G = 2(F F̄ − T3) = 2 dZ dZ̄ − 2 dU
[
dV − 1

2

(
Z2 + Z̄2

)
dU
]

depends on(Z, Z̄, U, V ) only. Thus, it projects to

g = 2 dZ dZ̄ − 2 dU
[
dV − 1

2

(
Z2 + Z̄2

)
dU
]

on a 4-manifoldM coordinatized by(Z, Z̄, U, V ). The spacetimeM with this metric is a
plane-fronted gravitational wave possessing six symmetries.

Example 2. Let P0 be again coordinatized by(Z, Z̄, U, V, z, z̄) and letω3 = constant be a
complex parameter. Consider the forms

F = dZ̄ + [z + (ω̄3− ω3)Z̄] dU

T = dU
3 = dV + z dZ + z̄ dZ̄ +

[
zz̄− 1

2

(
Z2 + Z̄2

)
+ (ω3− ω̄3)(zZ − z̄Z̄)− (ω3 + ω̄3)v

]
dU

E = dz + (Z − 2ω3z) dU.

(18)
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They again constitute a solution to the system (10). This solution generalizes the previous
example since the correspondingα = λ = 0 = 0, but� = ω3T . For any value of the
complex parameterω3 the metric

g = 2 dZ dZ̄ − 2 dU
[
dV + (ω3− ω̄3)(Z̄ dZ − Z dZ̄)

+
(
(ω3− ω̄3)

2ZZ̄ − (ω3 + ω̄3)V − 1
2(Z

2 + Z̄2)
)

dU
]

on the quotient manifold parametrized by(Z, Z̄, U, V ) is a plane-fronted gravitational wave
with six symmetries. The solution of example 1 corresponds toω3 = 0 and is the simplest in
the class. It follows that example 2 exhausts the list of all vacuum (λ = 0) solutions to the
Einstein equations with six symmetries.

Example 3. A generalization of the preceding examples can be obtained by takingP0 with
coordinates(Z, Z̄, U, V, z, z̄) and the forms

F = e−iφ [dZ̄ + z dU ]

T = er dU

3 = e−r [dV + z dZ + z̄ dZ̄ + (zz̄−H − H̄ ) dU ]

E = e−r−iφ [dz +HZ dU ].

(19)

HereH = H(Z,U) is any holomorphic function of the variableZ, HZ = ∂H/∂Z and the
real functionsr andφ are determined by the condition e2(r+iφ) = HZZ. One easily sees
that equations (19) constitute a solution to the system (10) withα = λ = 0 = 0 and
� = − 1

2d(r + iφ). The corresponding type-N vacuum spacetime is a general plane wave
with five (or more) symmetries.

Example 4. Another example of solutions withα = λ = 0 is given by

F = e−iφ [dZ̄ + (V + z(Z + Z̄)) dU ]

T = er (Z + Z̄) dU

3 = e−r [dV + z dZ + z̄ dZ̄ + (zz̄(Z + Z̄) + (z + z̄)V −H − H̄ ) dU ]

E = e−r−iφ
[
dz +

(
z2 +HZ

)
dU
]
.

(20)

HereP0 is parametrized by(Z, Z̄, U, V, z, z̄),H = H(Z,U) is holomorphic inZ and the real
functionsr andφ are given by e2(r+iφ) = HZZ/(Z + Z̄). The solutions are type-N vacuums
(α = λ = 0) and have� = − 1

2d(r + iφ) − z dU and0 = −er+iφ dU . They belong to the
Kundt class.

All the solutions presented so far corresponded to type-N vacuums with non-diverging
rays. Generic type-N vacuums are given below.

Example 5. ConsiderP0 ⊂ R6 with coordinates(Z, Z̄, U, V, z, z̄), whereZ, z are complex
andU,V are real. Define

30 = dU + ξ dZ + ξ̄ dZ̄,

whereξ = ξ(U,Z, Z̄) is a function of variablesU,Z, Z̄ only. Let

F = e−iφ [dξ̄ + V dZ − ∂̄ ξ̄ dZ̄ + z30]

T = er30

3 = e−r [dV + z dξ + z̄ dξ̄ + zz̄30 + (∂∂̄ξ̄ + zV − z̄∂̄ ξ̄ ) dZ̄ + (∂̄∂ξ + z̄V − z∂ξ) dZ]

E = e−r−iφ
[
dz +

(
z2 + ∂U ∂̄ξ̄

)
dZ̄
]
,

(21)
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where∂U = ∂/∂U , ∂ = ∂Z − ξ∂U and real functionsr andφ are determined by e2(r+iφ) =
−∂ 2

U ∂̄ξ̄/(V + ∂̄ξ ). It follows that if the functionξ satisfies the equations

∂∂U ∂̄ξ̄ = 0 Im∂∂∂̄ξ̄ = 0

then the above forms satisfy the system (10) withα = λ = 0 and� = − 1
2d(r + iφ) − z dZ̄

and0 = −er+iφ dZ. The corresponding spacetimes are of type N.

It follows from the results of Plebański [12] that examples 3–5 constitute all the solutions
to the vacuum type-N Einstein equations.

5. From the Einstein spacetime to the differential system

We first briefly summarize the Cartan method of analysingG-structures (see [4] for more
details).

Let X be ann-dimensional manifold and [{θ i}], i = 1, . . . , n, be a class ofn linearly
independent 1-forms onX such that two representatives{θ i} and{θ ′ i} are in the same class
iff there exists an element(aij ) ∈ G of a certain groupG such thatθ ′ i = aij θj . Now, suppose
that we have two sets{θ ′ i} and{θ i} of n linearly independent 1-forms onX . TheG-structure
equivalence question is: does there exists a (local) diffeomorphismφ of X such that

φ∗
(
θ ′ i
) = aij θj (22)

for someG-valued functionaij on X . In other words, does the system of differential
equations (22), forφ, have a solution? This question is not easy to answer, since the right-hand
side of (22) is undetermined. Elie Cartan associates with the forms{θ i} and{θ ′ i} two systems
of 1-forms�µ and�′µ on a manifoldX̂ of dimensionn̂ > n. Then he shows that equations
like (22) forφ have a solution iff a simpler system

φ̂∗�′µ = �µ (23)

of differential equations for a diffeomorphism̂φ of X̂ has a solution. Examples are known
(e.g. CR structures [2]) where the Cartan procedure producesk > n̂ 1-forms�µ of which
n̂ are linearly independent. Then decomposingk − n̂ of the dependent 1-forms�µ onto the
basis ofn̂ independent ones we obtain functionsfI (coefficients of the decompositions) which
if (23) has a solution have to satisfŷφ∗(f ′I ) = fI . The advantage of these equations forφ̂ is
that they are not differential equations. If the procedure gives enough independent functions
fI then by the implicit function theorem the whole problem reduces to evaluating whether a
certain Jacobian is non-degenerate.

In this section we show that any conformally non-flat Einstein spacetime defines a
differential system as in theorem 1. We consider the bundleP of null directions of an Einstein
spacetime and study its naturalG-structure using the Cartan method described above. This
enables us to define a differential system onP that has all the properties of(I,P0). Here the
arguments presented in [9] are approached from a different point of view.

Let (M, g) be a four-dimensional Lorentzian (not necessarily Einstein) manifold.
Consider the set6x of all null directions outgoing from a given pointx ∈ M. This set is
topologically a sphereS2—the celestial sphere of an observer situated atx†. The points of this
sphere can be parametrized by a complex numberz belonging to the Argand planeC ∪ {∞}.
A direction associated withz 6= ∞ is generated by a null vector

k(z) = k + zz̄l − zm− z̄m̄. (24)

† We consider outgoing directions fromx. In this sense directions generated by, for example,k and−k are considered
to be different and two vector fields generate the same direction if an only if they differ by a multiple of a positive real
function onM.
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With z = ∞ we associate a direction generated by the vectorl. Conversely, given a null
direction outgoing fromx we find that it is either parallel to the vectorl or can be represented
by only one null vectork(z) such thatg(k(z), l) = −1. It follows that such a vectork(z) has
necessarily the form (24), and that it defines a certainz ∈ C. If a direction is parallel tol we
associate with itz = ∞.

We define a fibre bundleP =⋃x∈M6x overM, so that the two-dimensional spheres6x
are its fibres. The canonical projectionπ : P →M is defined byπ(6x) = x. The following
geometrical objects existing onP are relevant in the present paper (see [6] for details).

• The Levi-Civita connection associated with the metricg onM distinguishes a horizontal
space in TP. In this way for any pointp ∈ P we have a natural splitting of its tangent
space onto a direct sum TpP = Vp

⊕
Hp, whereHp is a four-dimensional horizontal

space andVp is a two-dimensional vertical space. The vertical spaceVp is tangent to the
fibre6π(p) at the pointp. ThusVp has a natural complex structure related to the complex
structure on the sphereS2. The complexification ofVp splits into eigenspacesV +

p andV −p
of this complex structure. We have a horizontal liftṽ of any vectorv from π(p) ∈M to
P. This is such a vector̃v atp that ṽ ∈ Hp andπ∗(ṽ) = v.
• A Lorentzian metricg̃ can be defined onP by the requirements that

(a) the scalar product of any two horizontal vectors determined byg̃ is the same as the
scalar product with respect tog of their push forwards toM,

(b) the scalar product of any two vertical vectors with respect tog̃ is equal to their scalar
product in the natural metric on the two-dimensional sphere (this is consistent since
vertical vectors can be considered tangent vectors toS2),

(c) any two vectors such that one is horizontal and the other is vertical are orthogonal
with respect tõg.

• There is a natural congruence of oriented lines onP which is tangent to the horizontal lifts
of null directions fromM. It is defined by the following recipe. Take any null vectork at
x ∈M. This represents a certain null directionp(k) outgoing fromx. Correspondingly,
this defines a pointp = p(k) in the fibreπ−1(x). Lift k horizontally top. This defines̃k
which generates a certain direction outgoing fromp ∈ P. Repeating this procedure for all
directions outgoing fromx ∈M we attach to any point ofπ−1(x) a unique direction. If
we do this for all points ofM, we define a field of directions onP which, according to its
construction and the properties ofg̃, is null. Since we considered outgoing null directions
the integral curves of this field are oriented. They form the desired null congruence. This
congruence is called the null spray onP [13].

LetX be any non-vanishing vector field tangent to the null spray onP. Let3′ be a real 1-form
onP defined by3′ = −g̃(X). SinceX is defined up to a multiplication by a strictly positive
real function onP then3′ is also specified up to a multiplication by a real strictly positive
function, say 1/A > 0, onP

3′ → 3 = 1

A
3′, A > 0.

With the horizontal space inP one associates another 1-form. This is a complex 1-formE′ on
P such that for anyp ∈ P we haveE′(Hp) = E′(V −p ) = 0 andE′ ∧ Ē′ 6= 0. This is defined
up to a multiplication by a non-vanishing complex function, say 1/w, onP

E′ → E = 1

w
E′.

It is now easy to see that the metricg̃ onP can be expressed as

g̃ = 2

(
1

|w|2E
′Ē′ +3′T ′ + F ′F̄ ′

)
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for some choice of the 1-formsT ′ (real) andF ′ (complex) onP. The above expression
can be considered a definition of the formsF ′ andT ′. These are given up to the following
transformations:

F ′ → F = eiφ(F ′ + ȳ3′),
T ′ → T = A(T ′ + ȳF̄ ′ + yF ′ + yȳ3′),

whereφ (real) andy (complex) are some functions onP.
It follows that the forms(F ′, T ′,3′, E′) may be expressed in terms of the ordered null

cotetrad (7) and the corresponding connection by

3′ = L + zz̄K + zM̄ + z̄M,

F ′ = M + zK,
E′ = dz + 032 + z(021 + 043) + z2014,

T ′ = K,
(25)

wherez is given by (24) and we omit the pull-back symbolπ∗ in expressions such asπ∗(032),
etc.

In this way we see that the bundleP of null directions of any spacetimeM is equipped with
the class of six 1-forms [(F ′, F̄ ′, T ′,3′, E′, Ē′)] defined above. Following Elie Cartan this
class of forms can be used to study all the invariant properties of the underlying Lorentzian
geometry. Thus, we consider a class of 1-forms [(F ′, F̄ ′, T ′,3′, E′, Ē′)] on P with the
following properties.

(a) 3′, T ′ are real- andF ′, E′ are complex-valued 1-forms onP.
(b) F ′ ∧ F̄ ′ ∧ T ′ ∧3′ ∧ E′ ∧ Ē′ 6= 0 at each pointp of P.
(c) Two sets of forms(F, F̄ , T ,3,E, Ē) and(F ′, F̄ ′, T ′,3′, E′, Ē′) are in the same class

iff

3 = 1

A
3′, (26)

F = eiϕ(F ′ + ȳ3′) (27)

T = A(T ′ + ȳF̄ ′ + yF ′ + yȳ3′) (28)

E = 1

w
E′. (29)

HereA > 0,ϕ (real)y, w 6= 0 (complex) are arbitrary functions onP.
(d) A particular set of forms that belong to the considered class is given explicitly by (25).

Given the representation (25) of the forms we calculate their differentials. These read as
follows:

d3′ = Ē′ ∧ F ′ +E′ ∧ F̄ ′ + [γ − ω̄z]3′ ∧ F ′ + [γ̄ − ωz̄]3′ ∧ F̄ ′ + [ω + ω̄]3′ ∧ T ′, (30)

dF ′ = E′ ∧ T ′ + [−γz̄ + 2γ̄z + ω̄zz̄]F
′ ∧3′ − γ̄z̄F̄ ′ ∧3′ + [ω̄z̄ + γ̄ ]3′ ∧ T ′

+[γ̄ + ωz̄]F̄
′ ∧ F ′ + [ω − ω̄]F ′ ∧ T ′, (31)

dT ′ = −γzz̄F ′ ∧3′ − γ̄zz̄F̄ ′ ∧3′ − [γz̄ + γ̄z]3
′ ∧ T ′ + [ω̄z − ωz − 2γ ]T ′ ∧ F ′

+[γ̄z − γz̄ + ω̄zz̄ − ωzz̄]F ′ ∧ F̄ ′ + [ωz̄ − ω̄z̄ − 2γ̄ ]T ′ ∧ F̄ ′, (32)

dE′ = 2γE′ ∧ F ′ + 2γz̄3
′ ∧ E′ − 2ωz̄E

′ ∧ F̄ ′ + 2ωE′ ∧ T ′
+8T ′ ∧ F ′ +9T ′ ∧ F̄ ′ − 1

28z̄z̄3
′ ∧ F̄ ′ + [ 1

129zz + 1
12R

]
F ′ ∧3′

− 1
49z[T

′ ∧3′ + F ′ ∧ F̄ ′] − 1
28z̄[T

′ ∧3′ − F ′ ∧ F̄ ′], (33)
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where we have used the following abbreviations:

2γ = 0211 + 0431 + 2z0141− z̄(0214 + 0434)− 2zz̄0144, (34)

2ω = 0213 + 0433 + z(20143− 0211− 0431)− z̄(0212 + 0432)

+zz̄(0214 + 0434− 20142)− 2z20141 + 2z2z̄0144, (35)

8 = 1
2S33− z̄S23− zS13 + zz̄(S12 + S34) + 1

2 z̄
2S22 + 1

2z
2S11

−z̄2zS24− z2z̄S14 + 1
2z

2z̄2S44, (36)

9 = 94 − 493z + 692z
2 − 491z

3 +90z
4, (37)

and the subscriptz (or z̄) denotes the derivative with respect toz (or z̄).
It follows that the differential ofE′ carries all the information about the Ricci tensor and

the Weyl coefficients9µ. In particular, the equation

dE′ ∧3′ ∧ F̄ ′ ∧ E′ ≡ 0, (38)

which is the same as

8 ≡ 0, (39)

is equivalent to the Einstein equations for the 4-metric. Similarly,

dE′ ∧3′ ∧ F ′ ∧ E′ ≡ 0, (40)

which is the same as

9 ≡ 0, (41)

is equivalent to the conformal flatness of the metric. The equation

9 = 0 (42)

is also important. It has at most four solutions at each fibre inP over a given pointx ∈M.
These four points, via (24), correspond to four principal null directions atx.

One easily discovers that both of the equations (38) and (40) are invariant under the
transformations (26)–(29) of the forms. On the other hand, in the differentials of the six
considered 1-forms there are terms which may be transformed to zero by an appropriate choice
of the gauge (26)–(29). Our aim now will be to use this gauge to obtain the simplest possible
form of the differentials (30)–(33).

We start our analysis with the forms(F, F̄ , T ,3,E, Ē) of (26)–(29), in which(F ′, F̄ ′,
T ′,3′, E′, Ē′) are given by (25).

From the geometrical point of view the forms(F, F̄ , T ,3,E, Ē) live on a manifold
C′ that has higher dimension thanP. Actually, if p denotes a generic point ofP, thenC′
may be parametrized by(p,A, ϕ, y, ȳ, w, w̄). Thus C′ is 12-dimensional and the forms
(F, F̄ , T ,3,E, Ē) are well defined on it.

Calculating the differential of3 onC′ we find that

d3 = −d logA ∧3 +A−1{E′ ∧ F̄ ′ + Ē′ ∧ F ′ + [γ − ω̄z]3′ ∧ F ′
+[γ̄ − ωz̄]3′ ∧ F̄ ′ + [ω + ω̄]3′ ∧ T ′}.

This equation suggests the introduction of an auxiliary real-valued 1-form

� + �̄ = −d logA + s1F
′ + s̄1F̄ ′ + s3T ′ + s43′ + s5E′ + s̄5Ē′. (43)

The functional coefficientss3, s4 (real) ands1, s5 (complex) are for the moment arbitrary. They
may be used to eliminate some of the terms in the differential of3. Indeed, using� + �̄ we
can rewrite the differential of3 in the form

d3 = (� + �̄) ∧3 +
weiϕ

A
E ∧ F̄ +

w̄e−iϕ

A
Ē ∧ F +3 ∧ {[γ − ω̄z + s1]F ′

+[γ̄ − ωz̄ + s̄1]F̄ ′ + [ω + ω̄ + s3]T ′ + [y + s5]E′ + [ȳ + s̄5]Ē′}.
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This suggests the following choice ofs1, s2 ands5:

s1 = −γ + ω̄z, s3 = −ω − ω̄, s5 = −y. (44)

With this choice the differential of3 assumes the form

d3 = (� + �̄) ∧3 +
weiϕ

A
E ∧ F̄ +

w̄e−iϕ

A
Ē ∧ F.

Now, we can make the first gauge-fixing condition

w = Ae−iϕ. (45)

This brings the differential of3′ into the simplest possible form

d3 = (� + �̄) ∧3 +E ∧ F̄ + Ē ∧ F. (46)

Note that the choice (45) uniquely subordinatesA and eiϕ to w. Explicitly, A = |w|,
eiϕ = |w|/w. Thus, after this choice, we have

3 = 1

|w|3
′ (47)

F = |w|
w
(F ′ + ȳ3′) (48)

T = |w|(T ′ + ȳF̄ ′ + yF ′ + yȳ3′) (49)

E = 1

w
E′. (50)

It is now clear that the set of all the forms(F, F̄ , T ,3,E, Ē) is well defined on the 10-
dimensional manifoldC parametrized by(p,w, w̄, y, ȳ). The price paid for the passage from
C′ to C is the introduction of a form

� + �̄ = −d log|w| + s43′ − (ω + ω̄)T ′ + (ω̄z − γ )F ′ + (ωz̄ − γ̄ )F̄ ′ − yE′ − ȳĒ′, (51)

which is still not fully determined, since the real functions4 is still arbitrary.
We now pass to the analysis of dF , with F being given by (48).
One easily calculates that

dF = d log
|w|
w
∧ F + w̄ dȳ ∧3′ + |w|

w
(dF ′ + ȳ d3′). (52)

This suggests the introduction of two other auxiliary forms,� − �̄ and0, on C, which are
given by

�− �̄ = d log
|w|
w

+ b1F
′ − b̄1F̄

′ + b3T
′ + b43

′ + b5E
′ − b̄5Ē

′, (53)

0 = w[dy + c1F
′ + c2F̄

′ + c3T
′ + c43

′ + c5E
′ + c6Ē

′]. (54)

Hereb3, b4 (purely imaginary) andb1, b5, ci (i = 1, 2, . . . ,6) (complex) are functions onC
which should be determined.



266 P Nurowski et al

Lengthy, but straightforward calculations lead to the following lemma.

Lemma 1. If equation (46) ford3 is satisfied then the conditions

dF = (�− �̄) ∧ F + 0̄ ∧3 +E ∧ T (55)

dT = T ∧ (� + �̄) + 0̄ ∧ F̄ + 0 ∧ F (56)

uniquely determines4, bµ, ci (µ = 1, 3, 4, 5; i = 1, 2, . . . ,6) and, thus, the forms� and0.
Explicitly, if3,F, T ,E are given by (47)–(50), respectively, then

� = −1

2

dw

w
+ γz̄3

′ − γF ′ + ωz̄F̄ ′ − ωT ′ − yE′ (57)

0 = w[dy + (γzz̄ + 2yγz̄)3
′ + (γz̄ + ωzz̄ + 2yωz̄)F̄

′

−(γz + 2yγ )F ′ − (γ + ωz + 2yω)T ′ − y2E′]. (58)

Thus, onC the 1-forms(F, F̄ , T ,3,E, Ē,�, �̄, 0, 0̄) given by (47)–(50), (25), (57), (58) are
well defined. They satisfy the differential equations (46), (55), (56). From now on we analyse
these forms.

Straightforward calculations lead to the following expression for the differential of dE:

dE = 2� ∧ E +
1

|w|28T ∧ F +
w̄

w

[
1
28z̄z̄ +8z̄ȳ +8ȳ2

]
F̄ ∧3

+
1

w

[
9y −8ȳ + 1

49z − 1
28z̄

]
F̄ ∧ F − 1

w

[
9y +8ȳ + 1

49z + 1
28z̄

]
T ∧3

+
1

w2
9T ∧ F̄ +

[
1
129zz + 1

12R + 1
29zy +9y2

]
F ∧3. (59)

The following three cases are of particular interest.

(A) The metricg of the 4-manifoldM satisfies Einstein equationsRij = λgij and is
conformally non-flat. This case is characterized by8 ≡ 0 and9 6≡ 0.

(B) The metricg is conformally flat but not Einstein. This case corresponds to9 ≡ 0,8 6≡ 0.
(C) The metricg is of constant curvature. This means that9 ≡ 8 ≡ 0.

Only in the first two cases is there a unique way of fixing the gauge for(F, F̄ , T ,3, E, Ē).
Thus in these two cases it is possible to reduce the system of 1-forms fromC back toP. Such
a reduction corresponds to an appropriate choice ofy andw. As usual this choice will be
such that it implies the vanishing of certain well defined terms in (59). Such an approach is
impossible in case (C), since in this case there is an immediate reduction of (59) to

dE = 2� ∧ E + 1
12R F ∧3. (60)

From now on we consider the case (A) where the metric is not conformally flat and satisfies
Einstein’s equations. Imposing the restrictions (A) on (59) we immediately see that

dE = 2� ∧ E − 1

w

[
9y + 1

49z
]
[T ∧3 + F ∧ F̄ ] − 1

w2
9T ∧ F̄

+
[

1
129zz + 1

12R + 1
29zy +9y2

]
F ∧3.

Assuming that9 6= 0 and making the choice

y = −1

4

9z

9
(61)

we bring dE to the form

dE = 2� ∧ E − 1

w2
9F̄ ∧ T +

[
1

12
9zz − 1

16

92
z

9
+

1

12
R

]
F ∧3.
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Now the last gauge-fixing condition can be made by demanding that

ω2 = −9. (62)

This determinesw up to a sign

w = ±i(9)1/2. (63)

Now, the expressions (61) and (63) can be substituted into the 1-forms(F, F̄ , T ,3,E, Ē,�,
�̄, 0, 0̄) given by (47)–(50), (25), (57) and (58). After such a substitution the dependence of
y, ȳ, w, w̄ disappears from the forms. Thus they project toP where they are defined uniquely
up to signs. This shows that in the case of the Einstein 4-metric we are able to fix the freedom
in the choice of our initial 1-forms of (26)–(29), everywhere onP except at points where9
vanishes. As we know such vanishing occurs on sections ofP corresponding to the principal
null directions onM. It is possible to overcome this difficulty by changing the topology of
each fibre ofP. This possibility was studied by one of us in [9]. Summing up we have the
following theorem.

Theorem 2. LetM be a four-dimensional Lorentzian manifold and letP be its corresponding
bundle of null directions. Suppose that the metricg onM satisfies the Einstein equations
Rij = λgij and is not conformally flat. Then onP, apart the points that correspond to
principal null directions, there exist preferred forms(F, F̄ , T ,3,E, Ē), which are in the
class (26)–(29), forms(�, �̄, 0, 0̄) and a functionα such that

d3 = (� + �̄) ∧3 +E ∧ F̄ + Ē ∧ F
dF = (�− �̄) ∧ F + 0̄ ∧3 +E ∧ T
dT = T ∧ (� + �̄) + 0̄ ∧ F̄ + 0 ∧ F
dE = 2� ∧ E + F̄ ∧ T + α3 ∧ F.

(64)

The forms are given by

3 = 1

|9|1/23
′,

F = εi
(
9̄

9

)1/4[
F ′ − 1

4(log9̄)z̄3
′], ε = ±1,

T = |9|1/2[T ′ − 1
4(log9)zF

′ − 1
4(log9̄)z̄F̄

′ + 1
16|(log9)z|23′

]
,

E = εi

|9|1/2
(
9̄

9

)1/4

E′,

� = − 1
4d log9 + γz̄3

′ − γF ′ + ωz̄F̄ ′ − ωT ′ + 1
4(log9)zE

′,

0 = −εi|9|1/2
(
9

9̄

)1/4[− 1
4d(log9)z +

(
γzz̄ − 1

2(log9)zγz̄
)
3′

+
(
γz̄ + ωzz̄ − 1

2(log9)zωz̄
)
F̄ ′ − (γz − 1

2(log9)zγ
)
F ′

−(γ + ωz − 1
2(log9)zω

)
T ′ − 1

16(log9) 2
z E
′],

where(3′, F ′, T ′, E′) are given by (25),γ, ω,9 are those of (34)–(37) andα is given by

α = 1

16

92
z

9
− 1

12
9zz − 1

12
R.

The forms(F, F̄ , T ,3,E, Ē,�, �̄, 0, 0̄) that appear in the above theorem will be called
the Cartan-invariant 1-forms for a Lorentzian conformally non-flat Einstein manifold. Together
with the functionα, which we call the Cartan-invariant function, they may be used to determine
whether two given metrics are locally isometrically equivalent.
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6. Remarks on the equivalence problem

Cartan’s approach to the question of determining whether or not two given metrics are
isometrically equivalent can be given a useful formulation in the context of the previous section.
Here we outline the way in which theorem 2 can be used to do this.

Suppose that we are given two Lorentzian metricsg and ĝ on two 4-manifoldsM and
M̂. The metrics are assumed to be Einstein and conformally non-flat. Suppose now that there
exists a local isometry betweeng and ĝ, that is a local diffeomorphismφ: M → M̂ such

thatφ∗ĝ = g. Taking an ordered null cotetrad(M̂, ¯̂M, K̂, L̂) onM̂ and applying to itφ∗ we
obtain the 1-forms

M = φ∗(M̂), M̄ = φ∗( ¯̂M), K = φ∗(K̂), L = φ∗(L̂). (65)

Due to the isometric property ofφ we find that(M, M̄,K,L) constitutes a null cotetrad forg

onM. Now we use the cotetrads(M, M̄,K,L) onM and(M̂, ¯̂M, K̂, L̂) onM̂ to calculate
the Cartan invariants on the corresponding bundles of null directionsP andP̂. Let z andẑ be

fibre coordinates onP andP̂ related to the cotetrads(M, M̄,K,L) and(M̂, ¯̂M, K̂, L̂) by the
formulae analogous to (24). Then theorem 2 yields two sets of the Cartan-invariant 1-forms:

(F, F̄ , T ,3,E, Ē,�, �̄, 0, 0̄) onP and(F̂ , ˆ̄F, T̂ , 3̂, Ê, ˆ̄E, �̂, ˆ̄�, 0̂, ˆ̄0) on P̂. In addition,
a pair of Cartan invariantsα andα̂ may be easily calculated. It follows from the definition of
the Cartan invariants and (65) that the mapp̂: P → P̂ defined byp̂

(
xi, z, z̄

) = (φ(xi), z, z̄)
has the property that

p̂∗(3̂) = 3, p̂∗(T̂ ) = T , p̂∗(F̂ ) = ±F, p̂∗(Ê) = ±E, (66)

p̂∗(�̂) = �, p̂∗(0̂) = ±0, (67)

p̂∗(α̂) = α. (68)

This proves the following proposition.

Proposition 3. Any (local) diffeomorphismφ:M→ M̂ which is an isometry betweeng and
ĝ generates a (local) diffeomorphism̂p: P → P̂ which satisfies (66)–(68).

To prove the converse we need the following lemma.

Lemma 2. A diffeomorphismp̂: P → P̂ satisfying (66)–(68) induces a diffeomorphism
φ:M→ M̂ such that the following diagram:

P p̂−→ P̂
↓ π ↓ π̂

M φ−→ M̂
(69)

commutes.

Proof. P is foliated by the fibres6x of the fibrationπ : P → M. This foliation, which we
denote byV, is such that each of the forms(F, F̄ , T ,3) vanishes when restricted to its leaves
6x†. An analogous foliation̂V exists onP̂. Our aim is to prove that two points from the same
leaf of V cannot be transformed bŷp to different leaves of̂V. To do this, observe that the
diffeomorphism property of̂p implies that the leaves of the foliationV are transformed bŷp
to non-intersecting two-dimensional submanifolds ofP̂. Moreover, equations (66) guarantee

† This is consistent, since the forms(F, F̄ , T ,3) constitute a closed differential ideal due to the equations (64).
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that each of the forms(F̂ , ¯̂F, T̂ , 3̂) identically vanishes when restricted to any of these 2-
manifolds. Thus, the set of all̂p(6x), x ∈M, defines a foliation̂p(V) of P̂ which possesses
all the properties of̂V. Due to the uniqueness of such a foliation, which follows from the
Frobenius theorem,̂p(V) ≡ V̂. This, in particular, means that points from a given leaf ofV
are transformed bŷp to the same leaf of̂V. Thus the mapp̂: P → P̂ projects to the map
φ:M→ M̂. This map, by definition, has the property (69). This proves the lemma.�

Now, conversely to proposition 3, we have

Proposition 4. If there exists a diffeomorphism̂p: P → P̂, which satisfies equations (66)–
(68), then the metricsg and ĝ are isometrically equivalent.

To prove this, considerφ of lemma 2 and observe that diagram (69) implies that

p̂∗π̂∗ĝ = π∗φ∗ĝ. (70)

On the other hand, sincêπ∗ĝ = 2(F̂ ¯̂F − T̂ 3̂) andπ∗g = 2(F F̄ − T3), applying (66) gives
p̂∗π̂∗ĝ = π∗g. Comparison of this with (70) yieldsφ∗ĝ = g. This proves proposition 4.

It follows that we have the following algorithm for checking the local isometric equivalence
of 4-metrics.

(a) Calculate the Petrov types of the metricsg andĝ. If the Petrov types are different then
the metrics are not equivalent.

(b) If the Petrov types are the same calculate the Cartan-invariant 1-forms(F, F̄ , T ,

3,E, Ē,�, �̄, 0, 0̄) on P and (F̂ , ˆ̄F, T̂ , 3̂, Ê, ˆ̄E, �̂, ˆ̄�, 0̂, ˆ̄0) on P̂. Also calculate
the Cartan-invariant functionsα andα̂.

(c) Search for a diffeomorphism̂p: P → P̂ which satisfies (66)–(68). The metrics are
(locally) equivalent if and only if such âp exists.

To perform step (c) one needs to solve differential equations such as, for example,p̂∗(T̂ ) = T
for p̂. This may be not easy. To avoid this difficulty the following alternative procedure

can be used. Recall that the forms(F, F̄ , T ,3,E, Ē) (respectively,(F̂ , ˆ̄F, T̂ , 3̂, Ê, ˆ̄E)) are
linearly independent at each point ofP (respectively,P̂). We can therefore use the basis

(F, F̄ , T ,3,E, Ē) (respectively,(F̂ , ˆ̄F, T̂ , 3̂, Ê, ˆ̄E)) to decompose the forms(�, �̄, 0, 0̄)

(respectively,(�̂, ˆ̄�, 0̂, ˆ̄0)) onto them. These decompositions

� = ω1F + ω2F̄ + ω3T + ω43 + ω5E + ω6Ē

0 = γ1F + γ2F̄ + γ3T + γ43 + γ5E + γ6Ē

define coefficientsωi, γi , and the analogous coefficientsω̂i , γ̂i for �̂, 0̂. The functionsωi, γi ,
i = 1, 2, . . . ,6 will be called the higher-order Cartan-invariant functions for the Lorentzian
conformally non-flat Einstein metricg.

It is easy to see that some of the higher order Cartan-invariant functions vanish identically.
Indeed, from the definitions of� and0 given in theorem 2 one easily finds that

ω5 ≡ ω6 ≡ γ6 ≡ 0.

It is also straightforward to see that

γ5 + 3α + 1
4R ≡ 0.

By using the Bianchi identities for9 one also obtains the equations

4ω4 + γ2 ≡ 4ω1 + γ3 ≡ 0.
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Hence we can always write� and0 in the form

� = ω1F + ω2F̄ + ω3T + ω43,

0 = γ1F − 4ω4F̄ − 4ω1T + γ43−
(
3α + 1

4R
)
E,

(cf equation (14)).
Thus the relevant Cartan-invariant functions are:α, ωi , i = 1, 2, 3, 4, γ1, γ3 and their

complex conjugates.R is a constant invariant. In terms of these invariants the conditions (67)
and (68) forp̂ may be rewritten in the form

p̂∗(α̂) = α,
p̂∗(ω̂1) = ±ω1, p̂∗(ω̂2) = ±ω2, p̂∗(ω̂3) = ω3, p̂∗(ω̂4) = ω4,

p̂∗(γ̂1) = γ1, p̂∗(γ̂4) = ±γ4

R = R̂.

(71)

It follows that (as is well known) metrics with different scalar curvaturesR andR̂ are always
non-isometric. IfR = R̂ then equations (66) and (71) are equivalent to the system (66)–(68).
However, the system (66)–(68) includes only two non-differential equations (68) and(68) for
p̂. On the other hand, the system (66) and (71) includes 14 non-differential equations. These
are precisely (71) and their complex conjugates.

Now, suppose that six independent real functions, sayf̂1, f̂2, f̂3, f̂4, f̂5, f̂6 (df̂1 ∧ df̂2 ∧
df̂3 ∧ df̂4 ∧ df̂5 ∧ df̂6 6= 0), of the real and imaginary parts of the Cartan invariants
α̂, ω̂1, ω̂2, ω̂3, ω̂4, γ̂1, γ̂4 can be chosen near a pointp̂0 ∈ P̂†. Taking the corresponding
functionsf1, f2, f3, f4, f5, f6 on P and using equations (71) we find that the mapp̂ must
satisfy the six independent non-differential equations

p̂∗f̂i = εfi, i = 1, 2, . . . ,6. (72)

Hereε may be either 1 or−1 depending on which of the Cartan invariants we have used. It
follows from the implicit function theorem that the six equations (72) uniquely determine the
desired mapp̂i = p̂i

(
pj
)
. Thus, in this case, to solve the equivalence problem for the two

metrics we have to check whetherp̂ thus determined satisfies all the remaining equations (71)
and the differential equations (66). If it does then the two metrics are isometrically equivalent,
otherwise they are not. This solves the equivalence problem for the Lorentzian conformally
non-flat Einstein metrics in the generic case. The discussion does not apply to the case when
the number of independent functions among the Cartan invariants is less than six. We call such
cases degenerate. These are more subtle and will be presented elsewhere‡.

7. Elliptic fibrations

Suppose now that we have six 1-forms(F, F̄ , T ,3,E, Ē) defined on an open setP0 of R6

which satisfy the differential system(I,P0) of theorem 1. According to this theoremP0 is

† In such cases it is convenient to use them as a coordinate system onP̂.
‡ Here we only note that if the number of independent Cartan-invariant functions is less than six, two cases may occur.
Either all the Cartan-invariant functions are constant or there exists at least one which is not constant. The former case
will be totally analysed in section 8. In the latter case one takes the differential of the non-constant Cartan invariant

and decomposes it onto a basis of the Cartan-invariant forms(F̂ , ˆ̄F, T̂ , 3̂, Ê, ˆ̄E). This produces new Cartan-invariant
functions of the next order. In generic cases one can use these to obtain new algebraic equations forp̂. If in this way
we are able to produce six independent algebraic equations forp̂ then we return to the already discussed case. If not,
the procedure can be applied once more. There will be, of course, cases in which it is not possible to construct six
independent algebraic equations forp̂. This may occur if, for example, all the Cartan invariants depend only on one
variable. In such cases there are symmetries and they may be analysed by using group-theoretical methods.



Extensions of bundles of null directions 271

foliated by two-dimensional leaves in such a way that it can be considered a fibration over the
Einstein conformally non-flat spacetimeM. Theorem 1 says nothing about the topology of
the fibres ofP0 since it deals with local solutions to differential equations (10). Thus, given a
solution(F, F̄ , T ,3,E, Ē) of the systemI onP0 we know only thatP0 is foliated by leaves
that in the generic case have the topology of an open disc inR2. The question arises as to
whether we can extend the solution(F, F̄ , T ,3,E, Ē) to a larger fibrationP̃ overM in such
a way that its fibres contain fibres ofP0, and have a more interesting topology than that of open
discs. It follows that given a solution there may be several such extensions. In this section
we describe the most natural one, making more explicit the considerations of [9]. The other
possibility is discussed in section 8.

A natural way of extending the fibres ofP0 of theorem 1 is as follows. GivenP0 with
the systemI on it, one passes to the spacetimeM that is associated with it via theorem 1.
Then, using theorem 2, one considers the bundle of null directionsP forM and defines the
Cartan-invariant 1-forms(F, F̄ , T ,3,E, Ē) on it. These forms satisfy again the system of
equations (10). Thus, we have an extension mapφ from P0 with its fibres (say, of open disc
topology) toP with fibres being spheres of null directions. The only problem is that some of
the forms(F, F̄ , T ,3,E, Ē) onP are defined only up to a sign (see theorem 2). To avoid
this double-valuedness ofF andE we again need to extend the fibres ofP. This is done as
follows.

Recall that the Cartan-invariant 1-forms of theorem 2 are defined onP by the gauge-fixing
conditions (61) and (62). The first of these conditions makes no sense if

9 = 94 − 493z + 692z
2 − 491z

3 +90z
4

is zero. Herez ∈ C ∪ {∞} is a coordinate on a given fibre ofP. Thus in each fibre ofP there
are at most four points (which via (24) correspond to principal null directions at the spacetime
point) at which the above expression vanishes. Consider now the functionw = √−9 defined
by condition (62). We analyse howw changes when we pass along a small loop around a zero
of 9 in a fibre.

We write9 = c(z − z1)(z − z2)(z − z3)(z − z4), where the rootszi , i = 1, 2, 3, 4 are,
in general, different. As is well known, if some of the rootszi coincide then the 4-metric is
algebraically special. The resulting Petrov types of the 4-metric are:

z1, z2, z3, z4 all different←→ Petrov type I

z1 = z2, z3, z4 different←→ Petrov type II

z1 = z2 6= z3 = z4←→ Petrov type D

z1 = z2 = z3, z4 different←→ Petrov type III

z1 = z2 = z3 = z4←→ Petrov type N.

Suppose now that we consider a spacetime point for which the metric is of Petrov type I.
Consider a loop

z(t) = zi + ρeit , (73)

t ∈ [0, 2π ] around one of the rootszi (say z1) of 9. The loop is supposed to be small
(ρ � 1), so that the value of9 = 9(t) at the points of this loop may be approximated by
9 = c(z1− z2)(z1− z3)(z1− z4)ρeit . We can write this fact as9 = −σ0ei(t+t0), whereσ0 > 0
andt0 are real constants. Substituting such a9 inw = √−9 we find thatw = √σ0 eit0/2eit/2.
Suppose now that we changet from 0 to 2π . This corresponds to the passage from a point
z(0) to itself along the loop. Sincet/2 changes its value only byπ , thenw changes sign. To
return to the initial value ofw we need to changet from 0 to 4π . This shows that the point
z1 is a double-branch point for the functionw. If the metric of the spacetime point under
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consideration is algebraically general the same is true forz2, z3, z4. To make the function
w single-valued we need to extend thez-space (a sphere) to a torus. This is obtained by
considering two copies of thez-spaces (two spheres—the domains on whichw has a plus and
minus sign, respectively) each having two cuts between its pointsz1–z2 andz3–z4, say, with
an appropriate identification of the cut edges.

The situation is a bit different if some of the rootszi of 9 are multiple. It is easy to see
that after a passage along a loop around a double or quadruple root the functionw does not
change sign, and that after a passage around a triple rootw changes sign and returns to its
original value only after the second turn. Considering two copies of spheres with appropriate
cuts and identifications for all the possible situations we arrive to the following conclusion.

Let x be a spacetime point andTx its space on which the functionw is single-valued. If
the metric atx is:

• algebraically general, thenTx has topology of a 2-torus;
• of Petrov type II, thenTx has topology of a 2-torus with one vanishing cycle;
• of Petrov type D, thenTx has topology of two 2-spheres touching each other in two different

points;
• of Petrov type III, thenTx has topology of a 2-sphere with one singular point;
• of Petrov type N, thenTx has topology of two 2-spheres touching each other in one point.

Recall that the origin of the double-valuedness of the Cartan-invariant forms was the double-
valuedness of functionw which we used in their definition via (62). Thus it is clear that on
a fibrationP̃ whose fibre over a spacetime pointx is Tx the 1-forms of theorem 2 are single
valued, and can have only simple singularities in at most four points at the fibre. This shows
that the fibrationP0 on which the systemI of theorem 1 is satisfied can be naturally extended to
the fibrationP̃ whose fibres over a spacetime pointx are tori or their degenerate counterparts,
depending on the algebraic type of the metric atx. Since fibres with the topology of tori are
defined by an algebraic equationw2 = 94 − 493z + 692z

2 − 491z
3 + 90z

4, which can be
identified with an elliptic curve (possibly degenerate) inC2, we callP an elliptic fibration [9].
It is clear that it constitutes a double-branched cover of the bundle of null directions over the
spacetime.

8. Generalized bundles of null directions and their symmetries

It is now clear that given the system(P0, I) of theorem 1 one has not enough information to
determine the topology of the fibres ofP0. We know that locallyP0 has all the properties of
the bundle of null directions over the associated Einstein spacetime and that it can be further
extended to the elliptic fibration of the preceding section. However, other extensions are
possible. In this section we consider examples of systems(P0, I) of theorem 1 that can have
fibres with topologies different from those discussed so far. They correspond to the known
Einstein spaces with six-dimensional groups of symmetries.

Because of local equivalence ofP0 andP we introduce the following definition.

Definition 1. A real six-dimensional manifoldP equipped with forms(F, F̄ , T ,3,E, Ē)
which satisfy the differential system (10) will be called a generalized Einstein bundle of null
directions.

In this section the letterP always denotes such bundles.
Via theorems 1 and 2 the forms(F, F̄ , T ,3,E, Ē) onP, as well as the derived quantities

α,� and0, may be identified with the Cartan invariants for the associated Einstein spacetime.
Thus we will also call them the Cartan invariants forP.
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Definition 2. We say thatP is (locally) symmetric iff there exists a (local) diffeomorphism
φ: P → P which preserves the 1-forms(F, F̄ , T ,3,E, Ē), i.e. iff

φ∗(F ) = ±F, φ∗(T ) = T , φ∗(3) = 3, φ∗(E) = ±E. (74)

A real vector fieldX̃ onP is a symmetry iff

LX̃F = 0, LX̃T = 0, LX̃3 = 0, LX̃E = 0. (75)

The following lemma shows that all of the Cartan invariants are preserved by a symmetry.

Lemma 3. If X̃ is a symmetry ofP then

X̃(α) = 0, LX̃� = 0, LX̃0 = 0, (76)

where�, 0 andα are the Cartan invariants of equations (10).

To prove this we observe that (75) impliesLX̃ d3 = 0,LX̃ dF = 0,LX̃ dT = 0,LX̃ dE = 0.
Now, combining these equations with (10) we find that

[LX̃(� + �̄)] ∧3 = 0,

[LX̃(�− �̄)] ∧ F + [LX̃0̄] ∧3 = 0,

−LX̃(� + �̄) ∧ T + LX̃0̄ ∧ F̄ + LX̃0 ∧ F = 0,

2[LX̃�] ∧ E + X̃(α)3 ∧ F = 0.

Due to the independence of(F, F̄ , T ,3,E, Ē) the above equations imply (76). This finishes
the proof of lemma 3.

Definition 3. A symmetry is called vertical if it has the form̃X = se + s̄ē, wheres is any
complex-valued function onP, and (f, f̄ , t, l, e, ē) constitute a basis of vector fields onP
dual to(F, F̄ , T ,3,E, Ē).

Lemma 4. The only vertical symmetry ofP is X̃ = 0.

Proof. Let X̃ be a symmetry ofP. Its general form is

X̃ = x1f + x̄1f̄ + x3t + x4l + x5e + x̄5ē, (77)

wherex3, x4 are real functions. Using the symmetry conditions (75) and the differentials (10),
(13) and (14) we find that

dx1 = (x̄7− x7)F − x5T − x83 + x3E + x1(�− �̄) + x40̄, (78)

dx3 = −x̄8F − x8F̄ + (x7 + x̄7)T − x3(� + �̄) + x̄10̄ + x10, (79)

dx4 = −x̄5F − x5F̄ − (x7 + x̄7)3 + x̄1E + x1Ē + x4(� + �̄), (80)

dx5 = −αx4F + x3F̄ − x̄1T + αx13− 2x7E + 2x5�, (81)

wherex7 andx8 are functions whose form is not relevant here. Now, if the symmetry is vertical
thenx1 = x3 = x4 = 0. It follows from equation (78) that in such casex5 = 0. This implies
X̃ = 0 which completes the proof. �

Lemma 5. Any symmetrỹX ofP generates a Killing symmetryX of the metricg on the quotient
4-manifoldM of leaves of the foliation{Sx}. Moreover, the Lie algebra of symmetries{X̃i} is
isomorphic to the algebra{Xi} of the corresponding Killing symmetries.
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Proof. We writeX̃ in its general form (77). Using the conditions (78)–(81) we finde(xi). The
differentials (10) imply the form of commutators [e, l], [e, f ], etc. Combining this withe(xi)
we find that [e, X̃] = Ue+U ′ē, whereU,U ′ are certain complex functions onP. This implies
that vectors ofX̃ calculated at points of the same leaf of the foliationV differ by a vertical part
V = U ′′e + Ū ′′ē only. ThusX̃ uniquely projects toX onM. X is not zero since any non-zero
symmetryX̃ has always a non-zero(f, f̄ , t, l) part. Consider now two non-zero symmetries
X̃ = X + x5e + x̄5ē andỸ = Y + y5e + ȳ5ē. HereX, Y denote(f, f̄ , t, l) parts ofX̃ andỸ ,
respectively. The commutator of̃X andỸ has the form

[X̃, Ỹ ] = [X, Y ] + x5[e, Y ] + x̄5[ē, Y ] − y5[e,X] + ȳ5[ē, X]

+(x5ȳ5− x̄5y5)[e, ē] moduloe andē.

Since for any symmetrỹZ we have [e, Z] = 0 moduloe and ē, then [X̃, Ỹ ] = [X, Y ] +
(x5ȳ5− x̄5y5)[e, ē] moduloe andē. It follows from equations (10), (13) that [e, ē] = 0. Thus
[X̃, Ỹ ] = [X, Y ] modulo terms which vanish under the projectionπ : P →M. Thus the Lie
algebra of{X̃i} is the same as that of{Xi}.

Finally, we note that ifX̃ = X + x5e + x̄5ē then the symmetry equations (75) and the
differentials (10), (14) imply that

LX3 = −x5F̄ − x̄5F,

LXF = −x5T + x̄5(3ᾱ + λ)3,

LXT = x̄5(3ᾱ + λ)F̄ + x5(3α + λ)F.

These equations imply that onP we haveLXG = 0. This equation projects to the equation
LXg = 0 onM, since bothX andG have unique projections toX andg onM, respectively.
This finishes the proof of the lemma. �

Definition 4. A generalized Einstein bundle of null direction is called (locally) homogeneous
if it possesses six symmetries, which generate a (local) transitive group of transformations of
P.

It is clear from lemma 3 that on homogeneous generalized Einstein bundles of null directions
all the Cartan-invariant functions are constant. In such a case we may interpret equations (10)
as the Cartan structure equations for the left-invariant forms on a certain Lie group. This
shows that (locally) homogeneous generalized Einstein bundles of null directions are (local)
Lie groups whose structure constants may be read from equations (10) and (14). To determine
all the possible groups that are homogeneous generalized Einstein bundles of null directions
we need to check which constantsα, γ1, γ4, ω1, ω2, ω3, ω4 are compatible with equations (10),
(13) and (14). We find that ifα, γ1, γ3, ω1, ω2, ω3, ω4 are constants then equations (13) imply
thata = α1 = α4 = a1 = a4 = h1 = h4 = γ1 = γ4 = 0 andh = −(3α + λ)2. Moreover, the
combination of equations (13) and (10) leads to two possibilities only.

(i) α = λ = h = a = 0, � = ω3T , 0 = 0.

(ii) α = − 1
2λ, h = − 1

4λ
2, a = 0, � = 0, 0 = 1

2λE.
(82)

Thus we have two families of homogeneous Einstein bundles. To characterize the
corresponding groups we note that the family (i) leads to the vacuum (λ = 0) Einstein 4-
manifoldM which has a metric of Petrov typeN (cf equation (16)). The family (ii) leads to a
4-metric of Petrov type D (cf equation (15)) satisfying the Einstein equations with cosmological
constantλ. The following two examples deal explicitly with cases (i) and (ii). They correspond
to all possible conformally non-flat solutions to the vacuum Einstein equations (with or without
cosmological constant) that have a six-dimensional group of symmetries.
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Example 6 (Example 2 continued). Since example 2 corresponds to all possible vacuum
Einstein spaces with six symmetries, it therefore also exhausts all the possibilities for
homogeneous generalized vacuum Einstein bundles of null directionsP. The simplest among
them is the bundleP of example 1. It may be identified with a six-dimensional group, sayG0.
Interpreting the forms(F, F̄ , T ,3,E, Ē) as the left-invariant forms onG0 we easily read the
structure constants forG0 from the equations

dF − E ∧ T = 0

dT = 0

d3− Ē ∧ F − E ∧ F̄ = 0

dE − F̄ ∧ T = 0

obtained from (10) after insertion of conditions (i) withω3 = 0.
Analysis of the structure constants shows thatG0, thereforeP, is a six-dimensional

solvable group. This group is isomorphic to the group of symmetries of the corresponding
plane wave.

Example 7. In case (ii)P also may be identified with a six-dimensional group, sayGλ, and
its forms(F, F̄ , T ,3,E, Ē) can be identified with the left invariant forms onGλ. To be more
explicit we insert conditions (ii) to (10) obtaining

dF − E ∧ T − λ
2Ē ∧3 = 0

dT − 1
2λ(E ∧ F + Ē ∧ F̄ ) = 0

d3− Ē ∧ F − E ∧ F̄ = 0
dE − F̄ ∧ T + 1

2λ3 ∧ F = 0.

(83)

Sinceλ = 0 corresponds to the equations discussed in the previous example we assume that
λ 6= 0. It is convenient to introduce real 1-forms(A1, A2, A3, A

′
1, A

′
2, A

′
3) defined by

F = − 1√
2|λ| (A1 + iA′1)

T = 1
2(A2 − A′2)

3 = 1

λ
(A2 +A′2)

E = 1√
2|λ| (A3 + iA′3).

(84)

Equations (83) written in terms of these forms then become

dA1 = A2 ∧ A3 dA′1 = −A′2 ∧ A′3
dA3 = −A1 ∧ A2 dA′3 = −A′1 ∧ A′2
dA2 = −εA3 ∧ A1 dA′2 = −εA′3 ∧ A′1,

(85)

whereε = ±1 = (sign ofλ). These equations show that the groupGλ is a direct product of
two groupsH andH ′. The Lie algebra ofH is isomorphic tosl(2,R) and the Lie algebra
of H ′ depends on the sign ofλ and is isomorphic tosu(2) if λ > 0 and tosl(2,R) if λ < 0.
Thus in this caseP ≡ Gλ ≡ H ×H ′. In terms of the variablesAi , A′i the degenerate metric
G of theorem 1 has the formG = 1

λ

[
A2

1 − εA2
2 + A′ 21 + εA′ 22

]
. According to this theorem

the space of leaves of the fibration is equipped with the Einstein metricg with non-vanishing
cosmological constantλ.
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(iia) Assume thatλ > 0.

In this case the Lie algebra ofH is isomorphic tosl(2,R)and the Lie algebra ofH ′ is isomorphic
to su(2). In the following we concentrate on the case whenH = SO(1, 2) andH ′ = SO(3),
but one can also consider cases in whichH and/orH ′ are double covers of these groups.

If H = SO(1, 2) andH ′ = SO(3) then a coordinate system(x1, x2, x3) on H and a
coordinate system(x ′1, x

′
2, x
′
3) onH ′ may be chosen such that

A1 = coshx2 coshx3 dx1− sinhx3 dx2

A2 = − coshx2 sinhx3 dx1 + coshx3 dx2

A3 = sinhx2 dx1 + dx3

A′1 = cosx ′2 cosx ′3 dx ′1 + sinx ′3 dx ′2
A′2 = − cosx ′2 sinx ′3 dx ′1 + cosx ′3 dx ′2
A′3 = sinx ′2 dx ′1 + dx ′3.

(86)

Since the above forms satisfy equations (85) forε = 1, then for each value ofλ > 0, via (84),
they define a solution to the system (10) withα,�,0 given by (82) (ii).

To obtain a better insight into this solution and its corresponding spacetime consider a
generic pointP ∈ P = SO(1, 2)× SO(3) which in coordinates(x1, x2, x3, x

′
1, x
′
2, x
′
3) can be

represented by a 6× 6 matrix of the form

P =
(
p 0
0 p′

)
,

wherep = p1p2p3, p′ = p′1p′2p′3 and the one-parameter groupspi, p′i are given by

p1 =
 1 0 0

0 cosx1 − sinx1

0 sinx1 cosx1

, p2 =
 coshx2 0 − sinhx2

0 1 0
− sinhx2 0 coshx2

,
p3 =

 coshx3 sinhx3 0
sinhx3 coshx3 0

0 0 1

, p′1 =
 1 0 0

0 cosx ′1 − sinx ′1
0 sinx ′1 cosx ′1

,
p′2 =

 cosx ′2 0 sinx ′2
0 1 0

− sinx ′2 0 cosx ′2

, p′3 =
 cosx ′3 − sinx ′3 0

sinx ′3 cosx ′3 0
0 0 1

.
Then the formsAi,A′i can be identified with the components of the Maurer–Cartan form
A = P−1 dP onP by

A = P−1 dP =



0 A3 −A2

A3 0 −A1

−A2 A1 0
0 −A′3 A′2
A′3 0 −A′1
−A′2 A′1 0


.

Consider now the degenerate metricG = 1
λ

[
A2

1 − A2
2 + A′ 21 + A′ 22

]
on P and a subgroup
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SO(1, 1)× SO(2) of SO(1, 2)× SO(3) given by those elements which have the form

g∗ =



cosht3 sinht3 0
sinht3 cosht3 0

0 0 1
cost ′3 − sint ′3 0
sint ′3 cost ′3 0

0 0 1


,

where t3 ∈ R, t ′3 ∈ [0, 2π ]. It follows that the left action (P → g∗P ) of this group on
P = SO(1, 2)×SO(3) leaves the formA invariant. The right action (P → Pg∗) transformsA
according toA→ g−1

∗ Ag∗. These relations imply that the metricG is invariant under the right
action so that it projects to the homogeneous spaceM = SO(1, 2)×SO(3)/SO(1, 1)×SO(2)
equipped with the Einstein (λ > 0) metric

g = 1

λ

[
cosh2 x2 dx2

1 − dx2
2 + cos2 x ′2 dx ′ 21 + dx ′ 22

]
.

This shows thatP = SO(1, 2)×SO(3) is fibred over the Einstein spacetimeM = H+− ×S2,
which is a Cartesian product of a neutral-signature hyperbolic space and a 2-sphere, both with
their natural metrics†. It is clear that the fibres ofP, being homeomorphic toSO(1, 1)×SO(2)
have the topology of a cylinder.

(iib) Assume thatλ < 0.

Now the Lie algebras of bothH andH ′ are isomorphic tosl(2,R). We again concentrate on
the case whenH = SO(1, 2) andH ′ = SO(1, 2). Introducing(x1, x2, x3, x

′
1, x
′
2, x
′
3) as local

coordinates onP = H ×H ′ we can represent any pointP of P as

P =
(
p 0
0 p′

)
,

wherep = p1p2p3, p′ = p′1p′2p′3 and the one-parameter groupspi, p′i are given by

p1 =
 1 0 0

0 coshx1 sinhx1

0 sinhx1 coshx1

, p2 =
 coshx2 0 − sinhx2

0 1 0
− sinhx2 0 coshx2

,
p3 =

 cosx3 sinx3 0
− sinx3 cosx3 0

0 0 1

, p′1 =
 1 0 0

0 coshx ′1 sinhx ′1
0 sinhx ′1 coshx ′1

,
p′2 =

 cosx ′2 0 sinx ′2
0 1 0

− sinx ′2 0 cosx ′2

, p′3 =
 coshx ′3 − sinhx ′3 0
− sinhx ′3 coshx ′3 0

0 0 1

.
Then the Maurer–Cartan formA = P−1 dP defines formsAi andA′i by

A = P−1 dP =



0 A3 −A2

−A3 0 A1

−A2 A1 0
0 −A′3 A′2
−A′3 0 A′1
−A′2 A′1 0


.

† H+− = {(z1, z2, z3) ∈ R1,2|−z2
1 + z2

2 + z2
3 = 1}, a quadric inR3 equipped with the flat Lorentzian metric of

signature(−,+,+). A parametrization ofH+− used above is:z1 = sinhx2, z2 = coshx2 sinx1, z3 = coshx2 cosx1.
The sphere is parametrized byz1 = cosx′1 cosx′2, z2 = sinx′1 cosx′2 andz′3 = sinx′2.
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The subgroupSO(2)×SO(1, 1) of SO(1, 2)×SO(1, 2) consisting of elementsg∗ of the form

g∗ =



cost3 sint3 0
− sint3 cost3 0

0 0 1
cosht ′3 − sinht ′3 0
− sinht ′3 cost ′3 0

0 0 1


,

wheret3 ∈ [0, 2π ], t ′3 ∈ R, acts onP from the right. The formA transforms byA→ g−1
∗ Ag∗

under this action which implies that the metricG = 1
|λ|
[
A2

1 +A2
2 +A′ 21 −A′ 22

]
is invariant. The

quotient spaceM = SO(1, 2) × SO(1, 2)/SO(2) × SO(1, 1) is naturally equipped with the
projected Einstein (λ < 0) metric

g = 1

|λ|
[

cosh2 x2 dx2
1 + dx2

2 + cos2 x ′2 dx ′ 21 − dx ′ 22

]
.

It follows that nowM = H++ × H+−, that is it is a Cartesian product of Euclidean- and
neutral-signature hyperbolic 2-spaces†. The metricg is a sum of the natural metric onH++

minus the natural metric onH+−. The fibres ofP again have the topology of a cylinder‡.
Example 7 shows that ifλ 6= 0 then thehomogeneousgeneralized bundles of null

directionsP are principal fibre bundles over the spacetime with the structure groupG∗ =
SO(2)× SO(1, 1). The system of 1-forms of theorem 1 on these bundles equips them with a
1-formAwhich is valued in the Lie algebra of groupGλ such that dimGλ = dimP. Moreover,
A has the following properties:

• if X is a vector field tangent to the flow of the one parameter subgroup ofG∗ generated
by ξ thenA(X) = ξ ;
• A(X) 6= 0 on each vector tangent toP;
• under the right action ofG∗ the formA transforms asg−1

∗ Ag∗.

ThusA can be understood as a Cartan connection onP (cf [5], pp 127–30). Note that in
example 7 the formA is always a Maurer–Cartan form onGλ which implies that its curvature
is zero. This suggests that a generic (nonhomogeneous) generalized Einstein bundle of null
directions with non-zero cosmological constant can find a useful formulation in terms of
curvature conditions on Cartan connections on principal fibre bundles with groupG∗ over the
spacetime. Such Cartan connections onP can be further understood as the usual connections
on fibre bundlesP ×G∗ G (cf [5], pp 127–8). This possibility will be studied elsewhere.

9. Concluding remarks

The study of null objects in general relativity has led to many important advances in the
understanding of Einstein’s equations. In this paper this general line of enquiry has been
developed by employing the bundle of null directions, over a four-dimensional Lorentzian
spacetime, as a tool in the investigation of Einstein spaces. It has been shown that a Lorentzian

† H++ = {(z1, z2, z3) ∈ R1,2|−z2
1 + z2

2 + z2
3 = −1}, a quadric inR3 equipped with flat Lorentzian metric of signature

(−,+,+). The parametrization ofH++ used here is:z1 = coshx2, z2 = sinhx2 sinx1, z3 = sinhx2 cosx1. H+− is
parametrized byz1 = cosx′2 sinhx′1, z2 = cosx′2 coshx′1, z3 = sinx′2.
‡ Note that the metricsλ−1(−gH+− + gS), and|λ|−1(gH++ + gH+−), wheregH++, gH+− andgS denote the natural
metrics onH++, H+− andS2, respectively, do not satisfy the vacuum Einstein equations with cosmological constant. It
is interesting to note that the first of these is a solution to the Einstein–Maxwell equations with vanishing cosmological
constant known as the Bertotti–Robinson solutions. The second metric has an energy–momentum with negative energy
and thus cannot be interpreted as the Einstein–Maxwell solution.
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4-metric can be defined by a differential system on a 6-manifold over a 4-manifold. In fact,
a G-structure on the 6-manifold (the total space of the bundle of null directions) encodes
the requirement that the 4-manifold be Einstein. This structure, as has been demonstrated,
can be used to study spacetimes. An extension of this structure leads to the construction of
a generalized bundle of null directions over a conformally non-flat Einstein spacetime. An
effective algorithm for the equivalence problem for Lorentzian 4-metrics has been constructed
by making use of this generalized bundle. Finally, it has been observed that the Petrov-type
Weyl tensor of a conformally non-flat Einstein metric can be encoded in the fibration of a
6-manifold over a 4-manifold. Different fibrations provide interesting insights into Einstein
spacetimes.
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