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1. Introduction

Recently there has been a growing interest in the geometrization program of ODEs [1–6]. Although the program my be
traced back to Lie [7] and Tresse [8], and although it was formulated by E. Cartan and S. S. Chern in the 1940s [9–11], it was
not very popular until the works of R. Bryant (see e.g. [12]) on the invariants of the fourth-order ODEs. In the present note
we restate some of the results of [12] in terms of the invariants of the recently discussed GL(2,R) geometry of ODEs [4]. In
particular we interpret Bryant’s results in terms of the Ricci tensor of a certain gl(2,R)-connection, which characterises the
ODEs satisfying contact invariant conditions of Bryant [12].
Our starting point is the following well-known proposition.

Proposition 1.1. The ordinary differential equation

y(4) = 0

has GL(2,R)×ρ R4 as its group of contact symmetries. Here ρ : GL(2,R) → GL(4,R) is the 4-dimensional irreducible
representation of GL(2,R).
The representation ρ, at the level of the Lie algebra gl(2,R), is given in terms of the Lie algebra generators

E+ =

0 3 0 0
0 0 2 0
0 0 0 1
0 0 0 0

 , E− =

0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

 , E0 =

−3 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 3

 ,

E = −

3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3

 . (1.1)
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These matrices satisfy the gl(2,R) commutation relations

[E0, E+] = −2E+, [E0, E−] = 2E−, [E+, E−] = −E0,

where the commutator in the gl(2,R) = SpanR(E−, E+, E0, E) ⊂ End(R4) is the usual commutator of matrices.
Now, we consider a general fourth-order ODE

y(4) = F
(
x, y, y′, y′′, y(3)

)
. (1.2)

To simplify the notation, we introduce the coordinates x, y, y1 = y′, y2 = y′′, y3 = y(3) on the 5-dimensional jet space J .
Introducing the four contact forms

ω0 = dy− y1dx

ω1 = dy1 − y2dx

ω2 = dy2 − y3dx

ω3 = dy3 − F(x, y, y1, y2, y3)dx,

(1.3)

and an additional 1-form

w+ = dx,

we define a contact transformation to be a diffeomorphism φ : J → J which transforms the above five 1-forms via:

φ∗ω0 = α00ω
0

φ∗ω1 = α10ω
0
+ α11ω

1

φ∗ω2 = α20ω
0
+ α21ω

1
+ α22ω

2

φ∗ω3 = α30ω
0
+ α31ω

1
+ α32ω

2
+ α33ω

3

φ∗w+ = α
4
0ω
0
+ α41ω

1
+ α44w+.

(1.4)

Here αij, i, j = 0, 1, 2, 3, 4, 5, are real functions on J such that

α00α
1
1α
2
2α
3
3α
4
4 6= 0.

The contact equivalence problem for the fourth-order ODEs (1.2) can be studied in terms of the invariant forms
(θ0, θ1, θ2, θ3,Ω+) defined by

θ0

θ1

θ2

θ3

Ω+

 =

α00
α10 α11
α20 α21 α22
α30 α31 α32 α33
α40 α41 α44



ω0

ω1

ω2

ω3

w+

 . (1.5)

Among all ODEs (1.2) considered modulo contact transformations (1.4) there is a remarkable class for which the invariant
forms satisfy

dθ0 = 3(Ω +Ω0) ∧ θ0 − 3Ω+ ∧ θ1

dθ1 = −Ω− ∧ θ0 + (3Ω +Ω0) ∧ θ1 − 2Ω+ ∧ θ2

dθ2 = −2Ω− ∧ θ1 + (3Ω −Ω0) ∧ θ2 −Ω+ ∧ θ3

dθ3 = −3Ω− ∧ θ2 + 3(Ω −Ω0) ∧ θ3.

(1.6)

This system is defined on an 8-dimensional GL(2,R) principal fibre bundle P over the solution space M4 for the
corresponding ODE (1.2). The invariant forms (θ0, θ1, θ2, θ3,Ω+) together with the additional three 1-forms (Ω−,Ω0,Ω)
constitute a well-defined coframe on P .
As noted by Bryant [12], the class of ODEs having forms (θ0, θ1, θ2, θ3,Ω+,Ω−,Ω0,Ω) of system (1.6), is distinguished

by the demand that their defining functions F = F(x, y, y1, y2, y3) satisfy the following two conditions:

4D2F3 − 8DF2 + 8F1 − 6DF3F3 + 4F2F3 + F 33 = 0,

160D2F2 − 640DF1 + 144(DF3)2 − 352DF3F2 + 144F 22−

80DF2F3 + 160F1F3 − 72DF3F 23 + 88F2F
2
3 + 9F

4
3 + 16000Fy = 0.

(1.7)
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Here Fi = ∂F
∂yi
and D = ∂x + y1∂y + y2∂y1 + y3∂y2 + F∂y3 . Bryant’s conditions (1.7), considered simultaneously, are contact

invariant; if the ODE undergoes contact transformation of its variables, conditions (1.7) are preserved. Examples are known
of ODEs satisfying these conditions [12], the simplest being

y(4) = (y(3))(4/3). (1.8)

The purpose of this note is to establish a theorem on speciality of a gl(2,R)-valued connection defined by such ODEs on
their solution spaces.

2. The closed system

Let us make the following choice

α00 = −3α11α44

α20 = −
(α10)

2

3α11α44
+

α11

240α44
(−24DF3 + 36F2 + 11F 23 )

α21 = −
2α10
3α44

+
α11

12α44
F3

α22 = −
α11

2α44

α30 =
(α10)

3

9(α11α44)2
+

α10

240(α44)2
(24DF3 − 36F2 − 11F 23 )+

α11

720(α44)2
(36(DF2 − 4F1)+ 18(DF3 − 2F2)F3 − 7F 33 )

α31 =
(α10)

2

3α11(α44)2
−

α10

12(α44)2
F3 +

α11

240(α44)2
(36DF3 − 84F2 − 19F 23 )

α32 =
α10

2(α44)2
−

α11

4(α44)2
F3

α33 =
α11

2(α44)2

α40 = −
α44

60
(12DF33 − 6F23 + F3F33)

α41 =
α44

6
F33

(2.1)

for the group parameters defining forms (θ0, θ1, θ2, θ3,Ω+) of (1.5). Then we have the following theorem.

Theorem 2.1. If a fourth-order ODE

y(4) = F
(
x, y, y′, y′′, y(3)

)
(2.2)

satisfies contact invariant conditions

4D2F3 − 8DF2 + 8F1 − 6DF3F3 + 4F2F3 + F 33 = 0,

160D2F2 − 640DF1 + 144(DF3)2 − 352DF3F2 + 144F 22
− 80DF2F3 + 160F1F3 − 72DF3F 23 + 88F2F

2
3 + 9F

4
3 + 16000Fy = 0

(2.3)

then the manifold P parametrised by (x, y, y1, y2, y3, α10, α11, α44) is a principal GL(2,R) bundle P → M4 over the solution
space M4 of (2.2) and forms (θ0, θ1, θ2, θ3,Ω+), together with additional three 1-forms (Ω−,Ω0,Ω), constitute an invariant
coframe on P satisfying

dθ0 = 3(Ω +Ω0) ∧ θ0 − 3Ω+ ∧ θ1

dθ1 = −Ω− ∧ θ0 + (3Ω +Ω0) ∧ θ1 − 2Ω+ ∧ θ2

dθ2 = −2Ω− ∧ θ1 + (3Ω −Ω0) ∧ θ2 −Ω+ ∧ θ3

dθ3 = −3Ω− ∧ θ2 + 3(Ω −Ω0) ∧ θ3

(2.4)
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dΩ+ = 2Ω0 ∧Ω+ +
1
12
(−3a0 + 4b1)θ0 ∧ θ1 +

1
4
(a1 + 2b2)θ0 ∧ θ2

+
1
24
(3a2 + 4b3)θ0 ∧ θ3 +

1
8
(−5a2 + 4b3)θ1 ∧ θ2 +

1
6
b4θ1 ∧ θ3

dΩ− = −2Ω0 ∧Ω− +
1
6
b0θ0 ∧ θ2 +

1
24
(−3a0 + 4b1)θ0 ∧ θ3

+
1
8
(5a0 + 4b1)θ1 ∧ θ2 +

1
4
(−a1 + 2b2)θ1 ∧ θ3 +

1
12
(3a2 + 4b3)θ2 ∧ θ3

dΩ0 = Ω+ ∧Ω− −
1
6
b0θ0 ∧ θ1 +

1
24
(−3a0 − 4b1)θ0 ∧ θ2 +

1
4
a1θ0 ∧ θ3 −

1
4
a1θ1 ∧ θ2

+
1
24
(−3a2 + 4b3)θ1 ∧ θ3 +

1
6
b4θ2 ∧ θ3

dΩ = −
1
6
b0θ0 ∧ θ1 −

1
3
b1θ0 ∧ θ2 −

1
6
b2θ0 ∧ θ3 −

1
2
b2θ1 ∧ θ2 −

1
3
b3θ1 ∧ θ3 −

1
6
b4θ2 ∧ θ3.

(2.5)

The coefficients a0, a1, a2, b0, b1, b2, b3, b4 are totally determined by (2.2) and are expressible in terms of the derivatives of
function F and the coordinates. The simplest of these coefficients are:

b4 = −2
(α44)

3

(α11)2
F333

b3 = −
(α44)

2

12(α11)2
(6DF333 + 5F3F333)−

2α10(α44)2

3(α11)3
F333

b2 = −
2α44(α10)2

9(α11)4
F333 −

α44α
1
0

18(α11)3
(6DF333 + 5F3F333)

+
α44

360(α11)2
[60(2DF233 + 4F133 − 2F223 + DF333F3)+ (−36DF3 + 204F2 + 79 F 23 )F333]

a2 = −
(α44)

2

45(α11)2
(18DF333 + 24F233 + 4F 233 + 27F3F333).

Other coefficients are given in the next two sections.

The proof of this theorem is a lengthy calculation based on a variant of Cartan’s equivalence method. In the next section
we outline the main points of the proof.

3. Proof of the main theorem

The basic idea in the proof of Theorem 2.1 is to force 1-forms (1.5) to satisfy system (1.6). This requirement makes
restrictions on the free parameters αij and, more importantly, on the possible functions F = F(x, y, y′, y′′, y(3)) defining
the ODE.
The main steps when imposing (1.6) on (1.5) are:

(1) equation dθ0 ∧ θ0 ∧ θ2 = 3Ω+ ∧ θ0 ∧ θ1 ∧ θ2 requires α00 = −3α11α44,
(2) the first equation (1.6) gives a relation betweenΩ ,Ω0, dα44 and dα11,
(3) similarly, equation dθ1 ∧ θ1 ∧ θ2 = −Ω− ∧ θ0 ∧ θ1 ∧ θ2 gives a relation betweenΩ−, dα10, dα11,
(4) equation dθ1 ∧ θ0 ∧ θ1 = −2Ω+ ∧ θ0 ∧ θ1 ∧ θ2 gives α22 = −

α11
2α44
,

(5) equation dθ1 ∧ θ0 ∧ θ2 = −(3Ω +Ω0) ∧ θ0 ∧ θ1 ∧ θ2 gives a relation betweenΩ ,Ω0 and dα11,
(6) now, the expressions for dθ2 ∧ θ0 ∧ θ1 ∧ θ3, dθ2 ∧ θ0 ∧ θ1 ∧ θ3, dθ3 ∧ θ0 ∧ θ1 ∧ θ2 enable us to fix α32, α33, and α21
respectively,

(7) considering successively dθ3 ∧ θ0 ∧ θ1, dθ2 ∧ θ0, dθ2 ∧ θ1 ∧ θ2 ∧ θ3 we fix α20, α31, α30,
(8) now the requirement dθ3∧θ0∧θ2∧θ3 = 0 gives the first Bryant condition 4D2F3−8DF2+8F1−6DF3F3+4F2F3−F 33 = 0,
(9) the second of Bryant’s conditions (1.7) is equivalent to the requirement that dθ3 ∧ θ1 ∧ θ2 ∧ θ3 = 0,
(10) now, having Bryant’s conditions determined, it is straightforward to obtain the required system (1.6) and express all

the αij’s in terms of α10, α11 and α44 only,
(11) the expressions for αij’s are given by (2.1); inserting them to (1.5) we get the invariant forms (θ0, θ1, θ2, θ3,Ω+)
(12) formsΩ0,Ω−,Ω are determined by the linear relations from points (2), (3) and (5).

In this way one finds the explicit expressions for the invariant coframe satisfying system (1.6). Instead of giving these
formulae we present formulae for (θ0, θ1, θ2, θ3,Ω+) evaluated at (α10, α11, α44) = (0, 1, 1). Denoting these forms by
(θ00 , θ

1
0 , θ

2
0 , θ

3
0 ,Ω

0
+
), we have
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θ00 = −3ω
0

θ10 = ω
1

θ20 =
1
240

(−24DF3 + 36F2 + 11F 23 )ω
0
+
1
12
F3ω1 −

1
2
ω2

θ30 =
1
720

(
36(DF2 − 4F1)+ 18(DF3 − 2F2)F3 − 7F 23

)
ω0 +

1
240

(36DF3 − 84F2 − 19F 23 )ω
1
−
1
4
F3ω2 +

1
2
ω3

Ω0
+
= −

1
60
(12DF33 − 6F23 + F3F33)ω0 +

1
6
F33ω1 + w+.

The remaining three 1-forms (Ω0,Ω−,Ω), when written in the gauge (α10, α11, α44) = (0, 1, 1), read:

Ω00 =
1
4320

(72DF23 + 432F13 − 288F22 + 60DF33F3 − 216F23F3 − 108DF3F33 + 324F2F33 + 47F 23 F33)θ
0
0

+
1
180

(3DF33 − 9F23 − F3F33)θ10 +
1
6
F33θ20 −

1
12
F3θ40

Ω0
−
=

1
64800

(720DF22 + 288DF3DF33 − 2160F12 − 432DF33F2 + 216DF3F23

+ 216F2F23 + 720DF23F3 − 1080F13F3 − 360F22F3 + 48DF33F 23
− 174F23F 23 − 360DF2F33 + 1440F1F33 + 24DF3F3F33 + 324F2F3F33 + 29F

3
3 F33 + 3600F3y)θ

0
0

+
1
1080

(−108DF23 − 288F13 + 252F22 − 54DF33F3 + 186F23F3 + 66DF3F33 − 252F2F33 − 31F 23 F33)θ
1
0

+
1
90
(12DF33 − 6F23 + F3F33)θ20 +

1
360

(−24DF3 + 36F2 + 11F 23 )θ
4
0

Ω0 =
1
4320

(120DF23 + 240F13 − 240F22 + 36DF33F3 − 168F23F3 − 36DF3F33 + 204F2F33 + 17F 23 F33)θ
0
0

+
1
12
(−DF33 + F 23)θ10 −

1
6
F33θ20 +

1
12
F3θ40 .

All the eight forms (θ0, θ1, θ2, θ3,Ω0
+
,Ω00 ,Ω

0
−
,Ω0) satisfy system (2.4) and (2.5), with corresponding coefficients

(a00, a
0
1, a

0
2, b

0
0, b

0
1, b

0
2, b

0
3, b

0
4) given by:

b04 = −2F333

b03 =
1
12
(−6DF333 − 5F3F333)

b02 =
1
360

(120DF233 + 240F133 − 120F223 + 60DF333F3 − 36DF3F333 + 204F2F333 + 79F 23 F333)

b01 =
1
1080

(−180DF223 − 540F123 + 360F222 − 90DF33F23 + 270F 223 + 90DF3F233 − 540F2F233

− 180DF233F3 − 270F133F3 + 360F223F3 − 45DF333F 23 − 45F233F
2
3 + 90DF23F33 + 90F13F33 − 360F22F33

− 90F23F3F33 + 90F2F 233 + 18DF2F333 − 72F1F333 + 54DF3F3F333 − 288F2F3F333 − 71F
3
3 F333 − 180F33y)

b00 =
1

129600
(−8640DF233DF3 − 12960DF23DF33 − 4320DF2DF333 + 43200DF33y

+ 17280DF333F1 + 129600F113 − 64800F122 − 34560DF33F13 − 86400DF3F133
+ 12960DF233F2 + 194400F133F2 + 30240DF33F22 + 32400DF3F223 − 64800F2F223
+ 6480DF23F23 − 25920F13F23 − 15120F22F23 + 2160DF2F233 − 8640F1F233
− 64800F23y − 6480DF 233F3 − 6480DF3DF333F3 − 21600F123F3 + 10800DF333F2F3
− 10800F222F3 + 25560DF33F23F3 − 18360F 223F3 + 13320DF3F233F3 − 25920F2F233F3
+ 3960DF233F 23 + 50400F133F

2
3 − 28800F223F

2
3 + 2820DF333F

3
3 − 10980F233F

3
3

− 18000DF22F33 + 6480DF3DF33F33 + 86400F12F33 − 28080DF33F2F33
− 11880DF3F23F33 + 10800F2F23F33 − 19080DF23F3F33 + 18720F13F3F33
+ 16920F22F3F33 − 8100DF33F 23 F33 + 7200F23F

2
3 F33 + 7560DF2F

2
33 − 30240F1F

2
33

− 11520F2F3F 233 − 1620F
3
3 F
2
33 + 11664DF

2
3 F333 − 63072DF3F2F333 + 76464F

2
2 F333

− 2520DF2F3F333 + 10080F1F3F333 − 17712DF3F 23 F333 + 42768F2F
2
3 F333 + 5299F

4
3 F333

− 18000F3F33y − 75600F33F3y + 43200F333Fy)

a02 =
1
45
(−18DF333 − 24F233 − 4F 233 − 27F3F333)
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a01 =
1
540

(−72DF233 − 432F133 + 216F223 − 36DF333F3 + 96F233F3 + 48DF33F33 + 16F3F 233
+ 108DF3F333 − 324F2F333 − 81F 23 F333)

a00 =
1
4050

(−180DF223 + 288DF 233 − 4860F123 + 2520F222 − 378DF33F23 + 1782F
2
23

+ 810DF3F233 − 2700F2F233 − 180DF233F3 − 2430F133F3 + 2880F223F3 − 45DF333F 23
+ 435F233F 23 + 810DF23F33 + 810F13F33 − 2520F22F33 + 408DF33F3F33 − 594F23F3F33
+ 810F2F 233 + 122F

2
3 F
2
33 − 270DF2F333 + 1080F1F333 + 270DF3F3F333

− 1080F2F3F333 − 135F 33 F333 + 2700F33y).
One can use these, relatively simple, formulae to generate expressions for the invariant forms on P . This may be achieved
by means of a matrix

m =



α11α
4
4 0 0 0

−
α10

3
α11 0 0

(α10)
2

9α11α44
−
2α10
3α44

α11

α44
0

−(α10)
3

27(α11α44)2
(α10)

2

3α11(α44)2
−

α10

(α44)2

α11

(α44)2


. (3.1)

Then the expression for the invariant 1-forms (θ i) = (θ0, θ1, θ2, θ3) can be written as

θ i = mijθ
j
0, i, j = 0, 1, 2, 3. (3.2)

The residual group G = {m | α11, α44 6= 0, α10 ∈ R} has the Lie algebra g = h2 ⊕ h1 isomorphic to the direct sum of
the 2-dimensional noncommuting Lie algebra h2 and a 1-dimensional Lie algebra h1. Algebra h2 is related to the parameters
(α10, α

4
4) and algebra h1 is associated with α11.

The action of G on θ i0, induces its action on (Ω
0
+
,Ω00 ,Ω

0
−
,Ω0). Indeed, defining

0
Γ = Ω

0
−
E− +Ω0+E+ +Ω

0
0E0 +Ω

0E,
and

Γ = Ω−E− +Ω+E+ +Ω0E0 +ΩE,
where 4× 4 matrices (E−, E+, E0, E) are the generators of the Lie algebra gl(2,R) given in (1.1), we find that

Γ = m
0
Γ m−1 +mdm−1.

This enables us to find the explicit expressions for the invariant forms (Ω+,Ω0,Ω−,Ω).
The transformation rule for Γ resembles the transformation rule for a connection. Since Γ is gl(2,R)-valued, it is

reasonable to look for a GL(2,R) principal fibre bundle associated with the corresponding ODE (2.2).
Due to properties of system (2.4) and (2.5) the desired bundle is just P of Theorem 2.1. To see this, note that Eqs. (2.4)

ensure that (θ1, θ2, θ3, θ4) form a closed differential ideal. Thus a 4-dimensional distribution V on P such that V θ i =
0, ∀i = 0, 1, 2, 3, is integrable. As a consequence, the manifold P is foliated by 4-dimensional integral leaves of this
distribution. Looking at Eq. (2.5) we see that on each leaf of V the forms (Ω+,Ω0,Ω−,Ω) satisfy the Maurer–Cartan
equations for the GL(2,R) group. This means that P is a principal GL(2,R) bundle over the leaf space M4 = P/V . This
4-dimensional space may be identified with a solution space of ODE (2.2).

Remark 3.1. For local calculations, it may be convenient to pass from coordinates (x, y, y1, y2, y3, α10, α11, α44) on P to
coordinates (c0, c1, c2, c3, s, α10, α11, α44) on P , where (c0, c1, c2, c3) are the integration constants of ODE (2.2), and s is
a real parameter such that the total differential vector field D = ∂s. In such parametrisation (s, α10, α11, α44) constitute
coordinates on the leaves of V and (c0, c1, c2, c3) parametrise the solution spaceM4.

4. GL(2, R) geometry on the solution space

Using matrices Γ = (Γ ij), i, j = 0, 1, 2, 3, and part θ i = (θ0, θ1, θ2, θ3) of the invariant coframe we rewrite Eq. (2.4) in
a compact form as:

dθ i + Γ ij ∧ θ j = 0, (4.1)
and Eq. (2.5) in a compact form as:

dΓ ik + Γ ij ∧ Γ jk =
1
2
Rikjlθ j ∧ θ l. (4.2)
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The coefficients Rijkl appearing in this last equation can be easily read off from (2.5). They are linear combinations of the
coefficients a0, a1, a2, a3, b0, b1, b2, b3, b4 of (2.5). The meaning of Eq. (4.1)–(4.2) is obvious: they constitute, respectively,
the first and the second Cartan’s structure equations, for a gl(2,R)-valued connection Γ on the principal fibre bundle
GL(2,R)→ P → M4. Due to the first equation, (4.1), this connection has no torsion. The second equation, (4.2), determines
the curvature of Γ ; the coefficients Rijkl are the curvature tensor coefficients for Γ .
Given the curvature tensor Rijkl of Γ we define its ‘Ricci’ tensor Rjl by
Rjl = Rijil.

Recalling that the curvature of Γ is totally expressible in terms of a0, a1, a2, a3, b0, b1, b2, b3, b4 and performing a purely
algebraic manipulation on the curvature tensor coefficients Rijkl, we get a remarkable theorem.

Theorem 4.1. Every fourth-order ODE satisfying conditions (2.3) uniquely defines a principal fibre bundle GL(2,R)→ P → M4
over the space of its solutions M4 and a torsionless gl(2,R)-connection Γ on P with curvature Rijkl having the Ricci tensor Rjl in
the form

Rjl =

 0 b0 a0 + 2b1 −a1 + b2
−b0 −2a0 a1 + 3b2 a2 + 2b3

a0 − 2b1 a1 − 3b2 −2a2 b4
−a1 − b2 a2 − 2b3 −b4 0

 .
Its respective symmetric and antisymmetric parts read:

R(jl) =

 0 0 a0 −a1
0 −2a0 a1 a2
a0 a1 −2a2 0
−a1 a2 0 0

 ,
and

R[jl] =

 0 b0 2b1 b2
−b0 0 3b2 2b3
−2b1 −3b2 0 b4
−b2 −2b3 −b4 0

 .
Thus the entire curvature tensor Rijkl is encoded in the Ricci tensor.

Remark 4.2. Note that we also have Ri ikl = 2R[kl].
Nowwe can usematrixm of the previous section to find explicit formulae for the coefficients a0, a1, a2, a3, b0, b1, b2, b3,

b4. It follows that if we evaluate Rij for (α10, α11, α44) = (0, 1, 1), denoting the calculated Rij by R0ij, then the full Ricci tensor
Rij is related to R0ij via

Rij = R0klm
−1k

im−1
l
j. (4.3)

Here m−1 = (m−1jj) is the inverse matrix to m. From this expression we can calculate the explicit form of
a0, a1, a2, a3, b0, b1, b2, b3, b4. The resulting formulae involve coefficients a00, a

0
1, a

0
2, a

0
3, b

0
0, b

0
1, b

0
2, b

0
3, b

0
4 of the previous

section and parameters α10, α11, α44 and read:

b4 =
(α44)

3

(α11)2
b04

b3 =
(α44)

2

(α11)2
b03 +

α10(α
4
4)
2

3(α11)3
b04

b2 =
α44

(α11)2
b02 +

2α10α44
3(α11)3

b03 +
(α10)

2α44

9(α11)4
b04

b1 =
1

(α11)2
b01 +

α10

(α11)3
b02 +

(α10)
2

(3α11)4
b03 +

(α10)
3

27(α11)5
b04

b0 =
1

(α11)
2α4
4

b00 +
4α10

3(α11)3α44
b01 +

2(α10)2

3(α11)4α44
b02 +

4(α10)3

27(α11)5α44
b03 +

(α10)
4

81(α11)6α44
b04,

a2 =
(α44)

2

(α11)2
a02

a1 =
α44

(α11)2
a01 −

α10α
4
4

3(α11)3
a02

a0 =
1

(α11)2
a00 −

2α10
3(α11)3

a01 +
(α10)

2

9(α11)4
a02.

(4.4)
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This, in particular, means that the respective spaces consisting of (b00, b
0
1, b

0
2, b

0
3, b

0
4) and of (a

0
0, a

0
1, a

0
2) constitute a 5-

dimensional and 3-dimensional representation of G and, as a consequence of GL(2,R).
Due to (4.3) the vanishing of any of the two determinants:

det(R(ij)) and det(R[ij])

is a contact invariant property of the corresponding fourth-order ODE (1.2). These two determinants, when expressed in
terms of the eight curvature coefficients a0, a1, a2, b0, b1, b2, b3, b4, are

det(R(ij)) = (a21 − a0a2)
2

and

det(R[ij]) = (3b22 − 4b1b3 + b0b4)
2.

Thus they are expressible in terms of the two well-known GL(2,R)-invariant polynomials

I2 = a21 − a0a2 and I3 = 3b22 − 4b1b3 + b0b4.

Remark 4.3. In this context it is interesting to note that function F = (y3)(4/3) of the well-known example (1.8), provides a
contact equivalent class of ODEs that has both invariants I2 and I3 vanishing.

Interestingly, the next GL(2,R)-invariant polynomial

I4 = −3(θ1)2(θ2)2 + 4θ0(θ2)3 + 4(θ1)3θ3 − 6θ0θ1θ2θ3 + (θ0)2(θ3)2,

when considered as defined on P in terms of forms (θ0, θ1, θ2, θ3) of the invariant coframe (θ0, θ1, θ2, θ3,Ω+,Ω−,Ω0,Ω),
has the following property:

LX I4 = 12(X Ω)I4,

where X ∈ V is any vertical vector field on GL(2,R)→ P → M4. Thus I4 descends to a well-defined conformal symmetric
tensor of fourth degree on the solution spaceM4 of the ODE [12]. Let us denote the descended toM4 tensor I4 by Υ . It is also
worth mentioning that, for the vertical vectors X ∈ V , we have

LXΩ = d(X Ω).

This means that on the solution spaceM4 the formΩ is defined up to a gradient. It is convenient to rescaleΩ and to define
a 1-form A on P equal to

A = −12Ω.

This form is also defined up to a gradient on the solution space M4. Thus, a solution space M4 of any fourth-order ODE
satisfying (2.3) is equipped with a sort of Weyl geometry [Υ , A]. This consists of class of pairs (Υ , A), in which Υ is a fourth-
order symmetric tensor field, A is a 1-form onM4, and two pairs (Υ , A) and (Υ ′, A′) represent the same class iff

Υ ′ = e4φΥ , A′ = A− 4dφ.

In the context of this gauge freedom, it is worth noting that the vanishing of R[ij] corresponds to the [Υ , A] geometries on
M4 with form A that can be gauged to A = 0. Such a situation occurs if and only if bi = 0 for all i = 0, 1, 2, 3, 4.

Remark 4.4. In terms of the Weyl-like geometry [Υ , A] on the solution space M4, the gl(2,R)-valued connection may be
defined as the unique torsionless connection satisfying

∇XΥ = −A(X)Υ .

Thus we have the following theorem.

Theorem 4.5. Every fourth-orderODE y(4) = F(x, y, y′, y′′, y(3)) satisfying Bryant’s conditions (2.3)uniquely defines a conformal
Weyl-like geometry [Υ , A] on its solution space M4. The Weyl-like geometry [Υ , A] consists of a symmetric fourth rank tensor Υ
and a 1-form A given up to transformations

Υ ′ = e4φΥ , A′ = A− 4dφ.

Its corresponding gl(2,R)-valued connection has no torsion and very special curvature tensor described by Theorem 4.1.

5. Examples

5.1. Equations with symmetric Ricci tensor

There is only one contact equivalence class of ODEs (2.2) having an 8-dimensional group of contact symmetries. This is
equivalent to y(4) = 0 and the symmetry group is GL(2,R)×ρ R4. For this class of equations the gl(2,R)-valued connection
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of Theorem 4.1 is flat. In this section we focus on the equivalence classes of ODEs (2.2) for which the Maxwell form
dA = −12dΩ of this connection is flat dF = 0. In such a case we have b0 = b1 = b2 = b3 = b4 = 0.
Let us assume that we are in this situation.
Looking at the transformation properties (4.4) of the curvature coefficient a2, we see that there are essentially twodistinct

cases distinguished by the vanishing or not of the expression a02 =
1
45 (−18DF333 − 24F233 − 4F

2
33 − 27F3F333).

We analyse the more easy case a02 = 0 first.
If a02 = 0, then also a2 = 0. Thuswehave a2 = 0 everywhere on P with the full system (2.4) and (2.5) of eight independent

1-forms θ1, θ2, θ3,Ω+,Ω0,Ω−,Ω there. Imposing (d2Ω+) ∧ θ1 ∧ θ2 = 0 on (2.4) and (2.5) quickly leads to a1 = 0 and,
consequently, by imposition of (d2Ω+) ∧ θ1 = 0, to a0 = 0. This shows that if a02 = 0 then the corresponding ODEs (2.2)
are contact equivalent to y(4) = 0.
Now we assume that a02 6= 0. Then the choice

α11 =

√
2
4
α44

√
|a02|

brings a2 to the form

a2 = 8ε1,

where ε1 = sgn(a02). Then the choice

α10 =
3
√
2
4
ε1α

4
4
a01√
|a02|

makes

a1 = 0.

After these two normalisations we get

a0 =
8ε1

(α44a02)2
(a00a

0
2 − (a

0
1)
2).

Thus again we have two cases, depending on the vanishing or not of the invariant I02 = (a
0
1)
2
− a00a

0
2.

It follows that the I02 = 0 case,which under our assumptions is the same as a0 = 0, corresponds to only onenonequivalent
class of equations. They are defined by ε1 = 1 (the ε1 = −1 case is not compatible with system (2.4) and (2.5)), and are
described by the following theorem.

Theorem 5.1. All ODEs y(4) = F(x, y, y′, y′′, y(3)) satisfying Bryant’s conditions (2.3), having symmetric Ricci tensor, and
invariants I2 = 0 and a2 6= 0, are in local one-to-one correspondence with coframes (θ0, θ1, θ2, θ3,Ω+,Ω) on a 6-manifold
satisfying:

dθ0 = 12Ω ∧ θ0 − 3Ω+ ∧ θ1 +
3
√
2
2
θ0 ∧ θ2

dθ1 = 6Ω ∧ θ1 − 2Ω+ ∧ θ2 +

√
2
2
(θ0 ∧ θ3 + θ1 ∧ θ2)

dθ2 = −Ω+ ∧ θ3 +
√
2θ1 ∧ θ3

dθ3 = −6Ω ∧ θ3 + 3
√
2θ2 ∧ θ3

dΩ+ = 6Ω ∧Ω+ +
√
2Ω+ ∧ θ2 + θ0 ∧ θ3 − 5θ1 ∧ θ2

dΩ = 0.

The formsΩ andΩ0 are given by

Ω− =

√
2
2
θ3, Ω0 = 3Ω −

√
2
2
θ2.

All the equations having such invariant forms are equivalent to an ODE defined by

F =
4
3
y23
y2
.

This class has strictly 6-dimensional group of contact symmetries.
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Now we pass to the I02 6= 0 case. We introduce ε2 = ±1, which encodes the sign of I
0
2 . This is defined by ε1ε2(a

0
0a
0
2 −

(a01)
2) > 0. Now we choose

α44 =

√
ε1ε2(a00a

0
2 − (a

0
1)
2)

(a02)2
.

This normalises a0 to

a0 = 8ε2.

Under such normalisations system (2.4) and (2.5) descends from P to the 5-dimensional jet space J . There, it
reads:

dθ0 = 3(Ω +Ω0) ∧ θ0 − 3Ω+ ∧ θ1

dθ1 = −Ω− ∧ θ0 + (3Ω +Ω0) ∧ θ1 − 2Ω+ ∧ θ2

dθ2 = −2Ω− ∧ θ1 + (3Ω −Ω0) ∧ θ2 −Ω+ ∧ θ3

dθ3 = −3Ω− ∧ θ2 + 3(Ω −Ω0) ∧ θ3

dΩ+ = 2Ω0 ∧Ω+ − 2ε2θ0 ∧ θ1 + ε1(θ0 ∧ θ3 − 5θ1 ∧ θ2)

dΩ− = −2Ω0 ∧Ω− + ε2(−θ0 ∧ θ3 + 5θ1 ∧ θ2)+ 2ε1θ2 ∧ θ3

dΩ0 = Ω+ ∧Ω− − ε2θ0 ∧ θ2 − ε1θ1 ∧ θ3

dΩ = 0.

To close this system it is convenient to eliminate form Ω . This can be achieved by an introduction of new forms
(σ 0, σ 1, σ 2, σ 3) related to (θ0, θ1, θ2, θ3) via:

σ 0 = ewθ0, σ 1 = ewθ1, σ 2 = ewθ2, σ 3 = ewθ3,

where w is a function on J such that Ω = −
1
3dw. The local existence of such a function is guaranteed by dΩ =

0. In terms of the new variables (σ 0, σ 1, σ 2, σ 3), w, the reduced system takes a form in which the 1-form Ω is not
present:

dσ 0 = 3Ω0 ∧ σ 0 − 3Ω+ ∧ σ 1

dσ 1 = −Ω− ∧ σ 0 +Ω0 ∧ σ 1 − 2Ω+ ∧ σ 2

dσ 2 = −2Ω− ∧ σ 1 −Ω0 ∧ σ 2 −Ω+ ∧ σ 3

dσ 3 = −3Ω− ∧ σ 2 − 3Ω0 ∧ σ 3

dΩ+ = 2Ω0 ∧Ω+ + e−2w
(
−2ε2σ 0 ∧ σ 1 + ε1(σ 0 ∧ σ 3 − 5σ 1 ∧ σ 2)

)
dΩ− = −2Ω0 ∧Ω− + e−2w

(
ε2(−σ

0
∧ σ 3 + 5σ 1 ∧ σ 2)+ 2ε1σ 2 ∧ σ 3

)
dΩ0 = Ω+ ∧Ω− − e−2w

(
ε2σ

0
∧ σ 2 + ε1σ

1
∧ σ 3

)
.

(5.1)

As we can see, the price paid for the elimination ofΩ is the introduction of a nonconstant function w appearing explicitly
in these equations.
Now the remarkable fact is that system (5.1) closes on J and is described by the following theorem.

Theorem 5.2. All ODEs y(4) = F
(
x, y, y′, y′′, y(3)

)
satisfying Bryant’s conditions (2.3), having symmetric Ricci tensor, and

invariants I2 6= 0 and a2 6= 0, are in local one-to-one correspondence with coframes (σ 0, σ 1, σ 2, σ 3,Ω+) on a 5-manifold
satisfying system (5.1) with:

Ω0 = w0σ
0
− (w1 + 4ε1ε2w3)σ 1 + (4ε1ε2w0 + w2)σ 2 − w3σ 3

Ω− = −ε1ε2Ω+ − 2(ε1ε2w1 + 2w3)σ 0 + 2w0σ1 + 2ε1ε2w3σ 2 − 2(2ε1ε2w0 + w2)σ 3.
(5.2)

Functionsw,w0, w1, w2, w3 appearing here are defined by:

dw = w0σ 0 + w1σ 1 + w2σ 2 + w3σ 3. (5.3)
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They satisfy

dw0 = −ε1ε2w1Ω+ +
1
4
(−ε2e−2w + 4w20 + 16w1w3 + 32ε1ε2w

2
3)σ

0
+ 3w0w1σ 1

− (−ε1ε2w13 − 11w0w2 − 4ε1ε2w22 + 5ε1ε2w1w3 + 12w
2
3)σ

2
+ (11w0 + 4ε1ε2w2)w3σ 3

dw1 = (3w0 − 2ε1ε2w2)Ω+ + (−3w0w1 − 4ε1ε2w1w2 − 12ε1ε2w0w3 − 8w2w3)σ 0

−
1
4
(3ε1e−2w + 24ε1ε2w20 − 20w

2
1 + 8ε1ε2w13 + 64w0w2 + 32ε1ε2w

2
2 − 120ε1ε2w1w3 − 192w

2
3)σ

1

− (12w0w1ε1ε2 + w1w2 + 30w0w3 + 4ε1ε2w2w3)σ 2 + w13σ 3

dw2 = (2w1 − 3ε1ε2w3)Ω+ +
1
2
(24ε1ε2w20 + 2ε1ε2w13 + 30w0w2 + 8ε1ε2w

2
2 − 26ε1ε2w1w3 − 48w

2
3)σ

0

− (8ε1ε2w0w1 + w1w2 + 24w0w3 + 12ε1ε2w2w3)σ 1

+
1
4
(−3ε2e−2w + 96w20 − 8w13 − 12w

2
2 + 40w1w3 + 96ε1ε2w

2
3)σ

2
− 3(8ε1ε2w0 + 3w2)w3σ 3

dw3 = w2Ω+ + (4ε1ε2w0w1 + 2w1w2 + 11w0w3 + 4ε1ε2w2w3)σ 0

+ (w13 + 8ε1ε2w0w2 + 4w22 − 4w1w3 − 12ε1ε2w
2
3)σ

1
+ w2w3σ

2

+
1
4
(−ε1e−2w + 32ε1ε2w20 + 32w0w2 + 8ε1ε2w

2
2 + 4w

2
3)σ

3,

(5.4)

with a functionw13 satisfying

dw13 = (−12ε1ε2w0w1 − w1w2 + 45w0w3 + 30ε1ε2w2w3)Ω+

+
1
2
(−6ε2w0e−2w − 240w30 + 40ε1ε2w0w

2
1 − 16w0w13 + 5ε1w2e

−2w

− 472ε1ε2w20w2 + 20w
2
1w2 − 16ε1ε2w13w2 − 304w0w

2
2 − 64ε1ε2w

3
2

+ 384w0w1w3 + 192ε1ε2w1w2w3 + 552ε1ε2w0w23 + 272w2w
2
3)σ

0

−
1
4
(20ε2w1e−2w − 256w20w1 − 28w1w13 − 416ε1ε2w0w1w2 − 144w1w

2
2

+ 15ε1w3e−2w − 840ε1ε2w20w3 + 20w
2
1w3 − 24ε1ε2w13w3 − 1440w0w2w3

− 480ε1ε2w22w3 − 40ε1ε2w1w
2
3 − 192w

3
3)σ

1
−
1
2
(−15ε1w0e−2w + 480ε1ε2w30 − 24ε1ε2w0w13

− 2ε2w2e−2w + 544w20w2 − 16w13w2 + 184ε1ε2w0w
2
2 + 16w

3
2 + 240ε1ε2w0w1w3 + 80w1w2w3

+ 588w0w23 + 184ε1ε2w2w
2
3)σ

2
−
1
4
(5ε1w1e−2w − 160ε1ε2w20w1 − 160w0w1w2 − 40ε1ε2w1w

2
2

+ 36ε2w3e−2w − 1152w20w3 − 28w13w3 − 1152ε1ε2w0w2w3 − 288w
2
2w3 + 20w1w

2
3)σ

3.

(5.5)

System (5.1)–(5.5) is closed, meaning that d2 = 0 does not imply any further relations between forms σ 0, σ 1, σ 2, σ 3,Ω+
and functionsw,w0, w1, w2, w3, w13.

We easily see that the assumption that all w,w0, w1, w2, w3, w13 are constant is incompatible with system (5.1)–(5.5).
Finding any solution to system (5.1)–(5.5) is a difficult task.

5.2. Inhomogeneous examples

Here we present examples of contact equivalent classes of fourth-order ODEs satisfying Bryant’s conditions (2.3) which
are not homogeneous. By this we mean they do not admit a transitive contact symmetry group of dimension greater than
four. We consider an ansatz in which function F depends in a special way on only two coordinates y2 and y3. Explicitly:

F = (y2)2 q
(
y23
y32

)
, (5.6)

where q = q(z) is a sufficiently differentiable real function of its argument

z =
y23
y32
.
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Imposing Bryant’s conditions (2.3) on (5.6) we find the following proposition.

Proposition 5.3. Function F of (5.6) satisfies Bryant’s conditions (2.3) if and only if

(a) either:

6z(3z − 2q)q′′ + 3zq′2 − 6qq′ + 4q = 0,

(b) or:

6z(3z − 2q)q′′ + 3zq′2 − 6qq′ + 14q− 15z = 0.

The special solutions of (a) are: q(z) = 0 and q(z) = 4
3 z. In case (b), we have q(z) = 3z and q(z) =

5
3 z as special solutions.

Writing these four solutions as q(z) = cz, we remark that in cases c = 0 and c = 3, function F defines a fourth-order ODE
which is contact equivalent to y(4) = 0. Cases c = 4

3 and c =
5
3 define two different F ’s, but the corresponding fourth-order

ODEs are contact equivalent. They both are equivalent to the ODE described by Theorem 5.1.
We emphasise that apart from the singular solutions q = cz, equation (a) or (b) admits a two-parameter family of

solutions. Every solution q = q(z) from these two families leads to a fourth-order ODE which satisfies Bryant’s conditions
(2.3) andwhich is inhomogeneous. Remarkably all Bryant’s F ’s which are defined by ansatz (5.6) have I3 = I4 = 0, but a2 6= 0
and b4 6= 0. Thus, in particular, dA 6= 0 for them.
We were unable to find any example of Bryant’s ODEs for which at least one of I2 or I3 is not vanishing.
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