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Abstract. The geometry oP, the bundle of null directions over an Einstein spacetime, is studied.
The full set of invariants of the naturél-structure or is constructed using the Cartan method of
equivalence. This leads to an extensiorffofvhich is an elliptic fibration over the spacetime.
Examples are given which show that such an extension, although natural, is not unique. A
reinterpretation of the Petrov classification in terms of the fibres of an extenspisgfresented.
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1. Introduction

In 1922 Elie Cartan made the following observation [1].

From a geometric viewpoint, it is worthwhile to note an interesting property. At
each pointA [of a conformally non-flat space-time] there exist four privileged null
directions [..]. They can beharacterized as follows: Any one of these directions,
say AA’, is invariant under transport around an infinitesimal parallelogram one of
whose sides igd A’ and the other of whose sides is along an arbitrary null direction at
A. Inthe case of ¢ corresponding to a single attractive mass @f Schwarzschild)

the four privileged directions reduce to two (degenerate) directions which correspond

to null rays pointing to or from the centre of attractfon

This remark implicitly anticipates elements of the so-called Petrov classification, the elegant
contemporary formulation of which owes much to the work of Roger Penrose. In this
formulation the anti-selfdual part of the Weyl tensor at a spacetime point corresponds to a
totally symmetric spino€ 43¢ p and a null direction at a point is defined uniquely in terms of

a spinors*(z) = (1). Then the Cartan (principal) null directions correspond to the solutions
of the following equation:

CapcpEEPECEP =0, 1)
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for z € CU{oo} defining the spinog“. This equation, being fourth order inalways has four
roots,z; say, but some of them may be repeated. Multiple roots correspond to coincidences
between the corresponding Cartan null directions. The Petrov classification (or the Cartan—
Petrov—Penrose classification [1, 10, 11] as it perhaps should be properly called) of metrics at
a given spacetime point is based on these results. One says that the metric is algebraically
general at a point if its Weyl tensor defines four distinct Cartan directions there. Otherwise the
metric is algebraically special. The following five possibilities may occur:

e 71, 72, 73, 24 all different «— four distinct Cartan directions— Petrov type .

e 71 = 72, 23, 24 different «— three distinct Cartan directions— Petrov type Il.

e 71 = 7o # 73 = 74 <—> two pairs of distinct Cartan directions— Petrov type D.

e 71 = 7o = z3, 24 different«— two distinct Cartan directions— Petrov type IlI.

e 73 = 72 = 73 = 74 <—> one Cartan directior—> Petrov type N.
This classification can be reinterpreted as follows. Consider a curve

w® = Capcpé*EPECEP @

in C? with coordinates(w, z) or, better, a compact Riemann surfafeassociated with a
double-valued functiow(z) = \/CABCDgAéBéch onC U {oo} = 2. Itis well known that
the topology of7 depends on the roots of (1) and corresponds to a two-dimensionalltbrus
if all z; are distinct. If some coincidences between the roots occur then we have the following
possibilities. 7 has the topology of a torus with one vanishing cycle in Petrov type Il, it has
the topology of two spheres touching each other in two different points in Petrov type D, it has
the topology of a sphere with a distinguished point in Petrov type I, and it has the topology
of two spheres touching each other in a single point in Petrov type N.

It turns out that equation (2), which seems to be artificially added, appears naturally in the
Einstein theory [8, 9]. A fibratiorP can be defined over the spacetime, each fibre having the
topology of the associated surfa€ewith the Einstein equations taking an interesting form on
the total space [8, 9]. In this paper we extend the results of [8, 9] by showing how the fibration
P can be defined by using natural objects on the Penrose bundle of null dire@tmres the
spacetime.

We recall that given a four-dimensional Lorentzian manifold, ¢) and its bundle of null
directionsP one naturally defines a class of six 1-formi8[F, T, A, E, E)] on it having the
following properties [6, 7] (see also section 5 of the present paper):

(@) A, T are real- and”, E are complex-valued 1-forms dn.

(b) FAFAT ANANE A E # 0 ateach poinp of P. .

(c) Two sets of formsgF, F, T, A, E, E) and(F', F', T', A’, E’, E') are in the same class
iff

1
A==N, 3
A 3
F =€Y(F +yA)), 4)
T =A(T'+5F +yF +yyA'), (5)
1
E="F, (6)
w

whereA > 0, ¢ (real)y, w # 0 (complex) are arbitrary functions én This defines a certain
G-structure onP. This structure can be studied using the Cartan method of equivalence.
In this paper we solve the Cartan equivalence problem for@h&ructure. We show that
this naturally leads to an elliptic fibratioh associated with the Einstein spacetime i.e. to the
association of an elliptic curve (2) with each point of the spacetime. The extensnoof
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P was obtained previously in [8, 9] by the continuation of solutions of a certain differential
systemZ, defined initially only on an open set &°. Such an extension is natural but, as is
discussed below, not unique.

The paper is organized as follows. Section 2 contains notation and definitions. Section 3
defines the differential systei Section 4 gives examples of solutions of the differential
systemZ corresponding to all vacuums of type N. Section 5 uses the Cartan method of
equivalence to obtain the differential system of section 4 from the natural objects defined
on the bundle of null directions over the spacetime. The results of section 5 are applied in
section 6 to give an effective algorithm for checking whether two metrics are isometrically
equivalent. In sectim 7 a way ofassociating an elliptic curve with any point of a conformally
non-flat Einstein spacetime is presented. The elliptic fibration associated in this way with any
conformally non-flat Einstein spacetime constitutes a double branch cover of the bundle of
null directions. This natural extension Bfis not unique and in section 8 some examples of
Einstein spacetimes, with different extensiorRyfare exhibited.

2. Basic definitions

We briefly recall the definitions of the geometrical objects we need in the followingM_et

be a four-dimensional oriented and time-oriented manifold equipped with a Lorentzian metric
g of signature(+, +, +, —). It is convenient to introduce a null franie:, m, k, I) on M with

a dual coframe’ = (6%, 62,63, 6%) = (M, M, K, L) so thatt

g =g0'0) =2(MM — KL). (7)
Giveng andd’ the connection 1-forms;; = g,-kl“"j are uniquely defined by
d9i=—FijA9j, F,‘j+rji=0. (8)

The connection coefficienis;, are determined by the relatidh; = F,»jke"i. Using them we
define the curvature 2-fornf8’;, the Riemann tensat’,, the Ricci tensor;; and the Ricci
scalarr by

RY = 3RE, 0™ A6 =dI* +T5 AT, Rij = RY,. R=g"Ry.
We also introduce the traceless Ricci tensor by
Sij = Rij — 38 R.
Note that the vanishing d;; is equivalent to the Einstein equatioR§ = 1g;; for the metric
g. We define the Weyl tensar’;,, by
Cijii = Riju + %Rgi[kgl]j + Rjkgni + Rijguj
and its spinorial coefficient¥, by
Ros=UsM AK +Wa(LAK — M AM)+ (V2 + SR)LAM
+%533M ANK + %S32(L ANK+MA M) + %SzzL A M,
Ris=(—V2— SR)MAK — VU (LAK —MAM)— WL AM

1 1 1 1 Y (9)
_ESllM/\ K — §S4l(L/\K+MAM) — éS44L/\M,

T(Raz—R12) = WsM AK + (Vo — R)(LAK =M AM)+ WL AM
+%531M/\K+3—"(S]_2+S34)(L/\K+M/\M)+%S42L/\M.

t Expressions such @9/ mean the symmetrized tensor product, €'g/ = 20’ ® 6/ +6/ ® 6'). Also, we will

denote by round (respectively square) brackets the symmetrization (respectively antisymmetrization) of indices, e.g.
agik) = %(aik +agi), ajik] = 3 @ik — axi), ete.

T We lower and raise indices by means of the metric and its inverse.
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3. The differential system

Here we quote the major results from [8] which will be used in this paper. They describe the
properties of a system of six 1-forms B which determine a conformally non-flat Lorentzian
4-metric satisfying Einstein equations.

Theorem 1. Let Po be an open subset &t®. Suppose that oy we have six 1-forms

(F, F, T, A, E, E) which satisfy the following conditions:

(@) T, A are real- andF, E are complex-valued 1-forms.

(b) FAFATAAAE AE #0at each pointp of Py.

(c) There exist complex-valued 1-for@sandI" onPy, and a certain complex functianon

Po such that

dF = (Q—QDAF+EAT+T AA
dT =T AF+TAF—(Q+QAT
dA=EAF+EAF+(Q+Q) AA
dE=2QAE+FAT+aAAF.

(10)

Then

(&) Py is locally foliated by two-dimensional manifolds, which are tangent to the real
distributionV defined by
FO)=TWYV)=AW)=0.
(b) The degenerate metric
G =2(FF —TA) (11)
on Py has the signaturé+, +, +, —, 0, 0) and is preserved when Lie-transported along
any leafS, of the foliation{S, }.
(c) The four-dimensional spackt of all leaves of the foliatiolS,} is naturally equipped

with a Lorentzian conformally non-flat metrgowhich is Einstein§;; = 0) and is defined
by projectingG from Py to M.

The Einstein property of the metricwas proven in [8] by using the integrability conditions
for the system (10). We summarize them in the following proposition.

Proposition 1. If (F, F, T, A, E, E) satisfy (10) then there exist complex functiang on
Pq, and a real constant, such that

A =2FAQ+aT AF+a(TAA+FAF)+hAAF
dQ=EAT — (@ +3)(T AA+F AF)+aAAF. (12)
Moreover,

da = a1 F + yuF + 1T + oauh — 20E,

da =a1F +asF +oqT +asA + hE — Bo + )T — 2aQ2, (13)

dh = hiF — asF — a1 T + haA + 4al” — 4hQ2,
where the possible forms &f andT" are

Q= w1F+a)2F+a)3T + wya A\,

I = )1 F — 4wsF — donT + yah — o + 1) E

andyy, ya, 01, a4, a1, as, hi, ha, 01, w2, ©3, w4 are certain complex functions opy.

(14)

The next result gives a geometric interpretation of the functigrisand the constarit.
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Proposition 2. The spinorial coefficients for the Weyl tensor of the metrisy M read
Wo = h, Uy = —a, Wy =—a — 34, W3 =0, Uy =-1
The metric is of Petrov type D iff

a=0, and h=—@Ba+1)? (15)
and of type N iff

h=a=0, and A= —3a. (16)
The metric is algebraically special iff = 27J2, where
I=—h+3@a+1)? and J=a’+5@Ba+2)%+1h3+21).

From now on the differential systefof the forms(F, F, T, A, E, E) satisfying equations
(10) onPy will be denoted by(Z, Po).

4. Type-N vacuum solutions

Inthis section we present some specific examples of the differential systefg. We exhibit

the forms(F, F, T, A, E E) which, via theorem 1, correspond to type-N vacuam= A = 0)
solutions of the Einstein equations. These examples illustrate the way in which well known
solutions appear in this formalism.

Example 1. Let P, be an open set dk® with coordinatesZ, Z, U, V, z, ), whereU, V are
real andZz, z are complex. Consider the following 1-forms ®g:

F=dZ+zdU

T =dUu

A=dV+zdZ+zdZ +[zz — (2% + Z?)]dU "
E=dz+ZdU.

Itis a matter of straightforward calculation to check that these forms constitute a solution
to the system (10) with =1 =Q =T = 0.
One also easily checks that although?’, A, E depend on six real coordinates, the metric
G =2FF —TA)=2dZdZ —2dU[dV — 3(Z*+ Z?)dU]|
depends oriZ, Z, U, V) only. Thus, it projects to
g=2dzdZ —2dU[dV — 1(Z*+ Z?)dU]
on a 4-manifoldM coordinatized by(Z, Z, U, V). The spacetimeV with this metric is a
plane-fronted gravitational wave possessing six symmetries.

Example 2. Let Py be again coordinatized byZ, Z, U, V, z, 7) and letws = constant be a
complex parameter. Consider the forms

F =dZ +[z+ (&3 — w3) Z]dU

T =dU

A=dV +zdZ+7dZ +[2z — 3(Z%+ Z%) + (w3 — @3)(2Z — ZZ) — (w3 + @3)v] AU
E =dz+(Z — 2w3z) dU.

(18)
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They again constitute a solution to the system (10). This solution generalizes the previous
example since the corresponding= » = I' = 0, butQ = w3T. For any value of the
complex parametens the metric
g=2dZdZ — 2dU[dV + (w3 — @3)(ZdZ — Z dZ)

+((w3 — @3)°ZZ — (w3 + @3)V — 3(Z*+ Z%)) dU |
on the quotient manifold parametrized t¥, Z, U, V) is a plane-fronted gravitational wave
with six symmetries. The solution of example 1 correspondsste- 0 and is the simplest in

the class. It follows that example 2 exhausts the list of all vacuum Q) solutions to the
Einstein equations with six symmetries.

Example 3. A generalization of the preceding examples can be obtained by takingth
coordinatesZ, Z, U, V, z, 7) and the forms

F =e¢[dZ +zdU]

T =€ dUu

A=e"[dV+zdZ+zdZ+(zz— H — H)dU]
E =e ' 7?[dz + H, dU].

HereH = H(Z, U) is any holomorphic function of the variable, H; = dH/dZ and the

real functionsr and ¢ are determined by the conditioR“é'® = H,,. One easily sees
that equations (19) constitute a solution to the system (10) wita . = I' = 0 and

Q= —%d(r +i¢). The corresponding type-N vacuum spacetime is a general plane wave
with five (or more) symmetries.

(19)

Example 4. Another example of solutions wiilh = 1 = 0 is given by
F=e"[dZ+(V+z(Z+Z))dU]
T=€(Z+2Z)dU
A=€"[dV+zdZ+7dZ+ (zZ(Z+Z)+(z+7)V — H — H)dU]
E =e"[dz + (:*+ Hz) dU].
HereP, is parametrized byZ, Z, U, V, z,7), H = H(Z, U) is holomorphic inZ and the real
functionsr and¢ are given by &*% = H,,/(Z + Z). The solutions are type-N vacuums

(¢ = 1 = 0) and haveQ = —3d(r +i¢) — zdU andI" = —€*?dU. They belong to the
Kundt class.

(20)

All the solutions presented so far corresponded to type-N vacuums with non-diverging
rays. Generic type-N vacuums are given below.

Example 5. ConsiderP, ¢ R® with coordinatesZ, Z, U, V, z, 7), whereZ, z are complex
andU, V are real. Define

Ap=dU +£dZ +£dZ,
where& = £(U, Z, Z) is a function of variable®/, Z, Z only. Let
F =e?[dE + vV dZ — 3E dZ + zA(]
T =€ Ag
A =e"[dV +zdE +7dE +2ZA0 + (J0E + 2V — 20E) dZ + (JIE + 2V — z0&) dZ]
E = _r_i¢[dz + (z2 + Byéé) dZ],

(21)
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wheredy, = 9/8U, 8 = 9, — £dy and real functions and¢ are determined by2&+i4) —
—afag/(v +0¢&). It follows that if the functiort satisfies the equations

30y dE =0 Im3ddé =0
then the above forms satisfy the system (10) with- A = 0 and2 = —%d(r +ig) —zdZ
andI’ = —€*? dZ. The corresponding spacetimes are of type N.

It follows from the results of Plelsski [12] that examples 3-5 constitute all the solutions
to the vacuum type-N Einstein equations.

5. From the Einstein spacetime to the differential system

We first briefly summarize the Cartan method of analydihgtructures (see [4] for more
details).

Let X be ann-dimensional manifold and§’}], i = 1,...,n, be a class of linearly
independent 1-forms of’ such that two representativé® } and {6’} are in the same class
iff there exists an elemerit’) € G of a certain groug; such that’’ = a}6/. Now, suppose
that we have two set®’’} and{#’} of n linearly independent 1-forms oti. TheG-structure
equivalence question is: does there exists a (local) diffeomorphisfit’ such that

¢*(0") = ajt’ (22)
for some G-valued functlona on X. In other words, does the system of differential
equations (22), fop, have asolut|on7 This question is not easy to answer, since the right-hand
side of (22) is undetermined. Elie Cartan associates with the f@gthand{6’} two systems

of 1-forms<2,, and<2), on a manifoldt of dimensioni > n. Then he shows that equations
like (22) for ¢ have a solution iff a simpler system

Q= Q, (23)

of differential equations for a diffeomorphisghof X has a solution. Examples are known
(e.g. CR structures [2]) where the Cartan procedure produces: 1-forms€2, of which

n are linearly independent. Then decomposing 7 of the dependent 1-form&,, onto the

basis ofi independent ones we obtain functiofigcoefficients of the decomposmons) which

if (23) has a solution have to satlsW(fl) = f;. The advantage of these equationsdds

that they are not differential equations. If the procedure gives enough independent functions
/1 then by the implicit function theorem the whole problem reduces to evaluating whether a
certain Jacobian is non-degenerate.

In this section we show that any conformally non-flat Einstein spacetime defines a
differential system as in theorem 1. We consider the buRdd&null directions of an Einstein
spacetime and study its natui@tstructure using the Cartan method described above. This
enables us to define a differential systenfothat has all the properties ¢, Py). Here the
arguments presented in [9] are approached from a different point of view.

Let (M, g) be a four-dimensional Lorentzian (not necessarily Einstein) manifold.
Consider the sek, of all null directions outgoing from a given point € M. This set is
topologically a spher&—the celestial sphere of an observer situatedratThe points of this
sphere can be parametrized by a complex numlieionging to the Argand plar@ U {co}.

A direction associated with # oo is generated by a null vector

k(z) = k +z7l — zm — Zm. (24)

T We consider outgoing directions from In this sense directions generated by, for exanipded—k are considered
to be different and two vector fields generate the same direction if an only if they differ by a multiple of a positive real
function on M.
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With z = oo we associate a direction generated by the vetto€onversely, given a null
direction outgoing fronx we find that it is either parallel to the vector can be represented
by only one null vectok(z) such thate (k(z), 1) = —1. It follows that such a vectadr(z) has
necessarily the form (24), and that it defines a cerfaanC. If a direction is parallel td we
associate with it = co.

We define a fibre bundi® = |, ., = overM, so that the two-dimensional spheies
are its fibres. The canonical projectian ? — M is defined byz(X,) = x. The following
geometrical objects existing on are relevant in the present paper (see [6] for details).

e The Levi-Civita connection associated with the megrion M distinguishes a horizontal
space in P. In this way for any poinp € P we have a natural splitting of its tangent
space onto a direct sum,P = V, H,, whereH, is a four-dimensional horizontal
space and/, is a two-dimensional vertical space. The vertical spégés tangent to the
fibre X, atthe pointp. ThusV, has a natural complex structure related to the complex
structure on the sphe®. The complexification of,, splits into eigenspacdgj andV,;
of this complex structure. We have a horizontal difvf any vector from z(p) € M to
P. This is such a vector at p thatv € H, andr..(v) = v.

e A Lorentzian metrigg can be defined o® by the requirements that

(a) the scalar product of any two horizontal vectors determineg is\jthe same as the
scalar product with respect toof their push forwards tau,

(b) the scalar product of any two vertical vectors with respegtitoequal to their scalar
product in the natural metric on the two-dimensional sphere (this is consistent since
vertical vectors can be considered tangent vectog8)o

(c) any two vectors such that one is horizontal and the other is vertical are orthogonal
with respect tqg.

e There is a natural congruence of oriented line®amhich is tangent to the horizontal lifts
of null directions fromM. It is defined by the following recipe. Take any null veckaat
x € M. This represents a certain null directipk) outgoing fromx. Correspondingly,
this defines a poing = p(k) in the fibrexr ~1(x). Lift k horizontally top. This defines
which generates a certain direction outgoing frpra P. Repeating this procedure for all
directions outgoing from € M we attach to any point of ~%(x) a unique direction. If
we do this for all points of\1, we define a field of directions ga which, according to its
construction and the propertiesgfis null. Since we considered outgoing null directions
the integral curves of this field are oriented. They form the desired null congruence. This
congruence is called the null spray Br{13].

Let X be any non-vanishing vector field tangent to the null spra ohet A’ be areal 1-form
onP defined byA’ = —g(X). SinceX is defined up to a multiplication by a strictly positive
real function onP then A’ is also specified up to a multiplication by a real strictly positive
function, say 1A > 0, onP
1
A’—>A=ZA’, A>0.

With the horizontal space iR one associates another 1-form. This is a complex 1-fBfhon
P such that for any € P we haveE'(H,) = E'(V,) = 0andE’ A E’ # 0. This is defined
up to a multiplication by a non-vanishing complex function, sy lonP

/ 1 !
E'— E=—F".
w
It is now easy to see that the met@ion P can be expressed as

1 - B}
g = 2<WE’E’ +A'T + FF)
w
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for some choice of the 1-formg’ (real) andF’ (complex) onP. The above expression
can be considered a definition of the foriisand7’. These are given up to the following
transformations:
F' — F=€?(F +5A\)),
T'—> T =AT +yF +yF +yyA\),
where¢ (real) andy (complex) are some functions ¢h
It follows that the formg(F’, T’, A’, E’) may be expressed in terms of the ordered null
cotetrad (7) and the corresponding connection by
AN =L+zZK +zM + M,
F =M+zK,
E' =dz+Tgy+7(Ip + Tg3) +2°T14,
T'=K,

(25)

wherez is given by (24) and we omit the pull-back symbadlin expressions such as (I'sy),
etc.

In this way we see that the bundpeof null directions of any spacetimtet is equipped with
the class of six 1-forms(F’, F’', T’, A’, E', E)] defined above. Following Elie Cartan this
class of forms can be used to study all the invariant properties of the underlying Lorentzian
geometry. Thus, we consider a class of 1-forr®'[F’, T', A, E’, E')] on P with the
following properties.

(@) A', T" are real- and™’, E” are complex-valued 1-forms dn.

(b) FFAF' AT' AN ANE'"AE # 0 ateach poinp of P.

(c) Two sets of formsF, F, T, A, E, E) and(F', F', T', A’, E’, E') are in the same class
iff

1
A=A 26
A (26)
F=¢€%F + yA’) 27)
T =A(T"+yF +yF +yyA') (28)
1
E=ZFE. (29)
w

HereA > 0, ¢ (real)y, w # 0 (complex) are arbitrary functions g
(d) A particular set of forms that belong to the considered class is given explicitly by (25).

Given the representation (25) of the forms we calculate their differentials. These read as
follows:

AN = E'AF +E' AF +[y =@ AN AF +[p —w:]A AF +[o+&]A AT, (30)
dF = E' AT +[—y: +2p. + @:]F AN —7:F' AN +[o: + 7N AT’

+Hy +w:]F' AF' +[w—o]F AT/, (31)
AT’ = —y:F AN —7:F AN —[y:+ 7 ]JA AT + &, — w, — 2y]1T' A F'

Hy. — s+ @z — w2 F' A F +[w: — a: — 271 A F, (32)
dE' =2yE'AF' +2p:A' NE' —2w:E' A F' +20E' AT’

+OT' AF +WT' AF — 30zA AF +[ 50+ ZR|F AN

— ST AN +F AF1= 30T AN — F' AF], (33)



264 P Nurowski et al

where we have used the following abbreviations:

2y =To11+Tag1+ 22141 — Z(T214+ Taga) — 222144, (34)
2w = 213+ 433+ 2(2M143 — 211 — Tazp) — 2(T212+ T'a32)

+22(P214+ Taga — 20'142) — 22T 141 + 22°7 14a, (35)
® = JS33— 2823 — 2813+ 22(S12 + Saa) + 327802+ 327511

—7%2804 — 2?2814 + 32°7°Sua, (36)
W = W, — 403z + 6Wyz” — AW + Wozt, 37)

and the subscript (or z) denotes the derivative with respectztéor z).
It follows that the differential of’ carries all the information about the Ricci tensor and
the Weyl coefficientsl,,. In particular, the equation

dE' AN AF AE =0, (38)
which is the same as

®=0, (39)
is equivalent to the Einstein equations for the 4-metric. Similarly,

dE'AAN AF' ANE =0, (40)
which is the same as

v =0, (41)
is equivalent to the conformal flatness of the metric. The equation

W =0 (42)

is also important. It has at most four solutions at each fibre bver a given poink € M.
These four points, via (24), correspond to four principal null directions at

One easily discovers that both of the equations (38) and (40) are invariant under the
transformations (26)—(29) of the forms. On the other hand, in the differentials of the six
considered 1-forms there are terms which may be transformed to zero by an appropriate choice
of the gauge (26)—(29). Our aim now will be to use this gauge to obtain the simplest possible
form of the differentials (30)—(33). ) . .

We start our analysis with the forni&’, F, T, A, E, E) of (26)—(29), in which(F’, F’,
T', N, E’, E’) are given by (25). . }

From the geometrical point of view the formi¢’, F, T, A, E, E) live on a manifold
C’ that has higher dimension than Actually, if p denotes a generic point @, thenC’
may be parametrized bgp, A, ¢, y,y, w, w). ThusC’ is 12-dimensional and the forms
(F,F,T, A, E, E) are well defined on it.

Calculating the differential of\ onC’ we find that
dA = —dlogAAA+ A HE'AF' +E' ANF +[y —&.]JA A F'

Hy —w:]A A F +[w+d]A AT},
This equation suggests the introduction of an auxiliary real-valued 1-form
Q+Q=—dlogA +s1F' +51F +53T" +54A" + ssE' + 55E’. (43)

The functional coefficients, s4 (real) ands1, ss (complex) are for the moment arbitrary. They
may be used to eliminate some of the terms in the differential.ofndeed, using2 + Q we

can rewrite the differential o in the form
_ gy _ wele _
dA:(Q+Q)/\A+wA EAF+ EAF+AANy — @, +s1]F

+HJ — w: +51]F +[w+ @ +s3)T' + [y +s5]E' + [y +55] E'}.
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This suggests the following choice gf, s, andss:

51 =—y +a,, s53= —w — @, §5 = —Y. (44)
With this choice the differential oA assumes the form

we? - weT

dA = (Q+Q) AA+ " EAF+ EAF.

Now, we can make the first gauge-fixing condition

w=Ae""?. (45)
This brings the differential oA’ into the simplest possible form

dA = (Q+QQAA+EAF+EAF. (46)

Note that the choice (45) uniquely subordinatésand & to w. Explicitly, A = |w|,
€¢ = |w|/w. Thus, after this choice, we have

1

A= —AN 47)
|w]

F = M(F’+§A’) (48)
w

T =|w|(T'+yF +yF +yyA) (49)
1

E=Z-E. (50)
w

It is now clear that the set of all the formi&, F, T, A, E, E) is well defined on the 10-
dimensional manifold parametrized byp, w, w, y, y). The price paid for the passage from
C' to C is the introduction of a form

Q+Q=—dlog|lw| +ssA" — (w+ )T + (&, — y)F + (w: —y)F — yE' —YE',  (51)

which is still not fully determined, since the real functionis still arbitrary.
We now pass to the analysis of'dwith F being given by (48).
One easily calculates that

|w] |w

dF =dlog— A F+wdy A A"+ —(dF' +y3dA"). (52)
w w

This suggests the introduction of two other auxiliary forfts,- € andT", onC, which are
given by

Q-Q=d |OgM + b]_F, — I;lﬁ/ + bgT/ + b4A, + b5E’ — I;SE,, (53)
w
I'=wldy + c1F' + coF' +c3T' +ca' +csE' + c6E']. (54)
Herebs, bs (purely imaginary) ana1, bs, ¢; (i = 1,2, ..., 6) (complex) are functions ofi

which should be determined.
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Lengthy, but straightforward calculations lead to the following lemma.

Lemma 1. If equation (46) fordA is satisfied then the conditions

dF = (Q—-QOQAF+TAA+EAT (55)

AT =T AQ+Q+TAF+TAF (56)
uniquely determines, b, c; (0 = 1,3,4,5;i = 1,2, ..., 6) and, thus, the form& andT".
Explicitly, if A, F, T, E are given by (47)—(50), respectively, then

1d _
Q:—E—w+ygA/—yF’+a)5F’—a)T’—yE’ (57)
w

T = wldy + (yz + 2yy2) A" + (yz + w2z + 2yw:) F’

—(ye + 290 F = (v + @, + 2y0)T" = y?E]. (58)
Thus, orC the 1-forms(F, F, T, A, E, E, 2, Q, I', T') given by (47)—(50), (25), (57), (58) are
well defined. They satisfy the differential equations (46), (55), (56). From now on we analyse

these forms.
Straightforward calculations lead to the following expression for the differentiakof d

1 7 -
dEZZQAE+WCDTAF+%[%(DZE+CDE)_’+CD)_)2]F/\A

1 _ 1
+=[Wy — @y + 0, — LD )FAF — = [Uy+ D5+ 30, +10:]T A A
w w

1 I 1 1 1 2
+ﬁqJTAF+[l—2wzz+l_2R+§xpzy+xyy |F A A. (59)

The following three cases are of particular interest.

(A) The metricg of the 4-manifold M satisfies Einstein equation®;; = ig;; and is
conformally non-flat. This case is characterizeddby= 0 and¥ # 0.

(B) The metricg is conformally flat but not Einstein. This case corresponds ta 0, ® = 0.

(C) The metricg is of constant curvature. This means thatzs ¢ = 0.

Only in the first two cases is there a unique way of fixing the gaugéRofF, T, A, E, E).

Thus in these two cases it is possible to reduce the system of 1-formg foaick toP. Such

a reduction corresponds to an appropriate choice afdw. As usual this choice will be
such that it implies the vanishing of certain well defined terms in (59). Such an approach is
impossible in caseq), since in this case there is an immediate reduction of (59) to

dE =2QAE+5RF AA. (60)

From now on we consider the cas®) where the metric is not conformally flat and satisfies
Einstein’s equations. Imposing the restrictioA3 6n (59) we immediately see that

1 _ 1 _
dE =2QAE — —[Wy+ W |[TAA+FAF]— SWT AF
w w

+HEW,, + LR+ 10,y + Wy?|F A A.
Assuming that 0 and making the choice

1y,
— -z 61
Y= (61)
we bring dE to the form
1 1 1w? 1
dE =2QAE — —WFAT+|=W..— ——+ _R|FAA.
w? 12 16w 12
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Now the last gauge-fixing condition can be made by demanding that

w? = —w. (62)
This determinesv up to a sign
w = +i(W)Y2, (63)

Now, the expressions (61) and (63) can be substituted into the 1-fd#n#s, T, A, E, E, Q,

Q, T, ') given by (47)—(50), (25), (57) and (58). After such a substitution the dependence of
v, ¥, w, w disappears from the forms. Thus they projecPtarhere they are defined uniquely

up to signs. This shows that in the case of the Einstein 4-metric we are able to fix the freedom
in the choice of our initial 1-forms of (26)—(29), everywhere®rexcept at points wher
vanishes. As we know such vanishing occurs on sectiomsadrresponding to the principal

null directions onM. It is possible to overcome this difficulty by changing the topology of
each fibre ofP. This possibility was studied by one of us in [9]. Summing up we have the
following theorem.

Theorem 2. Let M be a four-dimensional Lorentzian manifold and#ebe its corresponding
bundle of null directions. Suppose that the megrion M satisfies the Einstein equations
R;;j = Xg;; and is not conformally flat. Then oR, apart the points that correspond to
principal null directions, there exist preferred forni&, F, T, A, E, E), which are in the
class (26)—(29), form&2, Q, I', I') and a functiorw such that

dA = (Q+QOAA+EAF+EAF
dF = (Q—-QAF+TAA+EAT
AT =T AQ+QD+TAF+TAF
dE =2QAE+F AT +aA A F.
The forms are given by
1 /
:WA,

(64)

T\ 1/4
H / 1 T, /
F = gl(a> [F' — (logW):A"], e =+1,

T = |W[Y?[T" — z(log W), F' — 3(log\¥): F' + 55| (log W), [*A"],

E:g—i v 1/415’
|‘I/|l/2 7] ’

Q=—2dlogV +y;A' — yF' +o:F' — 0T’ + 3(log V), E’,
H 1/2 v A 1 1
['= —el|V¥| / (E) [_Zd(IOQ v), + (VZZ - §(|0g q")zVZ)A,

+(VZ tw;: — %(IOQ \V)ng)ﬁ/ - (Vz - %(Iog \IJ)Z)/)F,
—(y +w. — 3(log V), w) T’ — L (log V) 2E'],
where(A’, F', T’, E') are given by (25)y, w, W are those of (34)—(37) and is given by
1wz 1 1

Z

= V.. — —R
6w 12 < 12
Theforms(F, F, T, A, E, E, @, Q, ', T') that appear in the above theorem will be called
the Cartan-invariant 1-forms for a Lorentzian conformally non-flat Einstein manifold. Together
with the functiorny, which we call the Cartan-invariant function, they may be used to determine
whether two given metrics are locally isometrically equivalent.
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6. Remarks on the equivalence problem

Cartan’s approach to the question of determining whether or not two given metrics are
isometrically equivalent can be given a useful formulation in the context of the previous section.
Here we outline the way in which theorem 2 can be used to do this.

Suppose that we are given two Lorentzian metgiagnd g on two 4-manifoldsmM and
M. The metrics are assumed to be Einstein and conformally non-flat. Suppose now that there
exists a local isometry betweenand g, that is a local diffeomorphism: M — M such
that¢*§ = g. Taking an ordered null cotetrad?, M, K, L) on M and applying to ity* we
obtain the 1-forms

M = ¢*(M), M = ¢*(M), K = ¢*(K), L=¢*(L). (65)
Due to the isometric property gf we find that(M, M, K, L) constitutes a null cotetrad fgr
on M. Now we use the cotetrads?, M, K, L) on M and(M, M, K, L) on M to calculate
the Cartan invariants on the corresponding bundles of null direcfiomsd?. Letz andz be
fibre coordinates o and? related to the cotetrads/, M, K, L) and(M, M, K, L) by the
formulae analogous to (24). Then theorem 2 yields two sets | of the Cartan-invariant 1-forms:

(F,F,T,\,E,E,Q,Q,T,T)onP and(F, F T,AE, E $Q, Q I, F)onP In addition,

a pair of Cartan invariantg anda may be easily calculated. It follows from the definition of
the Cartan invariants and (65) that the mfap> — P defined byp(x', z, z) = (#(x'), z, 2)
has the property that

pr(A) = A, P =T, pH(F) = +F, pH(E) = £E, (66)
Q) =, p(0) = 4T, (67)
p(&) = a. (68)

This proves the following proposition.

Proposition 3. Any (local) diffeomorphisrp: M — M which is an isometry betwegnand
g generates a (local) diffeomorphisfn P — P which satisfies (66)—(68).

To prove the converse we need the following lemma.

Lemma2. A diffeomorphismp: P — 7P satisfying (66)—(68) induces a diffeomorphism
¢: M — M such that the following diagram:

A

pLs P
VE SRR (69)
M -2 M
commutes.

Proof. P is foliated by the fibre&, of the fibrationz: P — M. This foliation, which we
denote by, is such that each of the formE F, T, A) vanishes when restricted to its leaves
=, t. An analogous foliatio exists or®. Our aim is to prove that two points from the same
leaf of V cannot be transformed bj to different leaves ob. To do this, observe that the
diffeomorphism property op implies that the leaves of the foliatianare transformed by

to non-intersecting two-dimensional submanifoldsPofMoreover, equations (66) guarantee

t This is consistent, since the forras, F, T, A) constitute a closed differential ideal due to the equations (64).
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that each of the formsF, £, T, A) identically vanishes when restricted to any of these 2-
manifolds. Thus, the set of gll(X,), x € M, defines a foliatiorp (V) of P which possesses
all the properties ob. Due to the uniqueness of such a foliation, which follows from the
Frobenius theoremp(V) = V. This, in particular, means that points from a given leabof
are transformed by to the same leaf of. Thus the mag: P — P projects to the map
#: M — M. This map, by definition, has the property (69). This proves the lemma.O

Now, conversely to proposition 3, we have

Proposition 4. If there exists a diffeomorphisit P — P, which satisfies equations (66)—
(68), then the metricg and g are isometrically equivalent.

To prove this, considep of lemma 2 and observe that diagram (69) implies that

praTg =n"9"8. (70)
On the other hand, sinde*§ = 2(F F — TA) andr*g = 2(FF — T A), applying (66) gives
p*n*g = m*g. Comparison of this with (70) yields*g = g. This proves proposition 4.

Itfollows that we have the following algorithm for checking the local isometric equivalence
of 4-metrics.

(a) Calculate the Petrov types of the metrgcandg. If the Petrov types are different then
the metrics are not equivalent.

(b) If the Petrov types are the same calculate Athe Cartan-invariant 1-fafms, 7T,
AEEQQTU,T)onPand(E,F,T,A E, E,Q Q,T,T) onP. Also calculate
the Cartan-invariant functions anda.

(c) Search for a diffeomorphismi: P — P which satisfies (66)—(68). The metrics are
(locally) equivalent if and only if such A exists.

To perform step (c) one needs to solve differential equations such as, for exéﬁ’(ﬁlﬁ,: T
for p. This may be not easy. To avoid this difficulty the following alternative procedure

can be used. Recall that the forit#, F, T, A, E, E) (rgspectively(ﬁ, F,T,A,E, E))are
linearly independent at each point Bf (respectively,?). We can therefore use the basis

(F,F,T, A, E, E) (respectively(F, F, T, A, E, E)) to decompose the forms2, , I, I')
(respectively($2, @, I, T')) onto them. These decompositions

QL=w F +a)2f_7 + w3T + waA + wsE +a)65

T =1 F +yoF +y3T + y4A + ysE + y6E

define coefficients);, y;, and the analogous coefficients y; for 2, I'. The functionsy;, Vi
i =12, ...,6 will be called the higher-order Cartan-invariant functions for the Lorentzian
conformally non-flat Einstein metrig.

Itis easy to see that some of the higher order Cartan-invariant functions vanish identically.
Indeed, from the definitions @& andI" given in theorem 2 one easily finds that

ws =ws =y = 0.
It is also straightforward to see that
ys+3u+ 3R =0.
By using the Bianchi identities fob one also obtains the equations

4o +yr, =4w1 +y3 =0.
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Hence we can always writ@ andI" in the form
Q=wF +a)2F + w3T + waA\,
I' =1 F — 4o4F — 4on T + y4A — (3a + 3 R)E,
(cf equation (14)).
Thus the relevant Cartan-invariant functions ase.w;, i = 1,2, 3, 4, y1, y3 and their

complex conjugatesR is a constant invariant. In terms of these invariants the conditions (67)
and (68) forp may be rewritten in the form

@) =a,

P (1) = £, Y (@) = £wo, P (@3) = ws, P (@4) = ws,

DR R (71)
P (Y1) = 1, P (ya) = Ly

R =R.

It follows that (as is well known) metrics with different scalar curvatuResnd R are always
non-isometric. IfR = R then equations (66) and (71) are equivalent to the system (66)—(68).
However, the system (66)—(68) includes only two non-differential equations (685&ntbr
p. On the other hand, the system (66) and (71) includes 14 non-differential equations. These
are precisely (71) and their complex conjugates.

Now, suppose that six independent real functions, &ay>, fa, fa, fs, fo (dfL A dfa A
dfs A dfs A dfs A dfs # 0), of the real and imaginary parts of the Cartan invariants
a, @1, @2, @3, 4, Y1, Y4 CaAN be chosen near a poipy € Pt. Taking the corresponding
functions f1, f2, f3, fa, fs, f6 On P and using equations (71) we find that the mamust
satisfy the six independent non-differential equations

ﬁ*ﬁzsfi» i=12...,6. (72)

Heree may be either 1 or-1 depending on which of the Cartan invariants we have used. It
follows from the implicit function theorem that the six equations (72) uniquely determine the
desired map’ = p’ (pf). Thus, in this case, to solve the equivalence problem for the two
metrics we have to check whethgthus determined satisfies all the remaining equations (71)
and the differential equations (66). If it does then the two metrics are isometrically equivalent,
otherwise they are not. This solves the equivalence problem for the Lorentzian conformally
non-flat Einstein metrics in the generic case. The discussion does not apply to the case when
the number of independent functions among the Cartan invariants is less than six. We call such
cases degenerate. These are more subtle and will be presented elsewheret.

7. Elliptic fibrations

Suppose now that we have six 1-foris, F, T, A, E, E) defined on an open s@ of R®
which satisfy the differential systei, Py) of theorem 1. According to this theoreRy is

t In such cases it is convenient to use them as a coordinate system on

¥ Here we only note that if the number of independent Cartan-invariant functions is less than six, two cases may occur.
Either all the Cartan-invariant functions are constant or there exists at least one which is not constant. The former case
will be totally analysed in section 8. In the latter case one takes the differential of the non-constant Cartan invariant

and decomposes it onto a basis of the Cartan-invariant fafms, T, A, E, E). This produces new Cartan-invariant
functions of the next order. In generic cases one can use these to obtain new algebraic equatidfigftmis way

we are able to produce six independent algebraic equatioristf@n we return to the already discussed case. If not,

the procedure can be applied once more. There will be, of course, cases in which it is not possible to construct six
independent algebraic equations forThis may occur if, for example, all the Cartan invariants depend only on one
variable. In such cases there are symmetries and they may be analysed by using group-theoretical methods.
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foliated by two-dimensional leaves in such a way that it can be considered a fibration over the
Einstein conformally non-flat spacetiniel. Theorem 1 says nothing about the topology of
the fibres ofPy since it deals with local solutions to differential equations (10). Thus, given a
solution(F, F, T, A, E, E) of the systent on P, we know only thatP, is foliated by leaves
that in the generic case have the topology of an open di&2inThe question arises as to
whether we can extend the solutioh, F, T, A, E, E) to a larger fibration? over M in such
away that its fibres contain fibresB§, and have a more interesting topology than that of open
discs. It follows that given a solution there may be several such extensions. In this section
we describe the most natural one, making more explicit the considerations of [9]. The other
possibility is discussed in section 8.

A natural way of extending the fibres & of theorem 1 is as follows. GiveRy with
the systent on it, one passes to the spacetithethat is associated with it via theorem 1.
Then, using theorem 2, one considers the bundle of null direcfiofts M and defines the
Cartan-invariant 1-formg¢F, F, T, A, E, E) on it. These forms satisfy again the system of
equations (10). Thus, we have an extension ghdm P, with its fibres (say, of open disc
topology) toP with fibres being spheres of null directions. The only problem is that some of
the forms(F, F, T, A, E, E) on P are defined only up to a sign (see theorem 2). To avoid
this double-valuedness @f and E we again need to extend the fibresaf This is done as
follows.

Recall that the Cartan-invariant 1-forms of theorem 2 are defingdllmnthe gauge-fixing
conditions (61) and (62). The first of these conditions makes no sense if

U = W, — 4Wgz + 6W,ez2 — AW, 75 + Wzt

is zero. Here € C U {oo} is a coordinate on a given fibre & Thus in each fibre of there
are at most four points (which via (24) correspond to principal null directions at the spacetime
point) at which the above expression vanishes. Consider now the functior/—W defined
by condition (62). We analyse how changes when we pass along a small loop around a zero
of ¥ in a fibre.

We write W = ¢(z — z1)(z — z2)(z — z3)(z — z4), Where the roots;, i = 1, 2, 3, 4 are,
in general, different. As is well known, if some of the roatsoincide then the 4-metric is
algebraically special. The resulting Petrov types of the 4-metric are:

21, 22, 23, 24 all different «— Petrov type |
71 = 22, 23, 24 different «—— Petrov type I
21 = 22 # 723 = z4 <—> Petrov type D

71 = 72 = 23, 24 different <—— Petrov type I
21 = 22 = 73 = 74 <—> Petrov type N

Suppose now that we consider a spacetime point for which the metric is of Petrov type |I.
Consider a loop

2(1) =z + pé€, (73)

t € [0, 27] around one of the roots; (sayzi) of . The loop is supposed to be small
(p < 1), so that the value of = W (r) at the points of this loop may be approximated by
U = ¢(z1 —22)(z1 — 23) (21 — 24) p€". We can write this fact a¢ = —o€ ™, whereop > 0
andr, are real constants. Substituting such & w = +/—W¥ we find thatw = /oo €"/2€"/2,
Suppose now that we changérom 0 to 2r. This corresponds to the passage from a point
z(0) to itself along the loop. Sincg’2 changes its value only by, thenw changes sign. To
return to the initial value ofv we need to changefrom 0 to 4r. This shows that the point
71 is a double-branch point for the functian. If the metric of the spacetime point under
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consideration is algebraically general the same is truefots, z4. To make the function

w single-valued we need to extend thespace (a sphere) to a torus. This is obtained by
considering two copies of thespaces (two spheres—the domains on whidhas a plus and
minus sign, respectively) each having two cuts between its pgints andzz—z4, say, with

an appropriate identification of the cut edges.

The situation is a bit different if some of the roatsof W are multiple. It is easy to see
that after a passage along a loop around a double or quadruple root the funatmes not
change sign, and that after a passage around a triplewr@bianges sign and returns to its
original value only after the second turn. Considering two copies of spheres with appropriate
cuts and identifications for all the possible situations we arrive to the following conclusion.

Let x be a spacetime point arif its space on which the functian is single-valued. If
the metric atv is:

o algebraically general, thef. has topology of a 2-torus;

o of Petrov type Il, ther?, has topology of a 2-torus with one vanishing cycle;

o of Petrovtype D, thefl; has topology of two 2-spheres touching each other in two different
points;

o of Petrov type lll, therZ; has topology of a 2-sphere with one singular point;

o of Petrov type N, thefT, has topology of two 2-spheres touching each other in one point.

Recall that the origin of the double-valuedness of the Cartan-invariant forms was the double-
valuedness of functiom which we used in their definition via (62). Thus it is clear that on

a fibration” whose fibre over a spacetime points 7; the 1-forms of theorem 2 are single
valued, and can have only simple singularities in at most four points at the fibre. This shows
that the fibratior?y on which the systers of theorem 1 is satisfied can be naturally extended to
the fibration® whose fibres over a spacetime poirdre tori or their degenerate counterparts,
depending on the algebraic type of the metria aSince fibres with the topology of tori are
defined by an algebraic equatiarf = W, — 4W3z + 6W,z2 — 4W;73 + Wyz?4, which can be
identified with an elliptic curve (possibly degeneratelf) we callP an elliptic fibration [9].

Itis clear that it constitutes a double-branched cover of the bundle of null directions over the
spacetime.

8. Generalized bundles of null directions and their symmetries

It is now clear that given the syste(®, Z) of theorem 1 one has not enough information to
determine the topology of the fibres Bf. We know that locallyPy has all the properties of
the bundle of null directions over the associated Einstein spacetime and that it can be further
extended to the elliptic fibration of the preceding section. However, other extensions are
possible. In this section we consider examples of syst@insz) of theorem 1 that can have
fibres with topologies different from those discussed so far. They correspond to the known
Einstein spaces with six-dimensional groups of symmetries.

Because of local equivalence B§ and’P we introduce the following definition.

Definition 1. A real six-dimensional manifol® equipped with formsF, F, T, A, E, E)
which satisfy the differential system (10) will be called a generalized Einstein bundle of null
directions.

In this section the letteP always denotes such bundles.

Viatheorems 1 and 2 the forngg’, F, T, A, E, E) onP, as well as the derived quantities
«, Q andl’, may be identified with the Cartan invariants for the associated Einstein spacetime.
Thus we will also call them the Cartan invariants far
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Definition 2. We say thatP is (locally) symmetric iff there exists a (local) diffeomorphism
¢: P — P which preserves the 1-forni&, F, T, A, E, E), i.e. iff

¢*(F) = £F, ¢"(T) =T, " (A) = A, ¢*(E) = £E. (74)
A real vector fieldX on P is a symmetry iff

E;(FZO, EXTZO, ,C)'(AZO, ﬁ)}EZO. (75)
The following lemma shows that all of the Cartan invariants are preserved by a symmetry.

Lemma 3. If X is a symmetry oP then
X(a) =0, L£;Q =0, Lzl =0, (76)
whereQ, I anda are the Cartan invariants of equations (10).

To prove this we observe that (75) impli€g dA =0, L; dF =0,£;dT =0,L3; dE = 0.
Now, combining these equations with (10) we find that

[L:(Q+Q]AA =0,
[L3(Q—QDIAF+[LzT]AA=0,

Lz Q+DAT+LiZTAF+L;T AF =0,
2[L;Q]AE+X(@AAF =0,

Due to the independence @F, F, T, A, E, E) the above equations imply (76). This finishes
the proof of lemma 3.

Definition 3. A symmetry is called vertical if it has the forfh = se + 5¢, wheres is any
complex-valued function oR, and (f, f, 1,1, e, ¢) constitute a basis of vector fields ¢n
dualto(F,F,T, A, E, E).

Lemma 4. The only vertical symmetry @f is X = O.

Proof. Let X be a symmetry oP. Its general form is
5( =x1f+ )E]_f_‘ + x3t + x4l + x5¢ + X5e, (77)

wherexs, x4 are real functions. Using the symmetry conditions (75) and the differentials (10),
(13) and (14) we find that

dr; = (X7 — x7)F — x5T — xgA + x3E + x1(2 — Q) + xaT", (78)
drg = —XgF — xgF + (x7 + X7)T — x3(Q + Q) + %[ + x1T, (79)
dxg = —¥sF — x5F — (x7+X7) A + X1E + x1E + x4(Q + Q), (80)
dis = —axaF +x3F — 51T +axiA — 2x7E + 2x5%2, (81)

wherex; andxg are functions whose formis not relevant here. Now, if the symmetry is vertical
tbenxl = x3 = x4 = 0. It follows from equation (78) that in such casge= 0. This implies
X = 0 which completes the proof. |

Lemma 5. Any symmetr of P generates a Killing symmet# of the metrigz on the quotient
4-manifold M of leaves of the foliatioS, }. Moreover, the Lie algebra of symmetrigs; } is
isomorphic to the algebréX;} of the corresponding Killing symmetries.
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Proof. We write X in its general form (77). Using the conditions (78)—(81) we fifi}). The
differentials (10) imply the form of commutators [], [e, /1], etc. Combining this witte(x;)

we find thatp, X] = Ue+U'e, whereU, U’ are certain complex functions ¢h This implies
that vectors of calculated at points of the same leaf of the foliatiodiffer by a vertical part

V = U"e+U"z only. ThusX uniquely projects t& on M. X is not zero since any non-zero
symmetryX has always a non-zexq, f, r, ) part. Consider now two non-zero symmetries
X = X +xse +Xse andY = Y + yse + yse. HereX, Y denote(f, f, 1, 1) parts ofX andY,
respectively. The commutator &f andY has the form

[X, Y] =[X, Y]+ xs[e, Y]+ Xs[e, Y] — ys[e, X]+ ys[e, X]
+(xsy5 — X5y5)[e, €] moduloe ande.

Since for any symmetryZ we have §, Z] = 0 moduloe andé, then [X, Y] = [X, Y] +
(x5y5 — X5y5)[e, €] moduloe ande. It follows from equations (10), (13) that,[e] = 0. Thus
[X, Y] = [X, Y] modulo terms which vanish under the projection® — M. Thus the Lie
algebra of{ X;} is the same as that ¢X}.

Finally, we note that ifX = X + xse + Xse then the symmetry equations (75) and the
differentials (10), (14) imply that

[,XA = —.X5F —)E5F,
LxF = —xsT +x5(3a + M)A,
LxT = xs5(3a@ + A)F + x5(3c + 1) F.

These equations imply that ddwe haveLy G = 0. This equation projects to the equation
Lxg = 0 onM, since bothX andG have unique projections 6 andg on M, respectively.
This finishes the proof of the lemma. |

Definition 4. A generalized Einstein bundle of null direction is called (locally) homogeneous
if it possesses six symmetries, which generate a (local) transitive group of transformations of
P.

It is clear from lemma 3 that on homogeneous generalized Einstein bundles of null directions
all the Cartan-invariant functions are constant. In such a case we may interpret equations (10)
as the Cartan structure equations for the left-invariant forms on a certain Lie group. This
shows that (locally) homogeneous generalized Einstein bundles of null directions are (local)
Lie groups whose structure constants may be read from equations (10) and (14). To determine
all the possible groups that are homogeneous generalized Einstein bundles of null directions
we need to check which constantsyy, ys, w1, w2, w3, w4 are compatible with equations (10),

(13) and (14). We find that if, 1, 3, w1, w2, w3, w4 are constants then equations (13) imply
thata = o1 = s = a1 = aa = h1 = ha = y1 = y» = 0 andh = — (3 + 1)2. Moreover, the
combination of equations (13) and (10) leads to two possibilities only.

0] a=A=h=a=0, Q = w3T, r=0.

i 1 1,2 1
(||) Ol:—i)\,, h:—z)\, R ClZO, QZO, FZE)\,E

Thus we have two families of homogeneous Einstein bundles. To characterize the
corresponding groups we note that the family (i) leads to the vacuum Q) Einstein 4-
manifold M which has a metric of Petrov typeé (cf equation (16)). The family (ii) leads to a
4-metric of Petrov type D (cf equation (15)) satisfying the Einstein equations with cosmological
constani. The following two examples deal explicitly with cases (i) and (ii). They correspond
to all possible conformally non-flat solutions to the vacuum Einstein equations (with or without
cosmological constant) that have a six-dimensional group of symmetries.

(82)
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Example 6 (Example 2 continued). Since example 2 corresponds to all possible vacuum
Einstein spaces with six symmetries, it therefore also exhausts all the possibilities for
homogeneous generalized vacuum Einstein bundles of null dired@iomie simplest among
them is the bundl® of example 1. It may be identified with a six-dimensional group,Ggay
Interpreting the formsF, F, T, A, E, E) as the left-invariant forms 06, we easily read the
structure constants fa¥, from the equations

dF —EAT =0
dr =0
dA—EAF—EAF=0
dE—-FAT =0
obtained from (10) after insertion of conditions (i) with = 0.
Analysis of the structure constants shows that thereforeP, is a six-dimensional

solvable group. This group is isomorphic to the group of symmetries of the corresponding
plane wave.

Example 7. In case (ii)P also may be identified with a six-dimensional group, 6y and
itsforms(F, F, T, A, E, E) can be identified with the left invariant forms 6. To be more
explicit we insert conditions (ii) to (10) obtaining
dF —EAT—3EAA=0
dT —IAMEAF+EAF)=0
dA—EAF—-EAF=0
dE — FAT+3AAAF =0.

(83)

Sincer = 0 corresponds to the equations discussed in the previous example we assume that
A # 0. Itis convenient to introduce real 1-formaé:, A, As, A}, A}, A3) defined by

1
= ———— (A +iA]
V-
T =1(A2— A))
1 ) (84)
A= Z(Ar+4)
E = (A3 +iAY)
= — 3 .
V2] ’
Equations (83) written in terms of these forms then become
dAl = Ay A A3z dAS_ = _A/Z AN A/3
dA3 =—A1NA> dA/3 = —Aél_ N A/2 (85)

dA; = —cA3 N Ag dA/z = —SAé A Aa_,

wheres = +1 = (sign of ). These equations show that the gragipis a direct product of
two groupsH and H'. The Lie algebra off is isomorphic tosl(2, R) and the Lie algebra
of H' depends on the sign afand is isomorphic teu(?) if A > 0 and tosl(2, R) if » < 0.
Thus in this cas® = G, = H x H'. Interms of the variabled;, A} the degenerate metric
G of theorem 1 has the forrd = 1[AZ — A3 + A}? + eA?]. According to this theorem
the space of leaves of the fibration is equipped with the Einstein metvith non-vanishing
cosmological constarit
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(iia) Assume that. > 0.

Inthis case the Lie algebra &f isisomorphictsl(2, R) andthe Lie algebra df’ isisomorphic
to su(2). In the following we concentrate on the case whignr= SO(1, 2) andH' = SO(3),
but one can also consider cases in whittand/orH’ are double covers of these groups.

If H = S0O(1,2) and H = SO(3) then a coordinate systems, x,, x3) on H and a
coordinate systerxy, x5, x3) on H' may be chosen such that

A1 = coshx, coshxs dx; — sinhxz dx;
A, = — coshx, sinhxz dxq + coshxz dx,
Az = sinhx, dx; + dx3

A} = cosx, cosxy dx; + sinxg dx;

A5 = — cosx, sinxg dx; + cosx; dx;

Aj = sinxj dx] + dxs.

(86)

Since the above forms satisfy equations (85)fer 1, then for each value of > 0, via (84),
they define a solution to the system (10) withe2, I" given by (82) (ii).

To obtain a better insight into this solution and its corresponding spacetime consider a
generic pointP € P = SO(1, 2) x SO(3) which in coordinatesxy, xo, x3, x7, X3, x3) can be
represented by a 8 6 matrix of the form

_(pr O
r=( )

wherep = p1pap3, p' = p}p,p5 and the one-parameter groups p; are given by

1 0 0 coshxy, 0 —sinhxy
pr=| O cosyg —sinx; |, p2 = 0 1 0 ,
0 sinx; cosxp —sinhx, 0  coshxy
coshxz sinhxz O 1 0 0
ps=| sinhxz coshxz 0 |, pi=| 0 cosx; —sinx; |,
0 0 1 0 sinx; cosx;
cosx, 0 sinxg cosx; —sinx; 0
Po = 0 1 0 . pz=| sinx; cosx; O

—sinx;, 0 cosx) 0 0 1

Then the forms4;, A; can be identified with the components of the Maurer—Cartan form
A= P 1dPonP by

0 A3 —A2
A3 0 —Al
_ —A, A1 O
A=PldP =
0 —A; A
Al 0 -4
—A, A} 0

Consider now the degenerate metic= +[A2 — A3 + A2 + A%?] on P and a subgroup
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SO(1, 1) x SO(2) of SO(1, 2) x SO(3) given by those elements which have the form
coshrz  sinhzz O
sinhrz coshrz O
. 0 0 1
8= costy —singg 0 |’
sint; costy O
0 0 1
wherers € R, t; € [0, 2r]. It follows that the left action P — g.P) of this group on
P = SO(1, 2) x SO(3) leaves the formi invariant. The right actionf — Pg,) transformsA
accordingtod — g;1Ag,. These relations imply that the metricis invariant under the right
action so that it projects to the homogeneous space SO(1, 2) x SO(3)/SO(1, 1) x SO(2)
equipped with the Einsteir.(> 0) metric

1
g= X[COSF‘F xp dxf — dxd + cos xj dx;? + dxf?].

This shows thaP = SO(1, 2) x SO(3) is fibred over the Einstein spacetim¢ = H,_ x S,

which is a Cartesian product of a neutral-signature hyperbolic space and a 2-sphere, both with
their natural metricst. Itis clear that the fibres?gbeing homeomorphic t80(1, 1) x SO(2)

have the topology of a cylinder.

(iib) Assume that. < 0.

Now the Lie algebras of boti and H’ are isomorphic tsl(2, R). We again concentrate on
the case whell = SO(1, 2) andH’ = SO(1, 2). Introducing(xi, x2, x3, X1, x5, x3) as local
coordinates o = H x H' we can represent any poiRtof P as

_(r O
P_<0 P’)’

wherep = p1paps, p' = p)p,p5 and the one-parameter groups p; are given by

1 0 0 coshx, 0 —sinhx;
pr=| 0 coshx; sinhxy |, p2 = 0 1 0 ,
0 sinhx; coshx; —sinhx, 0  coshxs
cosxz Sinxz O 1 0 0
ps=| —sinxz cosxz 0 |, p1=1| O coshxj sinhx; |,
0 0 1 0 sinhx; coshx]
cosx, 0 sinxg coshx; —sinhx; 0
Py = 0 1 0 , pg=| —sinhxj coshx; O
—sinx;, 0 cosx) 0 0 1
Then the Maurer—Cartan forsh = P~ dP defines forms; andA; by
0 Az —A
—Az3 0 A
~ —A; Ay O
A=pPtdp = ,
0 —A’3 A
’ /
—A, 0 A}
’ ’
—A, A} O
T Hieo = {(z1.22,23) € RY2|—z2 + 2 + 72 = 1}, a quadric inR® equipped with the flat Lorentzian metric of

signature(—, +, +). A parametrization oH._ used above isz; = sinhxy, zo = coshx, sinxi, z3 = coshx, cosx;.
The sphere is parametrized by= cosx} cosxs, z2 = sinxj cosx; andz; = sinx,.
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The subgrouBsO(2) x SO(1, 1) of SO(1, 2) x SO(1, 2) consisting of elements, of the form

costz sSintz O
—sintz costz 0

3 0 0o 1
8 = cosht; —sinhg; 0 |’
—sinhzy  cost; O
0 0 1

wherers € [0, 27], 73 € R, acts orP from the right. The formi transforms byA — ¢ *Ag..
under this action which implies that the metfic= [ A% + A5 + A}? — A?] isinvariant. The
quotient spaceM = SO(1, 2) x SO(1, 2)/S0O(2) x SO(1, 1) is naturally equipped with the
projected Einstein( < 0) metric

g = %[COSH x2 dx? + dx3 + cos x5 dxj® — dxéz].

It follows that nowM = H.,. x H._, that is it is a Cartesian product of Euclidean- and
neutral-signature hyperbolic 2-spacest. The metig a sum of the natural metric dfi,.
minus the natural metric ad._. The fibres ofP again have the topology of a cylinderf.

Example 7 shows that if # 0 then thehomogeneougeneralized bundles of null
directionsP are principal fibre bundles over the spacetime with the structure giug-
SO(2) x SO(1, 1). The system of 1-forms of theorem 1 on these bundles equips them with a
1-form A whichis valued in the Lie algebra of grodj, such that dinG, = dimP. Moreover,
A has the following properties:

o if X is a vector field tangent to the flow of the one parameter subgrodf. generated
by & thenA(X) = &;

e A(X) # 0 on each vector tangent &

e under the right action of;,, the formA transforms ag_1Ag..

Thus A can be understood as a Cartan connectiorPofef [5], pp 127-30). Note that in
example 7 the forma is always a Maurer—Cartan form @, which implies that its curvature

is zero. This suggests that a generic (nonhomogeneous) generalized Einstein bundle of null
directions with non-zero cosmological constant can find a useful formulation in terms of
curvature conditions on Cartan connections on principal fibre bundles with grooper the
spacetime. Such Cartan connectionsfooan be further understood as the usual connections
on fibre bundle® xs, G (cf [5], pp 127-8). This possibility will be studied elsewhere.

9. Concluding remarks

The study of null objects in general relativity has led to many important advances in the
understanding of Einstein’s equations. In this paper this general line of enquiry has been
developed by employing the bundle of null directions, over a four-dimensional Lorentzian
spacetime, as a tool in the investigation of Einstein spaces. It has been shown that a Lorentzian

T Hes = {(z1, 22, 23) € RY2|—z3 + 73 + 23 = —1}, aquadric irR® equipped with flat Lorentzian metric of signature

(—, +,+). The parametrization dfl++ used here iszy = coshxy, zo = sinhxz Sinxj, z3 = Sinhxy cosx;. Hy_ is
parametrized by; = cosx; sinhxf, z2 = cosx; coshx}, z3 = sinxs,.

t Note that the metrics 1(—gy+_ + gs), and|x| " L(gy++ + gr+_), Wheregu++, g+ andgs denote the natural

metrics orH.+, H+_ andS?, respectively, do not satisfy the vacuum Einstein equations with cosmological constant. It

is interesting to note that the first of these is a solution to the Einstein—Maxwell equations with vanishing cosmological
constant known as the Bertotti-Robinson solutions. The second metric has an energy—momentum with negative energy
and thus cannot be interpreted as the Einstein—Maxwell solution.
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4-metric can be defined by a differential system on a 6-manifold over a 4-manifold. In fact,

a G-structure on the 6-manifold (the total space of the bundle of null directions) encodes
the requirement that the 4-manifold be Einstein. This structure, as has been demonstrated,
can be used to study spacetimes. An extension of this structure leads to the construction of
a generalized bundle of null directions over a conformally non-flat Einstein spacetime. An
effective algorithm for the equivalence problem for Lorentzian 4-metrics has been constructed
by making use of this generalized bundle. Finally, it has been observed that the Petrov-type
Weyl tensor of a conformally non-flat Einstein metric can be encoded in the fibration of a
6-manifold over a 4-manifold. Different fibrations provide interesting insights into Einstein
spacetimes.
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