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We define a certain differential system on an open set ofR6. The system locally
defines a Lorentzian four-manifold satisfying the Einstein equations. The converse
statement is indicated and its details are postponed to the forthcoming paper.
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Let U be an open subset ofR6. Suppose that onU we have six one-forms (F,F̄,T,L,E,Ē)
which satisfy the following conditions:

~i! T, L are real- andF, E are complex-valued one-forms;
~ii ! F∧F̄∧T∧L∧E∧ĒÞ0 at each pointp of U;
~iii ! there exist complex-valued one-formsV andG on U, and a certain complex functiona

on U such that

dF5~V2V̄!∧F1E∧T1Ḡ∧L,

dT5G∧F1Ḡ∧F̄2~V1V̄!∧T,
~1!

dL5Ē∧F1E∧F̄1~V1V̄!∧L,

dE52V∧E1F̄∧T1aL∧F.

The aim of this paper is to prove that we can associate to suchU a Lorentzian four-manifold tha
satisfies the Einstein equations. The proof will be a direct consequence of the following seq
of Lemmas.

Lemma 1: If(F,F̄,T,L,E,Ē) satisfy~1! then there exist complex functions a, h onU and a
real constantl such that

dG52G∧V1aT∧F̄1a~T∧L1F∧F̄ !1hL∧F,
~2!

dV5E∧G2S a1
l

2D ~T∧L1F∧F̄ !1aL∧F.

Sketch of the proof:Condition ~iii ! can be understood as follows. We consider the for
(F,F̄,T,L,E,Ē) as the basic objects. We assume that their differentials have a special form~iii !
with certain auxiliary forms (V,V̄,G,Ḡ). Suppose that we have the system of ten for
(F,F̄,T,L,E,Ē,V,V̄,G,Ḡ) satisfying~1!. Then

d2L5d2T5d2F5d2E50 ~3!

imply that the differentialsdG anddV have a special form. The proof thatdG anddV have the
form ~2! is a direct~but lengthy! calculation which uses~3! and the independence condition~ii !.
To obtain information about the differentials of the functions appearing in~2! one has to use

d2G5d2V50. ~4!

These equations show, in particular, thatl must be a real constant. h

a!Permanent address: Instytut Fizyki Teoretycznej, Wydzial Fizyki, Uniwersytet Warszawski, ul. Hoz˙a 69, Warszawa,
Poland. Electronic mail: nurowski@fuw.edu.pl
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There are also other equations that are implied by~3! and ~4!. They carry information abou
the differentials ofa, a, h and about the decompositions ofG and V onto the basis one-form
(F,F̄,T,L,E,Ē). Explicitly we have

da5a1F1g4F̄1g1T1a4L22aE,

da5a1F1a4F̄1a1T1a4L1hE2~3a1l!G22aV, ~5!

dh5h1F2a4F̄2a1T1h4L14aG24hV,

where the possible forms ofV andG are

V5v1F1v2F̄1v3T1v4L,
~6!

G5g1F24v4F̄24v1T1g4L2~3a1l!E

andg1 ,g4 ,a1 ,a4 ,a1 ,a4 ,h1 ,h4 ,v1 ,v2 ,v3 ,v4 are complex functions onU. The differentials of
these functions can be further analyzed by looking at equations such asd2a50, etc.

Reformulating the above statements in the language of the theory of differential system
say that the differential system~1!, ~2!, ~5!, ~6! is still not closed. For example, the equations of t
sort d2a50 should still be added.

Lemma 2:U is locally foliated by two-dimensional manifoldsS x , which are tangent to the
real distributionV defined by

L~V !5F~V !5T~V !50.

Here the proof is an immediate application of the Froebenius theorem, since the forms (F,F̄,T,L)
form a closed differential ideal due to the relations~1!. h

Let us define

G5FF̄2TL ~7!

on U. G constitutes a degenerate metric onU. It has the signature~1,1,1,2,0,0!.
Lemma 3: G is constant along any leafS x of the foliation$S x%.
To prove this we define a basis of vector fields (f , f̄ ,X,Y,e,ē), which is the respective dual o

(F,F̄,T,L,E,Ē). Then we notice that the distributionV is spanned by vector fields of the form

V5Ue1Ūē,

whereU is any complex function onU. Using an arbitraryV and the explicit form ofG one easily
finds thatLVG50 due to Eq.~1! and the properties of the Lie derivativeLV . h

Now we introduce an equivalence relation; on U which identifies points lying on the sam
leave of$S x%. We assume that the quotient spaceM5U/; is a four-manifold. According to
Lemma 3,G projects down to a well-defined nondegenerate Lorentzian metricg on M.

Theorem 1: The Lorentzian metric g onM5U/; satisfies the Einstein equations Ri j

5lgi j and is not conformally flat.
Proof: To prove the theorem, we first consider a four-dimensional submanifoldM8 of U that

is transversal to the leaves of$S x%. We have a natural inclusioni: M8�U. M8 may be
equipped with a Lorentzian metricg85i* G. It is clear that (M,g) and (M8,g8) are locally
isometrically equivalent. This statement does not depend on the choice ofM8. Thus, we may
represent (M,g) by (M8,g8). In this way, it is enough to show thatg8 satisfies the Einstein
equations. To do this, we first observe thatg85i* (F)i* (F̄)2i* (T)i* (L). Thus, a set of forms
u i5(i* (F),i* (F̄),i* (T),i* (L)), (i 51,2,3,4) constitutes a null cotetrad forg8. To calculate the
curvature we need to knowdu i . But these, due to the fact thati* d5di* , are given by the
relations~1!. To simplify the notation, we will omit the signs of the pullbacki* in all of the
formulas. On doing that we find that the connection one-forms forg8 determined by
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dF52G1
1∧F2G1

3∧T2G1
4∧L,

dF̄52G2
2∧F̄2G2

3∧T2G2
4∧L,

dT52G3
1∧F2G3

2∧F̄2G3
3∧T,

dL52G4
1∧F2G4

2∧F̄2G4
4∧L,

gikGk
j1gjkGk

i50, gi j 5S 0 1 0 0

1 0 0 0

0 0 0 21

0 0 21 0

D
read

G i
j5S V̄2V 0 2E 2Ḡ

0 V2V̄ 2Ē 2G

2G 2Ḡ V1V̄ 0

2Ē 2E 0 2V2V̄

D .

The curvatureRi
j5dG i

j1G i
k∧Gk

j of this connection can be calculated using the relations~1!
and their consequences~2!. Modulo the obvious reality conditions its components read as follo
~we lower indices by means of the metricgi j !.

R2352F̄∧T2aL∧F,

R145āF̄∧T1a~L∧T2F∧F̄ !2hL∧F,

1
2~R432R12!52~a1 1

2l!~L∧T2F∧F̄ !2aL∧F.

These should be compared with the definitions of the spinorial coefficients of the Weyl t
Cm , m50,1,2,3,4, the traceless Ricci tensorSi j , and the Ricci scalarR given by

R235C4F̄∧T1C3~L∧T2F∧F̄ !1~C21 1
12R!L∧F

1 1
2S33F∧T1 1

2S32~L∧T1F∧F̄ !1 1
2S22L∧F̄,

R145~2C22 1
12R!F̄∧T2C1~L∧T2F∧F̄ !2C0L∧F

2 1
2S11F∧T2 1

2S41~L∧T1F∧F̄ !2 1
2S44L∧F̄,

1
2~R432R12!5C3F̄∧T1~C22 1

24R!~L∧T2F∧F̄ !1C1L∧F

1 1
2S31F∧T1 1

4~S121S34!~L∧T1F∧F̄ !1 1
2S42L∧F̄.

Looking at these equations we easily getSi j 5Ri j 2
1
4Rgi j [0. This proves the Einstein property o

the metric.
The spinorial coefficients for the Weyl tensor are also easy to obtain. They read

C05h, C152a, C252a2
l

3
, C350, C4521.

Due to the nonvanishing ofC4 the metric is never conformally flat.
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We can also interpret the constantl which for the first time appeared in Eq.~2!. One easily
reads from the above that it is proportional to the Ricci scalarR54l. This concludes the proof o
the Theorem. h

We, additionally, note that the metric is of the Cartan–Petrov–Penrose type D iff

a50; h52~3a1l!2 ~8!

and of the type N iff

h5a50, l523a. ~9!

The metric is algebraically special iffI 3527J2, where

I 52h1 1
3~3a1l!2, J5a21 1

27~3a1l!31 1
3h~3a1l!.

The converse of the present paper can be stated in the following theorem~see Ref. 1 for details!.
Theorem 2: Let M be a four-dimensional manifold with a Lorentzian conformally non

metric g satisfying the Einstein equations Ri j 5lgi j . Then, there exists a double branched cov
P̃ of the bundle of null directionsP over M2,3

(i) which is a fibration overM with fibers being two-dimensional tori (or, in algebraicall
special cases, their degenerate counterparts1)

and

(ii) on which there exists a unique system of one-forms(F,F̄,T,L,E,Ē) which satisfies the
following three conditions:

(i) T, L are real- and F, E are complex-valued one-forms,
(ii) F ∧F̄∧T∧L∧E∧ĒÞ0 at each point p ofP̃ ;
(iii) dF5~V2V̄!∧F1E∧T1Ḡ∧L,

dT5G∧F1Ḡ∧F̄2~V1V̄!∧T,

dL5Ē∧F1E∧F̄1~V1V̄!∧L,

dE52V∧E1F̄∧T1aL∧F

with certain complex-valued one-formsV andG, and a certain complex functiona on P̃ .
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