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On a certain formulation of the Einstein equations
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We define a certain differential system on an open s&®%fThe system locally
defines a Lorentzian four-manifold satisfying the Einstein equations. The converse
statement is indicated and its details are postponed to the forthcoming paper.
© 1998 American Institute of Physid$50022-24888)01310-3

Let 7 be an open subset &°. Suppose that o#/ we have six one-formsH,F,T,A ,E,E)
which satisfy the following conditions:

(i) T, A are real- andr, E are complex-valued one-forms;

(i) FOFOTOADEOE+#0 at each poinp of 7;

(iii ) there exist complex-valued one-forrfisandI” on 74, and a certain complex functiom
on 7/ such that

dF=(Q—Q)OF+EOT+TTA,

dT=TOF+TOF —(Q+Q)0T, W

dA=E0OF+EOF +(Q+Q)TA,

dE=2Q0E+FOT+ aADF.

The aim of this paper is to prove that we can associate to guehLorentzian four-manifold that
satisfies the Einstein equations. The proof will be a direct consequence of the following sequence
of Lemmas. . .

Lemma 1: If(F,F,T,A,E,E) satisfy(1) then there exist complex functions a, h #hand a
real constant\ such that

dl' =200 + «TOF +a(TOA + FOF) + hA OF, .

dQ=EOr—

Y —
a+ E)(TDA+FDF)+aADF.

Sketch of the proofCondition (jii) can be understood as follows. We consider the forms
(F,F, T,A,E,E) as the basic objects. We assume that their differentials have a specialiiform
with _certain _auxiliary forms ,Q,I',)I'). Suppose that we have the system of ten forms
(F,F,T,A,E,E,Q,Q,T',I' satisfying(1). Then

d’A=d°T=d?F=d’E=0 (3

imply that the differentialgll’ andd() have a special form. The proof thdl’ andd{} have the
form (2) is a direct(but lengthy calculation which useg3) and the independence conditi@n).
To obtain information about the differentials of the functions appearin@)imne has to use

d’I'=d2Q=0. (4)

These equations show, in particular, thamust be a real constant. O
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There are also other equations that are implied3)yand (4). They carry information about
the differentials ofe, a, h and about the decompositions Bfand () onto the basis one-forms
(F,F, T,AE,E). Explicitly we have

da=a,F+ y,F + v, T+ a,A —2aE,
da=a,F+ a,F+ a;T+a,A + hE—(3a+\)T—2aQ, (5)
dh=h,F—a,F—a,T+h,A+4al —4hQ,
where the possible forms & andI" are

Q=wlF+w2E+ w3T+ w4, ©

= y,F —dwsF — 4o T+ y4A — (3a+\)E

andyq,v4,a1,a4,a1,84,h1,h,,01,0,,03,w, are complex functions ows. The differentials of
these functions can be further analyzed by looking at equations sutfuas0, etc.

Reformulating the above statements in the language of the theory of differential systems we
say that the differential syste(t), (2), (5), (6) is still not closed. For example, the equations of the
sortd?a=0 should still be added.

Lemma 2:77 is locally foliated by two-dimensional manifolds,, which are tangent to the
real distribution 7" defined by

N)=FK(7)=T(7)=0.

Here the proof is an immediate application of the Froebenius theorem, since the Rzrﬁﬁ',(z\)
form a closed differential ideal due to the relatiqis. O
Let us define

G=FF-TA (7)

on 7/. G constitutes a degenerate metric @ It has the signaturé+,+,+,—,0,0).

Lemma 3: G is constant along any le&f, of the foliation{.”,}.

“To prove this we define a basis of vector fieldsf(X,Y,e,e), which is the respective dual of
(F,F,T,AE,E). Then we notice that the distributiofi”is spanned by vector fields of the form

V=Ue+Ue,

whereU is any complex function or”. Using an arbitrary and the explicit form ofs one easily
finds that#,,G=0 due to Eq.{1) and the properties of the Lie derivative, . O

Now we introduce an equivalence relatienon 72 which identifies points lying on the same
leave of{.”,}. We assume that the quotient spagé= 74/~ is a four-manifold. According to
Lemma 3,G projects down to a well-defined nondegenerate Lorentzian ngwit. 7.

Theorem 1: The Lorentzian metric g on/z=7//~ satisfies the Einstein equations; R
=\g;; and is not conformally flat

Proof: To prove the theorem, we first consider a four-dimensional submaniféidbf 77 that
is transversal to the leaves ¢f/,}. We have a natural inclusion .7#'—7/. .#' may be
equipped with a Lorentzian metrig’ =.*G. It is clear that (#,9) and (#',g') are locally
isometrically equivalent. This statement does not depend on the choic&’ofThus, we may
represent .(#,9) by (.#',9'). In this way, it is enough to show that satisfies the Einstein
equations. To do this, we first observe tgat= o* (F).* (F) — *(T)* (A). Thus, a set of forms
6'=(c* (F),o* (F),u*(T),c*(A)), (i=1,2,3,4) constitutes a null cotetrad fgt. To calculate the
curvature we need to know¢'. But these, due to the fact thatd=d.*, are given by the
relations(1). To simplify the notation, we will omit the signs of the pullback in all of the
formulas. On doing that we find that the connection one-formgfodetermined by
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dF=-TY0F-T1,07-TY,0A,
dF=-T2,0F —T2,07-T?,0A,
dT=-T30F-T3,0F -T'3,0T,

dA=—T40F—T4,0F —T4%,0A,

01 0 0
. . 1 0 O
il 0; [5=0, gi= 00 0 -1
0 0 -1 O
read
Q-0 0 ~E -T
. 0 0-0 -E T
ri= _ _
J -T - Q+0Q 0
-E -E 0 -0-0

The curvature;=dI'';+ ", 0% of this connection can be calculated using the relatidns
and their consequencé®). Modulo the obvious reality conditions its components read as follows
(we lower indices by means of the metdg).

Fpg=—FOT— aADF,
4= aFOT+a(AOT—FOF)—hADF,
Y Rya— Frp) = — (a+ I\ (AOT—FOF) —aA OF.

These should be compared with the definitions of the spinorial coefficients of the Weyl tensor
¥, , n=0,1,2,3,4, the traceless Ricci tens®y, and the Ricci scalaR given by

Trgg=W FOT+Wo(AOT—FOF) + (W, + SR)ADF
+ 3S5gF OT + 3S3 A LT+ FOF ) + 3S,A OF,

Forg=(—V,— HR)FOT— W, (AOT—FOF) — WoADF
—18,,FOT— 4S,,(AOT+FOF) — 1S,,ACF,

Y Rya— Frp) =W FOT+ (W, — ZR)(ADT—FOF) + W, A OF
+ 1S5 FOT + X(Sio+ Sen) (AOT+ FOF) + 3S,,A OF.
Looking at these equations we easily §gt=R;; — %Rgij =0. This proves the Einstein property of

the metric.
The spinorial coefficients for the Weyl tensor are also easy to obtain. They read

A

\Ifozh, ‘P1=—a, ‘I’2=—a—§, \1,3201 ‘lf4=—1

Due to the nonvanishing o¥, the metric is never conformally flat.
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We can also interpret the constantvhich for the first time appeared in E(R). One easily
reads from the above that it is proportional to the Ricci scala\. This concludes the proof of
the Theorem. O

We, additionally, note that the metric is of the Cartan—Petrov—Penrose type D iff
a=0; h=—(3a+\)? (8)
and of the type N iff
h=a=0, A=-3a. (9)
The metric is algebraically special iff=27J2, where
l=—h+33a+)\)? J=a%+35(3a+N)*+3h(3a+N).

The converse of the present paper can be stated in the following théseenRef. 1 for detai)s

Theorem 2: Let .7 be a four-dimensional manifold with a Lorentzian conformally nonflat
metric g satisfying the Einstein equationg®RAg;; . Then, there exists a double branched cover
2 of the bundle of null directions” over. 7?3

(i) which is a fibration over.# with fibers being two-dimensional tori (or, in algebraically
special cases, their degenerate counterplrts
and

(ii) on which there exists a unique system of one—fo(ms?,T,A,E,E) which satisfies the
following three conditions:

() T, A are real- and F, E are complex-valued one-forms,
(i) FOFOTOAOEDE#0 at each paoint p of7; o
(if) dF=(Q—0)0F + EOT+TOA,

dT=TOF+TOF —(Q+Q)0T,
dA=EOF+EOF +(Q+Q)0A,
dE=2Q0E+FOT+ aADF

with certain complex-valued one-forrfisandT’, and a certain complex functio® on 7
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