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Symmetries of Cauchy-Riemann Spaces 
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Abstract. We simplify and generalize Cartan's results on Cauchy-Riemann spaces admitting continuous 
groups of automorphisms. We describe all such spaces in terms of local coordinates. 

I. Introduction 

Cauchy-Riemann spaces [ 1 ] appear in physics in the context of algebraically special 
solutions of the Einstein equations and null solutions of the Maxwell (or Yang-Mills) 
equations [2-4]. In both cases, spacetime admits a shearfree geodesic null congruence. 
This property is equivalent to the following condition on the metric tensor [5] 

g = ~cco - p ~ ,  (1) 

where x (real) and cr (complex) are one-forms on a three-dimensional submanifold N 
of spacetime and 

~:^ ~ ^ ~ # 0 .  (2) 

The forms x and a are defined by the congruence up to the transformations 

to--* to' = Ate, A # O ,  (3) 

c ~ '  =Bcc+Cx, B~O,  

where A is a real function and B, C are complex functions on N. A three-dimensional 
differential manifold N with such a class of forms (x, ~) is called a Cauchy-Riemann 
space; it is also said to have a Cauchy-Riemann (CR) structure. 

A CR structure on Ncan be alternatively defined by means of a complex vector field ~, 
such that ~ and 0 are independent at each point of N. A mutual relation between 0 and 
(~:, ~) is established by the requirement that (x, ~, ~) is a basis dual to (~o, ~, ~), where 
~3o is a real vector field. The replacement (3) implies the following 'gauge' transformation 
of ~3 

~3---> ~' = B -  I ~ . 

If x and ~ (or 0) are sufficiently regular (e.g., real analytic) then the CR space can 
be identified (locally) with a real hypersurface in C 2 (see, e,g., [4]). This hypersurface 
is given parametrically by 

(~(x"), q(x;)) e C 2 , (4) 
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where x i, i = 1, 2, 3, are coordinates of N and ~ and ~/are two solutions of the equation 

d f  ^ t< ^ cr = 0 (5) 

satisfying the independence condition 

d~ ^ d~ ^ d~/# O. (6) 

Conversely, given a hypersurface Z in C 2 defined by 

R(~, r/, ~, ~) = 0 ,  (7) 

where R is a real function such that R .  # 0 on Z, we can define the CR structure on 
Z by taking 

=i(Rr ~ = d r  (8) 

In this Letter we study the local properties of CR structures admitting infinitesimal 
symmetries. Basic results in this field were obtained by Elie Caftan [6], who found all 
hypersurfaces in C 2 invariant (globally or locally) with respect to a transitive group of 
biholomorphic transformations of C 2. We present here another approach, which leads 
directly to the forms r and 0~ expressed in terms of'canonical' coordinates. We consider 
the case of nontransitive actions (Sections 3 and 4) and transitive ones (Section 5). 

With the exception of Section 2, we shall assume that CR structures under investi- 
gation are nonintegrable, i.e., 

~: ^ d ~ ~ O, (9) 

or, equivalently, 

0, 2, [0, 2] are independent at each point. (10) 

Such structures correspond to twisting congruences in spacetime [7]. 
Our considerations are purely local. We assume that all manifolds and fields are of 

class C ~  Incidentally, equations of the Lewy type [8, 5] do not occur when a CR space 
admits symmetries. 

2. Groups of Automorphisms 

A diffeomorphism d~:N~N is called a symmetry (automorphism) of a 
Cauchy-Riemann space iffthe puUbacks tp*x, tp*a are related to ~:, a by the transfor- 
mation (3) [4]. An equivalent condition is ~ .  d ~ & We say that a vector field X is an 
infinitesimal symmetry if 

La~x= at<, 

or, equivalently, 

IX, O] = - b O ,  

L#xa = ba + c x ,  (11) 

(12) 

where L# x denotes the Lie derivative along X, a is a real function, and b, c are complex 
functions. 
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If a Cauchy-Riemann structure is integrable, then ~ ^ d ~ = 0 and it follows from the 
Frobenius theorem that x ~ du, where u is a real function. Then Equation (5) admits 
a complex solution ~, hence ct = B d~ + C~:. By virtue of transformations (3), we can 

as sume 

= du.  ~ = de (13) 

without loss of generality. If r/= u then the hypersurface in C 2 given by (4) is the plane 

I m q = 0 .  

In this case the local symmetry group is infinitely dimensional. It consists of transfor- 

mations 

u ~ f ( u ) ,  ~ h(~, u) .  (14) 

If a Cauchy-Riemann structure is nonintegrable, then it follows from a remark of 
Segre that its symmetry group is a finite-dimensional Lie transformation group [6]. In 
virtue of the Palais theorem [9], this fact can be considered as a direct consequence of 
Equations (11) and their integrability conditions. They show that the exterior derivatives 
of Ooa, b, c and components of X must be linear functions of these variables with 
coefficients defined by r and ~. Hence, given a CR structure, a general solution X of 
the symmetry conditions (11) depends at most on 8 real parameters (values of Ooa, b, c 
and components of X at a fixed point, provided no further constraints follow). Thus, 
the Lie algebra generated by infinitesimal symmetries has dimension D ~< 8. The Palais 
theorem says that the corresponding group of transformations is a Lie transformation 

group of dimension D ~< 8. 
In the following, we investigate separately the cases when D is equal to 1, 2 or D >~ 3. 

3. D = l  

If only one infinitesimal symmetry is present, then we can easily adjust a transformation 

(3) in order to get 

YxX = 0,  ~x~ = 0.  (15) 

It follows from (15) that K = A i ( x , y ) d x  t and ~ = B i ( x , y ) d x '  in coordinates 

x' = (u, x, y) such that X = ~3,,. Condition (9) requires A 1 # 0. A residual freedom of 
transformations (3) allows us to assume A1 = 1 and B1 = 0. Then ~ becomes pro- 
portional to an exact form dr where r = r y). The functions Re r Im r can be chosen 
as new coordinates x, y. A suitable transformation of ~ and u leads to the following 

canonical expressions for ~: and 

~c = du + f ( x ,  y ) d x ,  ~ = dx + i dy ,  (16) 

where a y f #  O. Particular solutions r and r /of  (5) are given by 

= x + i y ,  ~ = u + h ( x , y ) ,  (17) 
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where 2h~ --f. It follows from (17) that 

Im r/--- F(Re ~, Im ~), (18) 

where F = Im h and Fr # 0. 

THEOREM 1. l f  a CR structure admits a one-dimensional group o f  symmetries then it is 

equivalent to the CR structure defined by (16) with some f The corresponding hypersuoeace 
in C 2 is given by Equation (18). 
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4. D = 2  

It is easy to show that the orbits of a two-dimensional symmetry group G must be 
two-dimensional. Let us assume that it is not so. Then the vector fields X 1 and X 2 
representing any two independent infinitesimal symmetries have to be proportional at 
each point, i.e., X~ = qX2, where q r const (otherwise XI and X2 represent the same 
symmetry). It follows from (12) that either 0 ,,, X 2 or 0q -- 0. The first possibility is in 
contradiction with (10) and the second violates (10) or the assumption q r const (since 
tgq = 0 implies ~q = 0 and [O, 0]q - 0). 

Since X,, r = 1, 2, are infinitesimal symmetries we know that 

~ x = a , x ,  ~ = b , ~ + c , x ,  (19) 

where &a denotes the Lie derivative along X,. We now want to transform x and ~ to 
forms x' ,  ~' strictly invariant under the action of G, 

Ga~:, = 0,  .LP~=' = 0. (20) 

Comparing (19) and (20) yields the following equations for the parameters A, B, C of 
the required transformation (3) 

~C~,A = - A  G , .Z~B = - B b , ,  .~f~C = - C a ,  - B G . (21) 

Solutions to these equations exist since the integrability conditions of (21) follow from 
equations obtained by the Lie differentiation of (19). Hence, we can assume (20) without 
loss of generality. 

There are two nonisomorphic two-dimensional Lie algebras. We can choose the fields 
X, in such a way that 

[X,,X2] = eX~, ~ = 0, 1. (22) 

Since the orbits of G are two-dimensional, it follows from (22) that 

X 1 = O~,, X 2 = au3,, + 0 x (23) 

in some coordinates u, x, y. Now it is easy to find general forms ~c' and ~' satisfying 
Equations (20). By virtue of residual transformations (3), and a freedom in the choice 
of the coordinates, they can be reduced to the following expressions 

= exp ( - e x ) d u  + f ( y ) d x ,  o~ = dx  + i d y ,  (24) 



SYMMETRIES OF CAUCHY-RIEMANN SPACES 35 

where 8yfv ~ 0 and we have dropped the primes. Particular solutions ~ and r/of Equation 

(5) are given by 

= x + iy,  r/= u + h (y) exp (sx),  (25) 

where ihy + eh = f It follows from (25) that 

Im q = exp (e Re r  r (26) 

where F = Imh. By an appropriate choice of f we can obtain any real function F 
satisfying the condition Fry + tF  r 0. 

T H E O R E M  2. I f  a CR structure admits a two-dimensional group of symmetries, then it is 

equivalent to the structure defined by (24). The corresponding hypersurface in C z is given 
by Equation (26). 

5. D > / 3  

Our approach to this case can be described as follows. First we observe that any Lie 
group of dimension D >~ 3 contains locally a three-dimensional subgroup. Hence, in 
order to find all symmetrical CR structures with D ~> 3, it is sufficient to consider the 
case D = 3. We prove that the action of a three-dimensional symmetry group G on N 
is (locally) simply transitive and the forms ~ and ~ can be transformed to left invariant 
forms on G. In virtue of the Bianchi classification of three-dimensional Lie groups the 
whole problem reduces to the problem of finding all nonequivalent left invariant frames 

on these groups. 

LEMMA. Any Lie algebra ~ '  of dimension greater then two contains a three-dimensional 

subalgebra ~. 

Proof According to the Levi-Malcev theorem [10], ~ can be decomposed into the 
semidirect sum of a solvable subalgebra ~ (radical) and a semisimple subalgebra ~ If 

is nontrivial, then it contains either the subalgebra su(2) (if ~ is compact [ 11, p. 219]) 
or su(1, 1) (if 50 is noncompact [ 11, p. 245 ]). If  ~ is trivial then dim ~ >1 3 and ~ must 
contain a three-dimensional subalgebra since any solvable algebra ~ contains sub- 
algebras of all dimensions between 1 and dim ~ [ 11, p. 133]. [] 

The lemma has its local equivalent at the group level. Hence, it follows that highly 
symmetrical (/9/> 4) CR structures are particular cases of CR structures with a three- 
dimensional symmetry of group G. 

It is easy to prove that orbits of G are three-dimensional. It follows already from 
Section 4 that they cannot be one-dimensional. Let us assume for a moment that they 
are two-dimensional, i.e., 

X 3 = p X  1 +rX2,  X 2 ~ q X  1, (27) 

where Xr (r = 1, 2, 3) are independent infinitesimal symmetries and eitherp ~ const or 
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r # const. It follows from (12) that 

(OpX 1 + OrX2) ,-, O. (28) 

Equation (28) and its conjugate yield 

X r = SrO + ~r-8, (29) 

where s, are complex nonvanishing functions. Substituting (29) into (12) yields con- 
tradiction with (10). 

Since the orbits are three-dimensional the manifold N can be locally identified with 
the group manifold G and the action of G on N can be identified with the natural left 
action of G on itself. 

An analysis analogous to that for D = 2 shows that the forms ~: and ~ satisfying the 
symmetry conditions (19) (now r = 1, 2, 3) can be replaced by new forms, which satisfy 
the equations 

~ r  = O, L~a~ --- O. (30) 

It follows from (30), (2), (9) and the identification of N with G that (r,  Re~, Imp) is a 
left-invariant frame on G satisfying (9). 

THEOREM 3. I f  a CR structure admits a symmetry group G' o f  dimension D >1 3 then 

it is equivalent to the CR structure defined by a left-invariant basis (~:,Reat, Im~), 
^ d ~ v~ O, on a three-dimensional local subgroup G o f  G'.  

The local properties of G are determined by its Lie algebra (r All the three- 
dimensional Lie algebras are explicitly known (see, e.g., [12]). Let (0 r) be a particular 
left invariant basis related to fr Then ~ and �9 are general linear combinations of ~ r with 
constant coefficients such that (9) is satisfied. A number of free parameters can be 
reduced by means of transformations (3) (with constant A, B, C) and transformations 
of~ r preserving the Maurer-Cartan equations. We can always obtain ct ^ d0t = 0, hence 

~ d~ and ~ satisfies Equation (5). If ff = su(2) or su(1, 1) (types IX and VIII), then 
one real parameter remains. It means that one-parameter families of CR structures are 
related to these algebras. For other algebras (except I and V, which are excluded by (9)), 
there is only one corresponding CR structure. For all Bianchi types (except I and V) 
we list below the following data 

(i) reduced forms ~ and ~ in terms of coordinates u, ~, ~ or u, x, y where ~ = x + iy 

and u, x, y are real, 
(ii) symmetry transformations generated by G (p, q, r being constant parameters), 

(iii) a second solution ~/of (5) and an equation of the hypersurface in C 2 defined by 
(4). 

We also give the corresponding Cartan type [6] in square brackets. 

Type II [A] 

(i) ~ = d u - i ~ d ~ + i ~ d ~ ,  ct=d~, 
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(ii) u' = u + i ~ 4 - i q ~ + p ,  4' = 4 + q ,  q ~ C ,  p e R ,  

(iii) t / = u + i 4 ~ ,  I m t / = 4 ~ .  

Type IV [ F ] 

(i) ~ = y -  1 (du - In y d x ) ,  c~ = y -  1 (dx + i dy) ,  

(ii) u' = r u + r x l n r y + p ,  x '  = r x  , y '  = r y  + q , 

(iii) ~ = u + x + iy ln y ,  Im t/= Im ~. ln(Im 4). 

Type VI h (including VI o and III) [E, B] 

(i) ~ =  yb d u -  y - l  d x ,  c~= y - t ( d x  + i d y ) ,  

(ii) u' = r-hu + p ,  

(iii) t/= - b u  + iy -b , 

- ~7 = u + i lny ,  Im r/= (Ira 4) ,  

Type VII h (including VIIo) [H] 

(i) t c = d u + e ( A + i ) U d 4 + e ( A - i ) U d ~ ,  ~ = e(A+O" d~,  

(ii) u' = u - p ,  4' = e ( a + i ) p ~ + q ,  p e R ,  q ~ C ,  

(iii) r/= (i - A)~ + e ( / - A ) u  , Im[ t /+  (A - i)~] a+i = O. 

Type IX [D, L] (upper signs) and VIII [C, K] (lower signs) 

p, q, r ~ R ,  

t - , f4  
where b = 

1 + ~ / - h  

x'  = r x ,  y '  = r y + q ,  q,q,  r e R ,  r > O ,  

I m t / = ( I m 4 ) - b ,  f o r h # l ,  

for h = - 1 (type III). 

k e "  - i~ k e-iU + i4 d 2eiU 
(i) x = d u +  - - d 4 +  ~, c t = - - d r  

~+_ 1 ~ _ +  1 4~_+ 1 

where 0 ~< k e R, k 2 _+ 1 # 0, 

(ii) u' = u - iln(~4 +if)  + iln(q~ + p ) ,  
P4-T- q 

where p~ + q~ = 1 and p, q ~ C ,  

(iii) ~ = 
4e iu - ik 
e i U + i k  ~ , 14- ttl =k l l_+4~ l ,  f o r k > 0 ,  

r# = [ ( ~  + 1 )e - 'U ]  '/2 , r#~ : I r  -+ 11, fork = 0.  
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r > 0 ,  

where A = v /~ ,  

6. Conc lud ing  R e m a r k s  

As we have seen in Section 2, all integrable Cauchy-Riemann structures are isomorphic 
and admit locally an infinitely dimensional group of automorphisms. A nonintegrable 
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structure may have no symmetries. If it does, then they form a Lie transformation group 
of dimension D ~< 8. The action of this group is transitive if D/> 3. CR structures with 
continuous symmetries (D >/ 1) are locally equivalent to the structures defined by (16), 
(24) or the forms ~:, ~ listed in Section 5. We have found the corresponding hyper- 
surfaces in C 2. Those for D >/3 are locally equivalent to the hypersurfaces obtained by 
Cartan [6]. 

Finally we make a comment on CR structures admitting groups of symmetries of 
dimension D/> 4. It was proved by Cartan [6] that, from a local point of view, they are 
all isomorphic and admit the group S U (1, 2). They can be characterized by the vanishing 
of the Cartan relative invariant r [6, Ch. III]. They are known to physicists since they 
are related to the Robinson congruence [ 13, 3], which exists, e.g., in Minkowski space. 
On our list in Section 5, these structures occur for the types II, III, V1-9, VIII (k = 0 
or k = v/2), IX (k = 0). The other structures from this list are nonisomorphic and admit 
precisely three-dimensional groups of automorphisms. 
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