
Annali di Matematica (2011) 190:295–340
DOI 10.1007/s10231-010-0151-4

Sharp version of the Goldberg–Sachs theorem

A. Rod Gover · C. Denson Hill · Paweł Nurowski

Received: 13 December 2009 / Accepted: 28 May 2010 / Published online: 20 June 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We reexamine from first principles the classical Goldberg–Sachs theorem from
General Relativity. We cast it into the form valid for complex metrics, as well as real metrics
of any signature. We obtain the sharpest conditions on the derivatives of the curvature that
are sufficient for the implication (integrability of a field of alpha planes)⇒(algebraic degen-
eracy of the Weyl tensor). With every integrable field of alpha planes, we associate a natural
connection, in terms of which these conditions have a very simple form.
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1 Introduction

The original Goldberg–Sachs theorem of General Relativity [4] is a statement about Ricci flat
4-dimensional Lorentzian manifolds. Nowadays, it is often stated in the following, slightly
stronger, form:

Theorem 1.1 Let (M, g) be a 4-dimensional Lorentzian manifold which satisfies the
Einstein equations Ric(g) = �g. Then it locally admits a congruence of null and shearfree
geodesics if and only if its Weyl tensor is algebraically special.

If (M, g) is conformally flat, then such a spacetime admits infinitely many congruences of
null and shearfree geodesics.

This theorem proved to be very useful in General Relativity, especially during the ‘golden
era’ of General Relativity in the 1960s, when the important Einstein spacetimes, such as
Kerr-Newman, were constructed.

Remarkably, years after the Lorentzian version was first stated, it was pointed out that
the theorem has a Riemannian analog [21]. This gives a very powerful local result in
4-dimensional Riemannian geometry, which can be stated as follows [15,16]:

Theorem 1.2 Let (M, g) be a 4-dimensional Riemannian manifold which satisfies the
Einstein equations Ric(g) = �g. Then it is locally a hermitian manifold if and only if
its Weyl tensor is algebraically special.

Note that the notion of a congruence of null and shearfree geodesics, in the Lorentzian case,
is replaced by the notion of a complex surface with an orthogonal complex structure, in the
Riemannian case. Also in this case, if (M, g) is conformally flat, it admits infinitely many
local hermitian structures.

Theorem 1.2 was in particular used by LeBrun [11] to obtain all compact complex surfaces,
which admit an Einstein metric that is hermitian but not Kähler, (see also [3,12]).

The only other signature which, in addition to the Lorentzian and Euclidean signatures, a
four-dimensional metric may have, is the ‘split signature’: (+,+,−,−). It is again remark-
able, that the Goldberg–Sachs theorem has also its split signature version. Here, however,
the situation is more complicated, and the theorem should be split into two statements:
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Theorem 1.3 Let (M, g) be a 4-dimensional manifold equipped with a split signature met-
ric which satisfies the Einstein equations Ric(g) = �g. If in addition (M, g) is either
locally a pseudohermitian manifold, or it is locally foliated by real 2-dimensional totally null
submanifolds, then (M, g) has an algebraically special Weyl tensor.

Theorem 1.4 Let (M, g) be a 4-dimensional manifold equipped with a split signature metric
which satisfies the Einstein equations Ric(g) = �g and which is conformally non-flat. If in
addition (M, g) has an algebraically special Weyl tensor with a multiple principal totally null
field of 2-planes having locally constant real index, then it is either locally a pseudohermitian
manifold, or it is locally foliated by real 2-dimensional totally null submanifolds.

In these two theorems, the term ‘pseudohermitian manifold’ means: ‘a complex manifold
with a complex structure which is an orthogonal transformation for the split signature metric
g′. The more complicated terms such as ‘multiple principal totally null field of 2-planes
having locally constant real index’ will be explained in Sect. 3.

All four theorems have in common the part concerned with the Einstein assumption and
algebraic speciality of the Weyl tensor. But they look quite different on the other side of the
equivalence. The similarity in the first part suggests that also the second part should have a
unified description. This is indeed the case. As will be shown in the sequel, these theorems are
consequences, or better said, appropriate interpretations, of the following complex theorem
[19,20]:

Theorem 1.5 Let (M, g) be a 4-dimensional manifold equipped with a complex valued
metric g which is Einstein. Then the following two conditions are equivalent:

(i) (M, g) admits a complex two-dimensional totally null distribution N ⊂ TCM, which
is integrable in the sense that [N , N ] ⊂ N .

(ii) The Weyl tensor of (M, g) is algebraically special.

2 Convenient sharper versions

Our motivation for reexamining these theorems is as follows:
First, as remarked e.g. by Trautman [26], all the theorems have an aesthetic defect. This

is due to the fact that both equivalence conditions, such as (i) and (ii) in Theorem 1.5, are
conformal properties of (M, g); the Einstein assumption does not share this symmetry. Of
course, a way out is to replace the Einstein assumption by an assumption about (M, g)

being conformal to Einstein, see e.g. [5]. Thus, in the complex version of the theorem the
assumption should be: (M, g) is conformal to Einstein.

This leads to the question about the weakest conformal assumption involving (the deriva-
tives of) the Ricci part of the curvature that is sufficient to ensure the thesis of the Goldberg–
Sachs theorem. Several authors have proposed their assumptions here (see [9,18,22–24]).
For example, the authors of [9,18,24] use an assumption, which involves contractions of (the
derivatives of) the Ricci tensor with the vectors spanning the totally null distribution N .

Trautman in [26] has a different point of view. He proposes that there should be a con-
formally invariant assumption which does not refer to the thesis of the theorem. Trautman
conjectures that a proper replacement for the assumption is: (M, g) is Bach flat. This, in
four dimensions, is certainly conformal, does not refer to N , and is necessary for g to be
conformal to Einstein.
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In this paper, among other things, we show that the approach of [9,18,24] is the proper
one. In particular in Sect. 7.4, we show that in the case of a Riemannian signature metric,
Trautman’s conjecture is not true.

Our new analysis of the Goldberg–Sachs theorem starts with Theorem 5.10. Its proof
shows that it is rather hard to find a single curvature condition, different than the con-
formally Einstein one, which would guarantee equivalence in the thesis of Goldberg and
Sachs. This proof also clearly shows that it is the implication (algebraical speciali t y) ⇒
(integrabili t y o f totally null 2 − planes) that causes the difficulties. Then in Sect.
5.2 we give various generalizations of the Goldberg–Sachs theorem to the conformal set-
ting, starting with the conformal replacement of the assumption of Theorem 5.10 which
implies (algebraical speciali t y) ⇒ (integrabili t y o f totally null 2-planes). This
culminates in a slight improvement of the theorem of Penrose and Rindler [18], which
we give in our Theorem 5.28, and in Theorems 5.31 and 5.32, which treat more spe-
cial cases. These three theorems we consider as the sharpest conformal improvement
of the classical Goldberg–Sachs theorem, in a sense that they include both implica-
tions (algebraical speciali t y) ⇒ (integrabili t y o f totally null 2 − planes) and
(algebraical speciali t y) ⇐ (integrabili t y o f totally null 2-planes). In Sect. 7, the
real versions of theorems from Sect. 5.2 are considered, the most striking of them being:

Theorem 2.1 Let M be a 4-dimensional oriented manifold with a (real) metric g of
Riemannian signature, whose self-dual part of the Weyl tensor is non-vanishing. Let J be
a metric compatible almost complex structure on M such that its holomorphic distribution
N = T(1,0)M is self-dual. Then any two of the following imply the third:

(0) The Cotton tensor of g is degenerate on N , A|N ≡ 0.
(i) J has vanishing Nijenhuis tensor on M, meaning that (M, g, J ) is a hermitian manifold.

(ii) The self-dual part of the Weyl tensor is algebraically special on M with N as a field of
multiple principal self-dual totally null 2-planes.

This theorem in its (more complicated) Lorentzian version is present in [9,18,24]. The
Riemannian version is implicit there, once one understands the relation between fields of
totally null 2-planes and almost hermitian structures, as for example, explained in [15,16],
(see also [1] where these developments are related to global issues on compact Riemannian
manifolds.)

When one is only interested in the implication (algebraical speciali t y) ⇒
(integrabili t yo f totally null 2-planes), our proposal for the sharpest version of the
Goldberg–Sachs theorem, is given in Theorem 5.21. This gets its final version in
Theorem 6.5. This last theorem utilizes a new object which we introduce in this paper,
namely a connection, which is naturally associated with each integrable field of totally null
2-planes N . We call this connection the characteristic connection of a field of totally null
2-planes.

If N satisfies the integrability conditions [N , N ] ⊂ N , we prove in Theorem 6.1 the exis-

tence of a class of connections
W∇, which are characterized by the following two conditions:

W∇X N ⊂ N
W∇X g = −B(X)g

for all X ∈ TN .

These connections are not canonical—they define the 1-form B only partially. However, they
naturally restrict to a unique (partial) connection ∇̌ on N . This by definition is the charac-
teristic connection of N . In general this connection is complex. It is defined everywhere on
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M, but it only enables one to differentiate vectors from N along vectors from N . Thus, the
connection ∇̌ is effectively 2-dimensional, and as such, its curvature Ř A

BC D has only one
independent component. It follows that

Ř A
BC D = 4�1δ

A
BεC D,

where �1 is the Weyl tensor component whose non-vanishing is the obstruction to the alge-
braic speciality of the metric. The symbol δA

B is the Kronecker delta (i.e. the identity) on N
and the εC D is the 2-dimensional antisymmetric tensor. The Ricci tensor ŘAB = ŘC

AC B for

∇̌ is then ŘAB = 4�1εAB and is antisymmetric.
Now the replacement for the Einstein condition in the Goldberg–Sachs theorem, in its

(integrabili t y o f N ) ⇒ (algebraical speciali t y) part, is

∇̌[A∇̌B] ŘC D ≡ 0,

as is explained in Theorem 6.5.
An interesting situation occurs in the Riemannian (and also in the split signature) case.

There, the reality conditions imposed on the 1-form B defining the class of connections
W∇,

choose a prefered connection from the class. This connection yields more information than
the partial connection. Using this connection we get Theorem 7.16, which is a slightly more
elegant (pseudo)hermitian version of the signature independent Theorem 6.5.

3 Totally null 2-planes in four dimensions

To discuss the geometrical meaning of the complex version of the Goldberg–Sachs theorem,
we recall the known [7] properties of totally null 2-planes as we range over the possible
signatures of 4-dimensional metrics.

Let V be a 4-dimensional real vector space equipped with a metric g, of some signature.
Given V and g, we consider their complexifications. Thus, we have V C and the metric g
which is extended to act on complexified vectors of the form v1 + iv2, v1, v2 ∈ V , via:
g(v1 + iv2, v

′
1 + iv′

2) = g(v1, v
′
1) − g(v2, v

′
2) + i(g(v1, v

′
2) + g(v2, v

′
1)).

Let N be a 2-complex-dimensional vector subspace in V C, N ⊂ V C, with the property
that g identically vanishes on N , g|N ≡ 0. In other words: N is a 2-complex-dimensional
vector subspace of V C such that for all n1 and n2 from V C we have g(n1, n2) = 0. This is
the definition of N being totally null.

Such N s exist irrespectively of the signature of g. In fact, let (e1, e2, e3, e4) be an ortho-
normal basis for g in V . Then, if the metric has signature (+,+,+,+), an example of N is
given by

NE = SpanC(e1 + ie2, e3 + ie4).

If the metric has Lorentzian signature (+,+,+,−) then we chose the basis so that g(e1, e1) =
g(e2, e2) = g(e3, e3) = 1 = −g(e4, e4), and as an example of N we take

NL = SpanC(e1 + ie2, e3 + e4).

In the case of split signature (+,+,−,−), we have g(e1, e1) = g(e2, e2) = 1, g(e3, e3) =
g(e4, e4) = −1, and we distinguish two different classes of 2-dimensional totally null N s.
As an example of the first class, we take

NSc = SpanC(e1 + ie2, e3 + ie4),
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and as an example of the second class we take

NSr = SpanC(e1 + e3, e2 + e4).

If V is a complex 4-dimensional vector space with a complex metric g, the notion
of a totally null 2-dimensional vector subspace N still makes sense: these are simply
2-dimensional complex vector subspaces N ⊂ V for which g|N ≡ 0.

Irrespective of the fact if the 2-dimensional totally null vector space N is defined in terms
of a complex vector space V with a complex metric, or in terms of (V C, g) in which V is
real and g is the complexified real metric g, choosing an orientation in V , one can check that
N is always either self-dual or anti-self-dual (see e.g. [17]). By this we mean that we always
have

• either: ∗(n1 ∧ n2) = n1 ∧ n2 for all n1, n2 ∈ N ,
• or: ∗(n1 ∧ n2) = −n1 ∧ n2 for all n1, n2 ∈ N ,

where ∗ denotes the Hodge star operator. Thus, the property of being self-dual or anti-
self-dual (partially) characterizes totally null 2-planes.

In case of real V , irrespective of the metric signature, totally null spaces in V C may be
further characterized by their real index [7]. This is defined as follows:

Given a vector subspace N ⊂ V C one considers its complex conjugate

N̄ = {w ∈ V C | w̄ ∈ N }.
Then the intersection N ∩ N̄ is the complexification of a real vector space, say K, and the
real index of N is by definition the real dimension of K, or the complex dimension of N ∩N̄ ,
which is the same.

In our examples above, NE and NSc have real index zero, NL has real index one and NSr

has real index two. These are examples of a general fact, discussed in any dimension in [7],
which when specialized to a four dimensional V , reads:

– If g has Euclidean signature, (+,+,+,+), then every 2-dimensional totally null space
N in the complexification V C has real index zero;

– If g has Lorentzian signature, (+,+,+,−), then every 2-dimensional totally null space
N in the complexification V C has real index one;

– If g has split signature, (+,+,−,−), then a 2-dimensional totally null space N in the
complexification V C has either real index zero or two;

– In either signature, the spaces of all N s with indices zero or one are generic—they form
real 2-dimensional manifolds; in the split signature the spaces of all N s with index two
are special—they form a real manifold of dimension one.

If we have a 2-dimensional totally null N with real index zero then V C = N ⊕ N̄ . This
enables us to equip the real vector space V with a complex structure J , by declaring that the
holomorphic vector space V (1,0) of this complex structure is N . In other words, J is defined
as a linear operator in V such that, after complexification, J (N ) = iN . Due to the fact that
N is totally null, the so defined J is hermitian, g(Jv1, Jv2) = g(v1, v2) for all v1, v2 ∈ V .
Thus, a totally null N of real index zero in dimension four defines a hermitian structure J in
the corresponding 4-dimensional real vector space (V, g). Also the converse is true. For if
we have (V, g, J ) in real dimension four, we define N by N = V (1,0), i.e. we declare that N
is just the holomorphic vector space for J . Due to the fact that J is hermitian, and because
of the assumed Euclidean or split signature of the metric, N is totally null and has real index
zero. This proves the following
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Proposition 3.1 There is a one to one correspondence between (pseudo)hermitian structures
J in a four-dimensional real vector space (V, g), equipped with a metric of either Euclidean
or split signature, and 2-dimensional totally null planes N ⊂ V C with real index zero.

In the Lorentzian case, where all N s have index one, every N defines a 1-real-dimensional
vector space K. This is spanned by a real vector, say k, which is null, as it is a vector from N .
The space K⊥ orthogonal to K includes K, K ⊂ K⊥. Its complexification (K⊥)C = N + N̄ .
The quotient space H = K⊥/K has real dimension two, and acquires a complex structure
in a similar way as V did in the Euclidean/split case. Indeed, we define J in H by declaring
that its holomorphic space H(1,0) coincides with the 2-dimensional complex vector space
(N + N̄ )/(N ∩ N̄ ). This shows that a 2-dimensional totally null N , in the complexification
of a Lorentzian 4-dimensional (V, g), defines a real null direction k in V together with a
complex structure J in the quotient space K⊥/K, K = Rk. One can easily see that also the
converse is true, and we have the following

Proposition 3.2 There is a one to one correspondence between 2-dimensional totally
null planes N , in the complexification of a four-dimensional oriented and time oriented
Lorentzian vector space (V, g), and null directions K = Rk in V together with their associ-
ated complex structures J in K⊥/K.

The last case, in which the signature of g is split, (+,+,−,−), and in which the N s have
real index 2, provides us with a real 2-dimensional totally null plane in V . Thus, we have

Proposition 3.3 There is a one to one correspondence between 2-dimensional totally null
planes N with real index two, in the complexification of a four-dimensional split signature
vector space (V, g), and real totally null 2-planes in V .

We now pass to the analogous considerations on 4-manifolds. Thus, we consider a 4-
dimensional manifold M, with a metric g, equipped in addition with a smooth distribution
N of complex totally null 2-planes Nx , x ∈ M, of a fixed index. Applying the above prop-
ositions we see that, depending on the index of N , such an M is equipped either with an
almost hermitian structure (M, g, J ) (in case of index 0), or with an almost optical structure
(M, g, K, JK⊥/K) (in case of index 1), or with a real distribution of totally null 2-planes (in
case of index 2). The interesting question about the integrability conditions for these three
different real structures has a uniform answer in terms of the integrability of the complex
distribution N . Actually, by inspection of the three cases determined by the real indices of
N , one proves the following [16]

Proposition 3.4 Let M be a 4-dimensional real manifold and g be a real metric on it. Let
N be a complex 2-dimensional distribution on M such that g|N ≡ 0. Then, the integrability
condition,

[N , N ] ⊂ N ,

for the distribution N is equivalent to

– the Newlander–Nirenberg integrability condition for the corresponding J , if N has index
zero;

– the geodesic and shear-free condition for the corresponding real null direction field k, if
N has index one. In this case the 3-dimensional space of integral curves of k has (locally)
the structure of 3-dimensional CR manifold.

– the classical Fröbenius integrability for the real distribution corresponding to N , if N
has index two. In this case we have a foliation of M by 2-dimensional real manifolds
corresponding to the leaves of N .
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Returning to the complex Goldberg–Sachs Theorem 1.5, we see that one part of its thesis,
which is concerned with the integrabilty condition [N , N ] ⊂ N , has a very nice geometric
interpretation in each of the real signatures. In particular, in the real index zero case, the
theorem gives if and only if conditions for the local existence of a hermitian structure on a
4-manifold [15,16].

4 Signature independent Newman–Penrose formalism

The purpose of this section is to establish a version of the Newman–Penrose formalism
[14]—a very convenient tool to study the properties of 4-dimensional manifolds equipped
with a metric—in such a way that it will be usable in the following different settings. These
are as follows:

(a) M is a complex 4-dimensional manifold, and g is a holomorphic metric on M,
(b) M is a real 4-dimensional manifold, and g is a complex valued metric on M,
(c) M is a real 4-dimensional manifold, and g is:

(ci) real of Lorentzian signature,
(cii) real of Euclidean signature,

(ciii) real of split signature,
(civ) a complexification of a real metric having one of the above signatures.

The classical Newman–Penrose formalism was devised for the case where M is real, and
g is Lorentzian. Although the generalization of the formalism, applicable to all the above
settings, is implicit in the formulation given in the Penrose and Rindler monograph [18], one
needs to have some experience to use it in the cases (cii) and (ciii). For this reason, we decided
to derive the formalism from first principles, emphasizing from the very beginning how to
apply it to the above different situations. To achieve our goal of very easy applicability of this
formalism to these different situations, we have introduced a convenient notation, in various
instances quite different from the Newman–Penrose original. Since the Newman–Penrose
formalism proved to be a great tool in the study of Lorenztian 4-manifolds, we believe that
our formulation, explained here from the basics, will help the community of mathematicians
working with 4-manifolds having metrics of Euclidean or split signature to appreciate this
tool.

From now on (M, g) is a 4-dimensional real or complex manifold equipped with a com-
plex valued metric. This means that the metric g is a non-degenerate symmetric bilinear form,
g : TCM × TCM → C, with values in the complex numbers [17].

Given g, we use a (local) null coframe (θ1, θ2, θ3, θ4) = (M, P, N , K ) on M in which
g is

g = gabθ
aθb = 2(M P + N K ). (1)

Here, and in the following, formulae like θaθb denote the symmetrized tensor product of the
complex valued 1-forms θa and θb: θaθb = 1

2 (θa ⊗ θb + θb ⊗ θa).

Remark 4.1 Note that our setting, although in general complex, includes all the real cases.
These cases correspond to metrics g such that g(X, Y ) is real for all real vector fields
X, Y ∈ TM. In other words, in such cases the metric g restricted to the tangent space TM
of M is real. If M is equipped with a metric g satisfying this condition, then we always
locally have a null coframe (θ1, θ2, θ3, θ4) = (M, P, N , K ) in which
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(E) P = M̄ and K = N̄ if the metric g|T M has Euclidean signature,
(Sc) P = M̄ and K = −N̄ , if the metric g|T M has split signature,
(L) P = M̄, N = N̄ and K = K̄ , if the metric g|T M has Lorentzian signature.

Remark 4.2 The main statement above about the cases (E), (Sc) and (L) can be rephrased
as follows: In the complexification of the cotangent space of T ∗CM, one can introduce three
different real structures by appropriate conjugation operators: ‘bar’. On the basis of the
1-forms (θ1, θ2, θ3, θ4) = (M, P, N , K ) these are defined according to:

(E) M̄ = P, P̄ = M, N̄ = K and K̄ = N. With this choice of the conjugation, g|T M is
real and has Euclidean signature.

(Sc) M̄ = P, P̄ = M, N̄ = −K and K̄ = −N. With this choice of the conjugation, g|T M
is real and has split signature.

(L) M̄ = P, P̄ = M, N̄ = N and K̄ = K . With this choice of the conjugation, g|T M is
real and has Lorentzian signature.

Note also that the labels a = 1, 2, 3, 4 of the null coframe components θa, behave in the
following way under these conjugations:

(E) 1̄ → 2, 2̄ → 1, 3̄ → 4, 4̄ → 3 in the Euclidean case,
(Sc) 1̄ → 2, 2̄ → 1, 3̄ → −4, 4̄ → −3 in the split case,
(L) 1̄ → 2, 2̄ → 1, 3̄ → 3, 4̄ → 4 in the Lorentzian case.

These transformations of indices under the respective complex conjugations will be impor-
tant when we perform complex conjugations on multiindexed quantities, such as for example,
Rabcd . In particular, the above transformation of indices imply, for example, that in the (Sc)
case R̄1323 = R2414, R̄1321 = −R2412, and so on.

Remark 4.3 We denoted the split signature case by the letter S with a subscript c to dis-
tinguish this case from the case Sr in which the field of 2-planes annihilating the coframe
1-forms P and K in (Sc) is totally real. It is well known [7], that if the metric g|TM has split
signature, one can choose a totally real null coframe on M, such that

M̄ = M, P̄ = P, N̄ = N , K̄ = K . (Sr )

This situation, although less generic [7] than (Sc) is worthy of consideration, since in
the integrable case of the Goldberg–Sachs theorem it leads to the foliation of M by real
2-dimensional leaves, corresponding to the distribution of totally null 2-planes.

Given a null coframe (θa), we calculate the differentials of its components

dθa = − 1
2 ca

bcθ
b ∧ θc. (2)

Following Newman and Penrose [14], and the tradition in General Relativity literature [8],
we will assign Greek letter names to the coefficient functions ca

bc. As is well known, these
coefficients naturally split into two groups with 12 complex coefficients in each group. They
correspond to two spin connections associated with the metric g. The 12 coefficients from the
first group will be denoted by α, β, γ, λ, μ, ν, ρ, σ, τ, ε, κ, π . The 12 coefficients from the
second group will be denoted by putting primes on the same Greek letters. The ‘primed’ and
‘unprimed’ quantities, as describing two different spinorial connections, will be treated as
independent objects in the complex setting. Their relations to the complex conjugation in the
real settings will be described in Reamark 4.4. This said, we write the four equations (2) as:
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dθ1 = (α − β ′)θ1 ∧ θ2 + (γ − γ ′ − μ)θ1 ∧ θ3 + (ε − ε′ − ρ′)θ1 ∧ θ4

− λθ2 ∧ θ3 − σ ′θ2 ∧ θ4 + (π − τ ′)θ3 ∧ θ4

dθ2 = (β − α′)θ1 ∧ θ2 − λ′θ1 ∧ θ3 − σθ1 ∧ θ4

+ (γ ′ − γ − μ′)θ2 ∧ θ3 + (ε′ − ε − ρ)θ2 ∧ θ4 + (π ′ − τ)θ3 ∧ θ4 (3)

dθ3 = (ρ′ − ρ)θ1 ∧ θ2 + (α′ + β − τ)θ1 ∧ θ3 − κθ1 ∧ θ4

+ (α + β ′ − τ ′)θ2 ∧ θ3 − κ ′θ2 ∧ θ4 − (ε′ + ε)θ3 ∧ θ4

dθ4 = (μ − μ′)θ1 ∧ θ2 − ν′θ1 ∧ θ3 − (α′ + β + π ′)θ1 ∧ θ4

− νθ2 ∧ θ3 − (α + β ′ + π)θ2 ∧ θ4 − (γ ′ + γ )θ3 ∧ θ4.

This notation for the coefficient functions ca
bc, although ugly at first sight, has many advan-

tages. One of them is the already mentioned property of separating the two spin connections
associated with the metric g by associating them with the respective ‘primed’ and ‘unprimed’
objects. More explicitly, defining the Levi-Civita connection 1-forms �a

b by

dθa + �a
b ∧ θb = 0

(4)
�ab = −�ba, �ab = gac�

c
b,

we get the following expressions for �ab:

1
2 (�12 + �34) = α′θ1 + β ′θ2 + γ ′θ3 + ε′θ4

�13 = λ′θ1 + μ′θ2 + ν′θ3 + π ′θ4 (5)

�24 = ρ′θ1 + σ ′θ2 + τ ′θ3 + κ ′θ4.

1
2 (−�12 + �34) = βθ1 + αθ2 + γ θ3 + εθ4

�23 = μθ1 + λθ2 + νθ3 + πθ4 (6)

�14 = σθ1 + ρθ2 + τθ3 + κθ4.

The two spin connections correspond to χ ′ = (�24,
1
2 (�12 + �34), �13) and χ = (�14,

1
2 (−�12 + �34), �23), respectively.

Remark 4.4 The above notation is an adaptation of the Lorentzian version of the Newman–
Penrose formalism. This can be easily seen, taking into account the reality conditions dis-
cussed in Remarks 4.1, 4.2. In particular, in the Lorentzian case (L), the complex conjugation
defined in Remark 4.2, applied to the quantities α, β, γ, . . ., yields:

⎛
⎜⎝

ᾱ β̄ γ̄ ε̄

λ̄ μ̄ ν̄ π̄

ρ̄ σ̄ τ̄ κ̄

⎞
⎟⎠ =

⎛
⎝

α′ β ′ γ ′ ε′

λ′ μ′ ν′ π ′
ρ′ σ ′ τ ′ κ ′

⎞
⎠ . (L)

Thus, in the Lorentzian case, the complex conjugation changes ‘unprimed’ Greek letters into
‘primed’ ones and vice versa. Therefore, in this signature the ‘primed’ Greek letter quantities
are totally determined by the ‘unprimed’ ones. The situation is drastically different in the
two other real signatures. There the ‘primed’ Greek letter quantities are independent of the
‘unprimed’ ones. On the other hand in these two cases, there are some relations between the
quantities within each of the ‘primed’ and ‘unprimed’ family. In the Euclidean case, they are
given by
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⎛
⎜⎝

ᾱ β̄ γ̄ ε̄

λ̄ μ̄ ν̄ π̄

ρ̄ σ̄ τ̄ κ̄

⎞
⎟⎠ =

⎛
⎝

−β −α −ε −γ

σ ρ κ τ

μ λ π ν

⎞
⎠ , (E)

with the same relations after the replacement of all ‘unprimed’ quantities by their ‘primed’
counterparts on both sides.

In the split signature cases, we have
⎛
⎜⎝

ᾱ β̄ γ̄ ε̄

λ̄ μ̄ ν̄ π̄

ρ̄ σ̄ τ̄ κ̄

⎞
⎟⎠ =

⎛
⎜⎝

−β −α ε γ

−σ −ρ κ τ

−μ −λ π ν

⎞
⎟⎠ , (Sc)

and
⎛
⎝

ᾱ β̄ γ̄ ε̄

λ̄ μ̄ ν̄ π̄

ρ̄ σ̄ τ̄ κ̄

⎞
⎠ =

⎛
⎝

α β γ ε

λ μ ν π

ρ σ τ κ

⎞
⎠ , (Sr )

again with the identical relations for the ‘primed’ quantities.

Now we pass to the ‘prime’–‘unprime’ decomposition of the curvature. The Riemann
tensor coefficients Ra

bcd are defined by Cartan’s second structure equations:

d�a
b + �a

c ∧ �c
b = 1

2 Ra
bcdθc ∧ θd . (7)

Due to our conventions, modulo symmetry, the only non-zero components of the metric are
g12 = g34 = 1. The inverse of the metric, gab, again modulo symmetry, has g12 = g34 = 1
as the only non-vanishing components. The Ricci tensor is defined as Rab = Rc

acb. Its scalar

is: R = Rabgab, and its tracefree part is: Řab = Rab − 1
4 Rgab. Using the metric gab we also

define Rabcd = gae Re
bcd . This is further used to define the covariant components of the Weyl

tensor Ca
bcd via:

Cabcd = Rabcd − 1
12 R(gacgdb − gad gcb) + 1

2 (gad Řcb − gac Řdb + gbc Řda − gbd Řca).

In the context of the present paper, in which the conformal properties matter, it is conve-
nient to use the Schouten tensor P, with help of which we can write the above displayed
equality as

Cabcd = Rabcd + gadPcb − gacPdb + gbcPda − gbdPca . (8)

The Schouten tensor P is a ‘trace-corrected’ Ricci tensor, with the explicit relation given by

Pab = 1
2 Rab − 1

12 Rgab.

In the Newman–Penrose formalism, the 10 components of the Weyl tensor are encoded
in 10 complex quantities �0, �1, �2, �3, �4 and � ′

0, �
′
1, �

′
2, �

′
3, �

′
4. Five of them have

‘primes’, to emphasize that they are associated with the ‘primed’ spin connection. Another
way of understanding this notation is to say that the ‘unprimed’ �s are five components of the
self-dual part of the Weyl tensor, and the ‘primed’ �s are the components of the anti-self-dual
part of the Weyl.

The Ricci and Schouten tensors are mixed ‘prime’–‘unprime’ objects, and as such are not
very nicely denoted in the ‘prime’ vs. ‘unprime’ setting. For this reason, when referring to
Rab, Řab and Pab, we will not use the Newman–Penrose notation, and will express these
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objects using the standard four-dimensional indices a = 1, 2, 3, 4, as e.g. in 12(P12 +P34) =
2(R12 + R34) = R.

Having said all of this we express Cartan’s second structure equation (7), and in particular
the curvature coefficients Ra

bcd , in terms of �s, � ′s, P and the null coframe (θa) as follows:

1
2 d(�12 + �34) + �24 ∧ �13

= −� ′
3θ

1 ∧ θ3 + � ′
1θ

2 ∧ θ4 + 1
2 (2� ′

2 − P12 − P34)(θ
1 ∧ θ2 + θ3 ∧ θ4)

+ P23θ
2 ∧ θ3 − P14θ

1 ∧ θ4 − 1
2 (P12 − P34)(θ

1 ∧ θ2 − θ3 ∧ θ4)

d�13 + (�12 + �34) ∧ �13

= � ′
4θ

1 ∧ θ3 + (� ′
2 + P12 + P34)θ

2 ∧ θ4 − � ′
3(θ

1 ∧ θ2 + θ3 ∧ θ4) (9)

+ P33θ
2 ∧ θ3 + P11θ

1 ∧ θ4 − P13(θ
1 ∧ θ2 − θ3 ∧ θ4)

d�24 + �24 ∧ (�12 + �34)

= (� ′
2 + P12 + P34)θ

1 ∧ θ3 + � ′
0θ

2 ∧ θ4 + � ′
1(θ

1 ∧ θ2 + θ3 ∧ θ4)

+ P22θ
2 ∧ θ3 + P44θ

1 ∧ θ4 + P24(θ
1 ∧ θ2 − θ3 ∧ θ4),

with analogous equations for the ‘unprimed’ objects:

1
2 d(−�12 + �34) + �14 ∧ �23

= −�3θ
2 ∧ θ3 + �1θ

1 ∧ θ4 − 1
2 (2�2 − P12 − P34)(θ

1 ∧ θ2 − θ3 ∧ θ4)

+ P13θ
1 ∧ θ3 − P24θ

2 ∧ θ4 + 1
2 (P12 − P34)(θ

1 ∧ θ2 + θ3 ∧ θ4)

d�23 + (−�12 + �34) ∧ �23

= �4θ
2 ∧ θ3 + (�2 + P12 + P34)θ

1 ∧ θ4 + �3(θ
1 ∧ θ2 − θ3 ∧ θ4) (10)

+ P33θ
1 ∧ θ3 + P22θ

2 ∧ θ4 + P23(θ
1 ∧ θ2 + θ3 ∧ θ4)

d�14 + �14 ∧ (−�12 + �34)

= (�2 + P12 + P34)θ
2 ∧ θ3 + �0θ

1 ∧ θ4 − �1(θ
1 ∧ θ2 − θ3 ∧ θ4)

+ P11θ
1 ∧ θ3 + P44θ

2 ∧ θ4 − P14(θ
1 ∧ θ2 + θ3 ∧ θ4).

Note that in the first part (9) of the structure equations, the full traceless part of the Schouten
tensor P, represented by its nine components P11, P13, P14, P22, P23, P24, P33, P44 and
P12 − P34, stays with the basis of the self-dual 2-forms:

� = (θ2 ∧ θ3, θ1 ∧ θ4, θ1 ∧ θ2 − θ3 ∧ θ4). (11)

In the second part (10) of the structure equations, the full traceless part of the Schouten tensor
P appears again, but now at the basis of the anti-self-dual 2-forms:

�′ = (θ1 ∧ θ3, θ2 ∧ θ4, θ1 ∧ θ2 + θ3 ∧ θ4). (12)

On the other hand, the self-dual and the anti-self-dual parts of the Weyl tensor, corresponding
to the respective �s and � ′s, are separated: in Eq. (9) we only have � ′s, whereas in (10)
we only have �s. The trace of the Schouten tensor 2(P12 + P34), proportional to the Ricci
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scalar R, appears in both sets of equations, always together with the respective Weyl tensor
components �2 and � ′

2. It is also worthwhile to mention that if one uses the following basis

E− =
(

0 0
1 0

)
, E0 =

(
1 0
0 −1

)
, E+ =

(
0 −1
0 0

)
,

of the Lie algebra sl(2), and if one defines

� = �14 E− + 1
2 (−�12 + �34)E0 + �23 E+,

�′ = �24 E− + 1
2 (�12 + �34)E0 + �13 E+,

then the left hand sides of Eqs. (9,10) appear in the formulae

d� + � ∧ � =
( 1

2 d(−�12 + �34) + �14 ∧ �23 −d�23 − (−�12 + �34) ∧ �23

d�14 + �14 ∧ (−�12 + �34) − 1
2 d(−�12 + �34) − �14 ∧ �23

)
,

d�′ + �′ ∧ �′ =
( 1

2 d(�12 + �34) + �24 ∧ �13 −d�13 − (�12 + �34) ∧ �13

d�24 + �24 ∧ (�12 + �34) − 1
2 d(�12 + �34) − �24 ∧ �13

)
.

This explains the term ‘spin connections’ assigned to the previously defined quantities χ

and χ ′. It also justifies the ‘prime’–‘unprime’ notation, which is rooted in the speciality of
4-dimensions, stating that for n ≥ 3 the Lie algebra so(n, C) is not simple only when n = 4,
and in that case it has the symmetric split: so(4, C) = sl(2, C) ⊕ sl(2, C). This enables
us to split the so(4, C)-valued Levi-Civita connection into the well defined sl(2, C)-valued
‘primed’ and ‘unprimed’ parts, which are totally independent. In real signatures, we have an
analogous split for so(4 − p, p) = g ⊕ g′, p = 0, 1, 2, where now g and g′ are two copies of
the appropriate real form of sl(2, C). This again enables us to split the Levi-Civita connection
into the ‘primed’ and ‘unprimed’ connections, with the appropriate reality conditions, as in
(E), (Sc), (Sr ) or (L).

Comparing Eqs. (5, 6) with (9, 10), one finds relations between the curvature quantities P,
� and � ′ and the first derivatives of the connection coefficients α, β, . . . , α′, β ′, . . .. These
relations are called the Newman–Penrose equations [14]. We present them in the “Appen-
dix”. In these equations, and in the rest of the paper, we denote the vector fields dual on M
to the null coframe (M, P, N , K ) by the respective symbols (δ, ∂,�, D). Thus, we have
e.g. δ−| M = 1, and zero on all the other coframe components, D−| N = 0, etc. Also when
applying these vector fields to functions on M we omit parentheses. Thus, instead of writing
D(α) to denote the derivative of a connection coefficient α in the direction of the basis vector
field D, we simply write Dα.

In addition to the Newman–Penrose equations, we will also need the commutators of the
basis vector fields. These are given by the formulae dual to Eq. (3), and read:

[δ, ∂] = (β ′ − α)δ + (α′ − β)∂ + (ρ − ρ′)� + (μ′ − μ)D

[δ,�] = (μ + γ ′ − γ )δ + λ′∂ + (τ − α′ − β)� + ν′ D
[∂,�] = λδ + (μ′ + γ − γ ′)∂ + (τ ′ − α − β ′)� + νD

[δ, D] = (ρ′ + ε′ − ε)δ + σ∂ + κ� + (α′ + β + π ′)D (13)

[∂, D] = σ ′δ + (ρ + ε − ε′)∂ + κ ′� + (α + β ′ + π)D

[�, D] = (τ ′ − π)δ + (τ − π ′)∂ + (ε′ + ε)� + (γ ′ + γ )D

The Newman–Penrose equations are supplemented by the second Bianchi identities, which
are crucial for the proof of the Goldberg–Sachs theorem. These are relations between the first
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derivatives of the curvature quantities �, � ′ and P and the connection coefficients. These
Bianchi identities are also presented in the “Appendix”.

5 Generalizations of the Goldberg–Sachs theorem for complex metrics

The thesis of the Goldberg–Sachs theorem can be restated in the language of the Newman–
Penrose formalism as follows:

To interpret the integrability condition [N , N ] ⊂ N on the totally null distribution N ,
we align the Newman–Penrose coframe (θ1, θ2, θ3, θ4) = (M, P, N , K ) in such a way that
the two null and mutually orthogonal frame vectors e1 = m = δ and e4 = k = D span N ,
N = SpanC(δ, D). Such a coframe on (M, g) will be called a coframe adapted to N .

Then, the integrability of N is totally determined by the commutator [δ, D] of these basis
vectors. Looking at this commutator in (13), we see that the condition that [δ, D] is in the
span of δ and D is equivalent to κ ≡ σ ≡ 0. Thus, we have

Proposition 5.1 Let N be a field of self-dual totally null 2-planes on a 4-dimensional mani-
fold M with the metric g. Let (m, p, n, k) be a null frame in U ⊂ M adapted to N . Then, the
field N = SpanC(m, k) is integrable, [N , N ] ⊂ N , in U if and only if the frame connection
coefficients �144 = κ and �141 = σ vanish identically, κ ≡ σ ≡ 0, in U .

To interpret the algebraic speciality of the self-dual part of the Weyl tensor, we focus on the
condition

C(m, k, m, k) ≡ 0. (14)

Here we consider the Weyl tensor Cabcd as a linear map C : ⊗4 TCM → C. Note that,
since the so understood Weyl tensor is antisymmetric in the first two arguments, as well
as, independently, in the last two arguments, the vanishing in Eq. (14), although defined on
a particular basis of N , is basis independent. Actually, if we think of C as a linear map
C : (

∧2TCM) � (
∧2TCM) → C, and identify a 2-dimensional totally null distribution N

with the complex line bundle

N∧ = {w ∈ ∧2TCM | w = v1 ∧ v2, v1, v2 ∈ N },
then we say that N is a principal totally null distribution iff

C(N∧, N∧) ≡ 0. (15)

Remark 5.2 The quantity C(m, k, m, k) is a null counterpart of the sectional curvature from
Riemannian geometry. In fact, given a 2-dimensional vector space V = SpanR(X, Y ), the
sectional curvature associated with V is

K = K (X, Y ) = g(R(X, Y )X, Y )

|X ∧ Y |2 .

The appearance of the denominator |X∧Y |2 = g(X, X)g(Y, Y )−g(X, Y )2 in this expression
makes this quantity independent of the choice of X, Y in V . The notion of sectional curvature
loses its meaning for vector spaces V which are totally null, since for them the metric g
when restricted to V vanishes, making the denominator |X ∧ Y |2 ≡ 0 for all X, Y ∈ V .
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To incorporate totally null vector spaces V , one needs to generalize the notion of sectional
curvature, removing the denominator from its definition. This leads to the quantity

K0 = K0(X, Y ) = g(R(X, Y )X, Y ).

This, although basis dependent, transforms in a homogeneous fashion,

K0(X, Y ) → (ad − bc)2 K0(X, Y ),

under the change of basis X → aX + bY , Y → cX + dY . Thus, vanishing or not of K0 is
an invariant property of any 2-dimensional vector space V ⊂ TxM. This property of having
K0 equal or not equal to zero, characterizes V and is well defined regardless of the fact if
the metric is real or complex, including the cases when V is totally null.

Now, passing to the specific situation of 4-dimensional manifolds, we can choose V to
be a field of self-dual totally null 2-planes N . More specifically, if N = SpanC(m, k),
we easily check (see 10) that K0(m, k) = C(m, k, m, k) = �0. Thus K0(m, k) is the �0

component of the self-dual part of the Weyl tensor. For an anti-self-dual totally null plane
N ′ = SpanC(p, k), we have K0(p, k) = C(p, k, p, k) = � ′

0, which is the corresponding
component of the anti-self-dual part of the Weyl tensor. This shows that the principal self-
dual totally null 2-planes are just those for which the quantity �0 vanishes. Thus, in a sense,
the principal self-dual totally null 2-planes have vanishing sectional curvature. (We have
also an analogous statement for the principal anti-self-dual 2-planes; they are related to the
anti-self-dual part of the Weyl tensor, and are defined by the vanishing of the quantity � ′

0.)

Let us now choose a Newman–Penrose coframe (M, P, N , K ) which is not related to any
particular choice of N . Thus, we have g = 2(M P + N K ). Then, at every point of M, we
have two families Nz and Nz′ of 2-dimensional totally null planes [17]. These two families
are parameterized by a complex parameter z or z′, respectively, and the 2-planes parameter-
ized by z are self-dual, and those parameterized by z′ are anti-self-dual. In terms of the frame
(e1, e2, e3, e4) = (m, p, n, k) = (δ, ∂,�, D) dual to (M, P, N , K ), they are given by

Nz = SpanC(m + zn, k − zp), z ∈ C, (16)

and

Nz′ = SpanC(p + z′n, k − z′m), z′ ∈ C. (17)

Adding a totally null plane N∞ = SpanC(n, p) to the first family, and N∞′ = SpanC(n, m)

to the second family, we have two spheres of 2-dimensional totally null planes at each point
of M. The first sphere consists of the self-dual 2-planes, the second of the anti-self-dual
2-planes.

Now we find the principal 2-planes in each of these spheres. The principal 2-planes in the
first sphere correspond to those z such that

C(m + zn, k − zp, m + zn, k − zp) = 0. (18)

The left hand side of this equation is a fourth order polynomial in the complex variable z,
thus (18) treated as an equation for z, has four roots, some of which may be multiple roots.
Moreover, Eq. (18) written explicitly in terms of the Newman–Penrose Weyl coeffcients �s
and � ′s, involves only the ‘unprimed’ quantities. Explicitly:

C(m + zn, k − zp, m + zn, k − zp) = �4z4 − 4�3z3 + 6�2z2 + 4�1z + �0,

where we have used the conventions of the previous section, such as C(m, k, m, k) = �0,
etc. Similar considerations for the second sphere lead to the following proposition:
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Proposition 5.3 A self-dual totally null 2-plane Nz = SpanC(m + zn, k − zp) is principal
at x ∈ M iff z is a root of the equation

�4z4 − 4�3z3 + 6�2z2 + 4�1z + �0 = 0. (19)

An anti-self-dual totally null 2-plane Nz′ = SpanC(m + z′k, n − z′ p) is principal at x ∈ M
iff z′ is a root of the equation

� ′
4z′4 − 4� ′

3z′3 + 6� ′
2z′2 + 4� ′

1z′ + � ′
0 = 0. (20)

Thus at every point of M, we have at most four self-dual principal null 2-planes and at
most four anti-self-dual principal null 2-planes. If a principal null 2-plane corresponds to a
multiple root of (19) or (20), then such a 2-plane is called a multiple principal null 2-plane. A
self-dual or anti-self-dual part of the Weyl tensor with multiple principal 2-planes at a point
is called algebraically special at this point.

We also note that the number and the multiplicity of the roots in (19) or (20) is a conformal
invariant of the metric at a point. Thus, the algebraically special cases can be further stratified
according to the number of the roots and their multiplicities.

The possibilities here for (19) are as follows: (a) three distinct roots, (b) two distinct roots,
with one of multiplicity three, (c) two distinct roots, each with multiplicity two, (d) one root of
multiplicity four, (e) self-dual part of the Weyl tensor is zero. We have also the corresponding
possibilities (a′), (b′) (c′), (d′) and (e′) for (20).

Definition 5.4 The self-dual part of the Weyl tensor is of Petrov type II, III, D, N, or 0 at
a point, if Eq. (19) has roots as in the respective cases (a), (b), (c), (d) and (e) at this point.
If the Petrov type of the self-dual part of the Weyl tensor varies in M, from point to point,
but only between the types II and D, we say that it is of type II. The analogous classification
holds also for the anti-self-dual part of the Weyl tensor.

Remark 5.5 Suppose that the self-dual part of the Weyl tensor of (M, g) does not vanish
at each point of a neighborhood U ′ ⊂ M. Thus at every point of U ′, we have at least one
principal totally null 2-plane. We now take the principal null 2-plane which at x ∈ U ′ has
the smallest multiplicity 1 ≤ q ≤ 4. There always exists a neighborhood U ⊂ U ′ of x in
which this principal totally null 2-plane extends to a field N of principal totally null 2-planes
of multiplicity not bigger than q. In U we choose a null frame (m, p, n, k) in such a way
that SpanC(m, k) = N . In this frame, the definition (16) shows that N = N0, i.e. that the
corresponding z = 0 in U . Moreover since N , as a field of principal null 2-planes in U
satisfies (19), then �0 ≡ 0 everywhere in this frame.

This proves the following

Proposition 5.6 Around every point x of a manifold (M, g) with nowhere vanishing self-
dual part of the Weyl tensor, there exists a neighborhood U and a null frame (m, p, n, k) in
U in which �0 ≡ 0 everywhere.

Now if the self-dual part of the Weyl tensor is algebraically special of type II in U , with
N the corresponding principal multiple field of totally null 2-planes, then in U we choose a
null frame (m, p, n, k) adapted to N . In this frame N = N0 = Span(m, k), the value z = 0
is a double root of (19), and since this is true at every point of U , we have �0 ≡ �1 ≡ 0.
Performing similar considerations for types III and N, and forcing z = 0 to be a root of
the Eq. (19) with the respective locally constant multiplicity q = 1, 2, 3 and 4, we get the
following
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Proposition 5.7 Let N be a field of principal totally null 2-planes for the self-dual part of
the Weyl tensor of a metric g on a 4-dimensional manifold M. Assume that N has a constant
multiplicity q in a neighborhood U in M. Then one can choose a null frame (m, p, n, k) in
U , with N = Span(m, k) and g = 2(M P + N K ), so that

• if q = 1 then in this frame �0 ≡ 0 and �1 �= 0,
• if q = 2 then in this frame �0 ≡ �1 ≡ 0 and �2 �= 0,
• if q = 3 then in this frame �0 ≡ �1 ≡ �2 ≡ 0 and �3 �= 0,
• if q = 3 then in this frame �0 ≡ �1 ≡ �2 ≡ �3 ≡ 0 and �4 �= 0.

Conversely, if we have a null frame in U in which

• �0 ≡ �1 ≡ �2 ≡ �3 ≡ 0 and �4 �= 0 then N = Span(m, k) is a field of multiple
principal 2-planes in U with multiplicity q = 4,

• �0 ≡ �1 ≡ �2 ≡ 0 and �3 �= 0 then N = Span(m, k) is a field of multiple principal
2-planes in U with multiplicity q = 3,

• �0 ≡ �1 ≡ 0 and �2 �= 0 then N = Span(m, k) is a field of multiple principal 2-planes
in U with multiplicity q = 2,

• �0 ≡ 0 and �1 �= 0 then N = Span(m, k) is a field of multiple principal 2-planes in U
with multiplicity q = 1.

This immediately implies

Corollary 5.8 The self-dual part of the Weyl tensor of a metric g on a 4-dimensional mani-
fold M is algebraically special in neighborhood U , with N being a field of multiple principal
2-planes in U if and only if there exists a null frame (m, p, n, k) in U in which �0 ≡ �1 ≡ 0
in U . In this frame, N = SpanC(m, k).

5.1 Generalizing the Przanowski–Plebański version

The starting point for our generalizations of the Goldberg–Sachs theorem is to replace the
Ricci flat condition from the classical version [4], by a condition on only that part of the Ricci
tensor, which is ‘visible’ to the integrable totally null 2-plane N .

For this we consider the Ricci tensor of (M, g) as a symmetric, possibly degenerate, bilin-
ear form on M. We denote it by Ric and extend it to the complexification TCM by linearity.
Now given a complex distribution Z ⊂ TCM we say that the Ricci tensor is degenerate
on Z,

Ric|Z = 0, iff Ric(Z1, Z2) = 0, ∀Z1, Z2 ∈ Z.

Then we have the following theorem:

Theorem 5.9 Let N ⊂ TCM be a field of totally null 2-planes on a 4-dimensional manifold
(M, g) equipped with a real metric g of any signature. Assume that the Ricci tensor Ric of
(M, g), considered as a symmetric bilinear form on TCM, is degenerate on N ,

Ric|N = 0.

If in addition the field N is integrable, [N , N ] ⊂ N , everywhere on M, then (M, g) is
algebraically special at every point, with a field of multiple principal totally null 2-planes
tangent to N .

To prove it, we fix a null frame (m, p, n, k) on M adapted to N . This means that N =
SpanC(m, k).
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It is then very easy to see that the vanishing of the Ricci tensor on N is, due to our
conventions, equivalent to the conditions

P11 ≡ P14 ≡ P44 ≡ 0.

Instead of proving Theorem 5.9, we prove a theorem that implies it. This is the complex
version of the Goldberg–Sachs theorem, which generalizes the Lorentzian version due to
Przanowski and Plebanski [23]. When stated in the Newman–Penrose language, this reads
as follows:

Theorem 5.10 (1) Suppose that a 4-dimensional metric g satisfies P11 ≡ P14 ≡ P44 ≡ 0
and κ ≡ σ ≡ 0. Then �0 ≡ �1 ≡ 0.

(2) If g is Einstein, Ric(g) = �g, and has a nowhere vanishing self-dual part of the Weyl
tensor, then �0 ≡ �1 ≡ 0 implies κ ≡ σ ≡ 0.

Before the proof, we make the following remarks:

Remark 5.11 It is easy to see that part (1) of the above Theorem is equivalent to Theorem
5.9.

Remark 5.12 Note that Ric = 0 and more generally Ric = �g are special cases of our
condition Ric|N = 0.

Proof (of Theorem 5.10). First we assume that κ and σ vanish everywhere on M. To con-
clude that �0 ≡ 0 is very easy: Actually this conclusion is an immediate consequence of the
Newman–Penrose equation (74). For if κ and σ are identically vanishing, then Eq. (74) gives
�0 ≡ 0. Note that this conclusion holds even without any assumption about the components
of the Schouten tensor P (or the Ricci tensor).

Now we prove the following

Lemma 5.13 Suppose that a 4-dimensional metric g satisfies κ ≡ σ ≡ 0 and

δ�1 ≡ 2(β + 2τ)�1, (21)

D�1 ≡ 2(ε − 2ρ)�1. (22)

Then it also satisfies

�1 ≡ 0.

Proof We use the commutator (13), and the Newman–Penrose equations (75–77) to obtain
the compatibility conditions for (21) and (22). This is a pure calculation. We give its main
steps below:

• applying [δ, D] to (21) and (22) we get:

[δ, D]�1 ≡ 2δ ((ε − 2ρ)�1) − 2D ((β + 2τ)�1) ;
• next, using (13), and again (21) and (22), we transform this identity into:

2(ρ′ + ε′ − ε)(β + 2τ)�1 + 2(α′ + β + π ′)(ε − 2ρ)�1

≡ 2δ ((ε − 2ρ)�1) − 2D ((β + 2τ)�1) ; (23)

• now, the Leibniz rule, and a third use of (21) and (22), enables us to eliminate of the
derivatives of �1 in (23);
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• actually, simplifying (23), and using (21), (22) we get:
(
2δ(ε − 2ρ) − 2D(β + 2τ) + 2(ε − ε′ − ρ′)(β + 2τ) − 2(α′ + β + π ′)(ε − 2ρ)

)
�1

≡ 0; (24)

• the last step in the proof of the lemma is to use the Newman–Penrose equations (75–77);
• these equations eliminate δε − Dβ, (look at 75), δρ, (look at 76), and Dτ , (look at 77),

from the identity (24);
• this makes the identity (24) derivative-free;
• actually it transforms (24) to a remarkable identity:

(10�1)�1 ≡ 0; (25)

• the identity (25) obviously implies �1 ≡ 0;

This proves Lemma 5.13. ��
To conclude the proof of the part one of Theorem 5.10, we use our assumptions P11 ≡ P14 ≡
P44 ≡ 0, κ ≡ σ ≡ 0, and their consequence �0 ≡ 0, and insert them in the Bianchi identities
(83) and (84). This trivially gives the relations (21) and (22), respectively. Then an obvious
use of Lemma 5.13 finishes the proof of part one of Theorem 5.10.

We now pass to the proof of part two of Theorem 5.10.
When going from (�0 ≡ �1 ≡ 0) to (κ ≡ σ ≡ 0) we do as follows:

• Initially we only assume that P11 ≡ P14 ≡ P44 ≡ 0.
• Then the Bianchi identities (83) and (84) give:

2P13κ + (3�2 + P12 − P34)σ ≡ 0 (26)

and

(3�2 − P12 + P34)κ + 2P24σ ≡ 0, (27)

respectively.

At this stage, the following remark is in order:

Remark 5.14 If we were able to conclude that the rank of the matrix

m =
(

2P13 3�2 + P12 − P34

3�2 − P12 + P34 2P24

)
(28)

was identically equal to two, this would immediately yield κ ≡ σ ≡ 0, which would con-
clude the proof. On the other extreme, if we were sure that the matrix m was identically
equal to zero (i.e if it had rank identically equal to zero), we would argue as follows: The
identically zero rank of m means that in addition to P11 ≡ P14 ≡ P44 ≡ 0 we have:
P13 ≡ P24 ≡ P12 − P34 ≡ �2 ≡ 0. Then, combining the Bianchi identities (85) and (91),
we get

2P33κ + 2(P23 − 3�3)σ ≡ 0.

Similarly, using the Bianchi identities (86) and (92) we get:

2(P23 + 3�3)κ + 2P22σ ≡ 0.
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Thus, in such case, the situation is similar to the previously considered case with the matrix
m: Now we have

m1 =
(

P33 −3�3 + P23

3�3 + P23 P22

)
,

and if m1 has rank identically equal to two, we conclude that κ ≡ σ ≡ 0. If it has rank
identically equal to zero, we in addition have P33 ≡ P22 ≡ P23 ≡ �3 ≡ 0. This, due to the
Bianchi identities, implies also that P12 ≡ P34 ≡ const. Comparing this with (87) and (88)
leads to

�4σ ≡ �4κ ≡ 0,

which if we assume �4 �= 0, yields κ ≡ σ ≡ 0.

This remark emphasizes that the local properties of the matrices m and m1 are crucial for
the behavior of κ and σ . Since we have no guarantee that rank of e.g. m is locally constant,
returning to our proof, we must strengthen our assumptions on g by requiring that it satisfies
more curvature conditions than P11 ≡ P14 ≡ P44 ≡ 0.

• The additional conditions which enable us to get κ ≡ σ ≡ 0 are:

P13 ≡ P22 ≡ P23 ≡ P24 ≡ P33 ≡ P12 − P34 ≡ 0.

These, with the already assumed P11 ≡ P14 ≡ P44 ≡ 0, constitute the full set of Einstein
conditions Ric(g) = �g, for the metric g.

• Under the Einstein assumption Ric(g) = �g and the requirement that the self-dual part
of the Weyl tensor is non-vanishing, we get κ ≡ σ ≡ 0 in a very easy way, by a successive
inspection of the Bianchi identities (83–88).

• Indeed, the assumed Einstein equations P11 ≡ P14 ≡ P44 ≡ P22 ≡ P24 ≡ P13 ≡
P23 ≡ P33 ≡ P12 − P34 ≡ 0, the algebraical speciality conditions �0 ≡ �1 ≡ 0, and
the Bianchi identities (83), (84), give σ�2 ≡ 0 and κ�2 ≡ 0. This means that whenever
�2 �= 0 we have κ ≡ σ ≡ 0. By continuity the points in which κ or σ are non-zero form
open sets in M. On these sets �2 ≡ 0 everywhere. Thus the discussed situation has only
two possible outcomes: either κ ≡ σ ≡ 0 (which finishes the proof), or we have �2 ≡ 0
in an open set, in addition to the assumed �0 ≡ �1 ≡ 0.

• In this latter case we look at the Bianchi identities (85) and (86), obtaining: σ�3 ≡ 0
and κ�3 ≡ 0. This again leads to either σ ≡ κ ≡ 0 or to �3 ≡ 0 in addition to
�0 ≡ �1 ≡ �2 ≡ 0.

• If �3 ≡ 0 the Bianchi identities (87) and (88) give: σ�4 ≡ 0 and κ�4 ≡ 0. Thus if
we want to have non-vanishing self-dual part of the Weyl tensor, we are forced to have
κ ≡ σ ≡ 0.

• This finishes the proof in this direction.

Thus in going from (�0 ≡ �1 ≡ 0) to (κ ≡ σ ≡ 0), we are only able to prove the theorem
in the classical (although with a possibly non-zero cosmological constant) Goldberg–Sachs
version, namely Theorem 5.10, (2). ��

Whether it is possible to weaken the Einstein assumption above to Ric|N ≡ 0 is an open
question.
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5.2 Generalizing the Kundt–Thompson and the Robinson–Schild version

As noted by Kundt and Thompson [9] and Robinson and Schild [24], to achieve the alge-
braic speciality of the metric, when κ ≡ σ ≡ 0 has been assumed, it is sufficient to use
weaker conditions than P11 ≡ P14 ≡ P44 ≡ 0. There are various approaches to obtain these
conditions in the General Relativity literature (see e.g. [18]). In this section we present our
approach, which is signature independent.

We first assume that P11 ≡ P14 ≡ P44 ≡ 0 holds only conformally. Thus, we merely
assume that there exists a scale ϒ : M → R such that the rescaled metric ĝ = e2ϒ g satisfies

ˆRic|N ≡ 0,

where N = SpanC(m, k). This means that choosing a null coframe (M, P, N , K ) for g, and
the corresponding rescaled null coframe M̂ = eϒ M , P̂ = eϒ P , N̂ = eϒ N and K̂ = eϒ K
for ĝ we have

P̂11 ≡ P̂14 ≡ P̂44 ≡ 0. (29)

Note that for this to be satisfied, we do not need to assume P11 ≡ P14 ≡ P44 ≡ 0. Our aim
now is to deduce what restrictions on g are imposed by Eq. (29).

As it is well known (see e.g. [5]) the rescaled Schouten tensor P̂ is related to P via:

P̂ab = Pab − ∇aϒb + ϒaϒb − 1
2ϒcϒ

cgab,

with ϒa = ∇aϒ . Now, applying the covariant derivative ∇c on both sides of this equation,
antisymmetrizing over the indices {ca} and using again this equation to eliminate the covar-
iant derivatives of ϒa we get

∇[cP̂a]b + ϒ[aP̂c]b + ϒd P̂d[a gc]b ≡ 1
2 (Abca + C d

acb ϒd). (30)

Here Aabc is the Cotton tensor

Aabc = 2∇[bPc]a,

and Cabcd is the Weyl tensor. Note that in addition to

Aabc = −Aacb,

as a consequence of the first and the second Bianchi identities, we also have:

Aabc + Acab + Abca = 0, (31)

and

Aabc = ∇dCd
abc, Aa

ab = 0, (32)

respectively.
The obtained identity (30) is a generalization of the identity known in the theory of con-

formally Einstein spaces (see e.g. [5]). It is interesting on its own, but it is particularly useful
in our situation of Eq. (29).

Let as assume that in addition to (29), the distribution of totally null planes N is integrable.
This means that in the frame (m, p, n, k) we have

κ ≡ σ ≡ 0,
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which is the same as assuming that the respective connection coefficients satisfy

�414 ≡ �411 ≡ 0. (33)

As we proved in the previous section this implies that the Weyl tensor coefficient

�0 ≡ 0.

Now, using the frame (m, p, n, k) and our assumptions (29) and (33) on the l.h.s of the
identity (30), we directly check that the following proposition is true:

Proposition 5.15 Suppose that a distribution of totally null 2-planes N on (M, g) be inte-
grable, [N , N ] ⊂ N , and that the Schouten tensor P̂ of the rescaled metric ĝ = e2ϒ g is
degenerate on N , P̂|N ≡ 0. Then for every three vector fields X, Y, Z ∈ N we have:

XaY b Zc(∇[cP̂a]b + ϒ[aP̂c]b + ϒd P̂d[a gc]b) ≡ 0.

Since, in addition, in the coframe (m, p, n, k) the Weyl tensor coefficient �0 ≡ 0, the r.h.s.
of (30), after being contracted with vectors X, Y, Z from N , includes only the Weyl tensor
coefficient �1. Thus the considered identity, when restricted to N , reduces to two complex
equations:

A141 − �1δϒ ≡ 0, (34)

and

A441 − �1 Dϒ ≡ 0. (35)

This relates the components {141} and {441} of the Cotton tensor algebraically to the Weyl
tensor coefficient �1, and proves the following

Proposition 5.16 A metric g with an integrable field of self-dual totally null 2-planes N on
a 4-dimensional manifold M admits a conformal scale ϒ : M → R such that the rescaled
metric ĝ has Ricci tensor ˆRic degenerate on N ,

ˆRic|N ≡ 0,

only if the Cotton tensor A of the original metric satisfies Eq. (34), (35) in a null coframe in
which κ ≡ σ ≡ 0.

It is interesting that the expressions (34) and (35) appear also in the following

Proposition 5.17 Suppose that a metric g admits an integrable maximal totally null field of 2-
planes. Then the Cotton tensor components A141 and A441 in the null coframe (M, P, N , K )

in which κ ≡ σ ≡ 0 are related to the Cotton tensor components Â1̂4̂1̂ and Â4̂4̂1̂ in the null
coframe (eϒ M, eϒ P, eϒ N , eϒ K ) of the rescaled metric ĝ = e2ϒ g via

Â1̂4̂1̂ = e−3ϒ(A141 − �1δϒ), (36)

Â4̂4̂1̂ = e−3ϒ(A441 − �1 Dϒ). (37)

The proof of this fact is straightforward. For example it can be checked in the Newman–
Penrose formalism with κ = σ = 0, in which the relevant components of the Cotton tensor
read:

A141 = DP11 − δP14 + (2ε′ − 2ε + ρ′)P11 + (2β + 2π ′)P14 − λ′P44, (38)

A441 = DP14 − δP44 − κ ′P11 + (2ρ′ − 2ε)P14 + (2α′ + 2β + π ′)P44. (39)
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Now, treating the Cotton tensor A as a linear map TM × TM × TM → R, we recall
that A is degenerate on a vector distribution Z, A|Z = 0, iff A(Z1, Z2, Z3) = 0 for all
Z1, Z2, Z3 ∈ Z. Then, if we take N = SpanC(m, k), where (m, p, n, k) is a null frame, we
see that A441 = A141 = 0 if and only if A|N = 0. This together with Propositions 5.16 and
5.17 imply the following

Corollary 5.18 Suppose that a metric g admits an integrable maximal totally null field N of
2-planes. If the metric can be conformally rescaled to ĝ so that the rescaled Ricci tensor ˆRic
is degenerate on N , ˆRic|N ≡ 0, then in this scale the rescaled Cotton tensor Â is degenerate
on N , Â|N ≡ 0.

Remark 5.19 We note that given an integrable totally null field of 2-planes N the condition
Â|N ≡ 0 is weaker than ˆRic|N ≡ 0. We saw that ˆRic|N ≡ 0 implies Â|N ≡ 0, but the
converse is not guaranteed.

Now we use the Bianchi identities (93) and (94), which we display here as the following

Lemma 5.20 On any 4-dimensional manifold with a metric g as in (1) we have

A141 ≡ ��0 + (μ − 4γ )�0 − δ�1 + 2(2τ + β)�1 − 3σ�2 (40)

A414 ≡ ∂�0 − (π + 4α)�0 + D�1 + 2(2ρ − ε)�1 + 3κ�2. (41)

Proof This is proved in the “Appendix”, but we can also see this by observing that subtracting
(40) from (38) and, respectively (41) from (39) we obtain the respective Bianchi identities
(83) and (84). ��
This Lemma is crucial for the rest of our arguments in this section. It has various conse-
quences, the first being the following much sharper version of part one of Theorem 5.10:

Theorem 5.21 Let N ⊂ TCM be a field of totally null 2-planes on a 4-dimensional manifold
(M, g) equipped with metric g. Assume that the Cotton tensor A of the metric g, considered
as a threelinear form on TCM, is degenerate on N ,

A|N ≡ 0.

If in addition the field N is integrable, [N , N ] ⊂ N , everywhere on M, then (M, g) is
algebraically special at every point, with a field of multiple principal totally null 2-planes
tangent to N .

Proof In an adapted null coframe (M, P, N , K ) our integrability assumption is κ ≡ σ ≡ 0,
which as we know, implies �0 ≡ 0. The assumption about the degeneracy of the Cotton
tensor means A141 ≡ A441 ≡ 0, which together with �0 ≡ 0 and Lemma 5.20 gives the
identities: δ�1 ≡ 2(β + 2τ)�1 and D�1 ≡ 2(ε − 2ρ)�1. This implies �1 ≡ 0 by Lemma
5.13. Thus the field of (principal) totally null 2-planes N is multiple. ��
Remark 5.22 Note that as a result of this theorem, the assumption A|N ≡ 0 is conformal.
Without knowing that κ ≡ σ ≡ 0 and A141 ≡ A441 ≡ 0 imply �1 ≡ 0, the assumption
A141 ≡ A441 ≡ 0 seemed to be not conformal, because of the inhomogeneous terms in the
transformations (36, 37). But since under the assumptions κ ≡ σ ≡ 0 and A141 ≡ A441 ≡ 0
we were able to discover that actually �1 ≡ 0, then A141 and A441 transform homogeneously
under the conformal rescaling. Thus, in such case the condition A|N ≡ 0 is conformal.
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The second application of Lemma 5.20 is included in the following

Remark 5.23 Suppose that we would like to have a still sharper (than in Theorem 5.21)
version of part one of Theorem 5.10. Thus instead of assuming Ric|N ≡ 0, or the weaker
condition A|N ≡ 0, we would like to have an assumption about vanishing of still higher
order derivatives of the curvature, that together with κ ≡ σ ≡ 0 would imply �1 ≡ 0. Then
Lemma (5.20) assures that it is impossible, and the condition A|N ≡ 0 can not be weakened.
Indeed, denoting such hypothetical condition by S ≡ 0, we would have (κ ≡ σ ≡ 0 & S ≡
0) ⇒ (�1 ≡ 0). But since κ ≡ σ ≡ 0, in addition, implies that �0 ≡ 0, then Lemma 5.20
implies A141 ≡ A441 ≡ 0. Thus the hypothetically weaker than A|N ≡ 0 condition S ≡ 0,
in turn, implies A|N ≡ 0. Since this alone, according to Theorem 5.21, is already sufficient
to imply �1 ≡ 0, we do not need condition S ≡ 0 to obtain the desired result. This proves
the following

Theorem 5.24 The weakest curvature condition which together with the integrability condi-
tion, [N , N ] ⊂ N , implies that the field of totally null 2-planes N is principal and multiple
is the degeneracy of the Cotton tensor on N , A|N ≡ 0.

Example 5.25 An example of a condition S ≡ 0 which is a priori weaker than A|N ≡ 0 may
be obtained as follows. The procedure used in the proof of Lemma 5.13 may be equally applied
to the situation in which the conditions (21, 22) are replaced by the Bianchi identities (40)
and (41). Then, under the assumption that κ ≡ σ ≡ 0, and hence �0 ≡ 0, we literally repeat
all the steps from the proof of Lemma 5.13. Indeed, starting with the application of δ on both
sides of A141 ≡ −δ�1 + 2(2τ +β)�1 and D on both sides of A414 ≡ D�1 + 2(2ρ − ε)�1,
after subtraction and use of the commutator (13), we obtain the following identity:

− 10�2
1 ≡ D A141 − δA441 − (3ε − ρ′ − ε′ − 4ρ)A141 + (3β + α′ + π ′ + 4τ)A441.

(42)

This, is satisfied always when κ ≡ σ ≡ 0. Thus the vanishing of the r.h.s of (42) implies
�1 ≡ 0. Moreover, since when κ ≡ σ ≡ 0 the vanishing of �1 is a conformal property, then
the vanishing of the r.h.s. of (42) is a conformal property. In fact a direct calculation shows
that if in a null coframe (M, P, N , K ) we have κ ≡ σ ≡ 0 and

S = D A141 − δA441 − (3ε − ρ′ − ε′ − 4ρ)A141 + (3β + α′ + π ′ + 4τ)A441 (43)

then in the conformally rescaled metric ĝ = e2ϒ g and in the corresponding rescaled null
coframe (eϒ M, eϒ P, eϒ N , eϒ K ) we have κ̂ ≡ σ̂ ≡ 0 and

Ŝ = e−4ϒ S.

Now using the explicit formulae for the covariant derivatives of the Cotton tensor components
A141 and A441:

∇4 A141 = D A141 − (3ε − ε′)A141 + π ′ A441

∇1 A441 = δA141 − (3β + α′)A441 − ρ′ A141,

solving this for D A141 and δA141 and inserting in (43), we get

S = ∇4 A141 − ∇1 A441 + 4ρ A141 + 4τ A441. (44)

We thus have a condition S ≡ 0, which together with κ ≡ σ ≡ 0 is conformal and implies
that �1 ≡ 0. It is always satisfied when A441 ≡ A141 ≡ 0, i.e. we have (A441 ≡ A141 ≡
0) ⇒ S ≡ 0, and at the first glance there is no reason for the implication (S ≡ 0) ⇒ (A441 ≡
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A141 ≡ 0) However, this implication is true, on the ground of the discussion in Remark 5.23.
As a consequence we have

Proposition 5.26 Under the assumption that the distribution of self-dual totally null 2-planes
N is integrable, [N , N ] ⊂ N , the following two, conformally invariant, conditions are
equivalent

• the Cotton tensor of the metric g is degenerate on N , A|N ≡ 0
• the scalar S of the metric g, as defined in (44), identically vanishes, S ≡ 0.

To discuss the next application of Lemma 5.20, we introduce

Definition 5.27 A metric g on a 4-dimensional manifold M is called II-generic if and only
if the points in which its self-dual part of the Weyl tensor degenerates to Petrov types III, N
or 0 are rare, in the sense that they belong to closed sets without interior in M.

In particular every metric with self-dual part of the Weyl tensor being at each point of M
algebraically general, or of mixed type: algebraically general on some subsets and type II or
type D on their complements, is II-generic; a metric which is e.g. of type III in an open set
of M is not II-generic.

Now we are ready to discuss a slight generalization of the known conformal versions of
the Goldberg–Sachs theorem. In the Lorentzian case, such versions were given by Kundt
and Thompson [9] and Robinson and Schild [24]. Penrose and Rindler [18] gave a complex
(spinorial) version of the Kundt–Thompson/Robinson–Schild theorem. Here, we quote our
complex version, which is a slight generalization:

Theorem 5.28 Let M be a 4-dimensional manifold with a II-generic metric g. Let N be a
field of self-dual totally null 2-planes on M. Then any two of the following imply the third:

(0) The Cotton tensor of g is degenerate on N , A|N ≡ 0.
(i) N is integrable, [N , N ] ⊂ N .

(ii) The self-dual part of the Weyl tensor is algebraically special on M with N being a
multiple principal field of self-dual totally null 2-planes.

Proof First, we observe that the implication ((0) & (i)) ⇒ (ii) is true, as a simple application
of Theorem 5.21. Note that for this we do not need the genericity assumption about the Weyl
tensor.

To prove the other two implications we choose a null coframe on (M, g) so that N =
SpanC(m, k) and g = 2(M P + N K ) as in (1). Then

• the condition (0) is: A141 ≡ A441 ≡ 0,
• the condition (i) is: κ ≡ σ ≡ 0,
• the condition (ii) is: �0 ≡ �1 ≡ 0.

Now, the proof of ((i) & (ii)) ⇒ (0) is an immediate consequence of Lemma 5.20, since the
assumptions (i) & (ii) imply the identical vanishing of the r.h.s. of identities (40, 41), which
means that also their l.h.s. identically vanish, A141 ≡ A441 ≡ 0. Note that also in the proof
of this statement the genericity assumption about the Weyl tensor was not needed.

This assumption is however needed to get the last implication ((0) & (ii)) ⇒ (i). Indeed
assuming (i) & (ii), the identities (40, 41) from Lemma 5.20 reduce to the identities −3σ�2 ≡
0 and 3κ�2 ≡ 0. Now, similarly as in the proof of part two of the Theorem 5.10, to conclude
that κ ≡ σ ≡ 0 in a neighborhood U ⊂ M, it is enough to assume that �2 �= 0 on the com-
plement of the closed sets without interior in U . Since in our coframe in U , according to (ii),
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we have �0 ≡ �1 ≡ 0, Proposition 5.7 assures that the coefficient �2 of the Weyl tensor
is non-vanishing on the complement of the closed sets without interior in U if and only if
the metric is II-generic in U . Since this is the main assumption of Theorem 5.28 we see that
3σ�2 ≡ 0 and 3κ�2 ≡ 0 imply κ ≡ σ ≡ 0 in U . This proves the part ((0) & (ii)) ⇒ (i) of
the theorem. ��
As a consequence of this proof, we also have the following

Corollary 5.29 Let M be a 4-dimensional manifold with a metric g and let N be a field of
self-dual totally null 2-planes on M. Assume that N is integrable, [N , N ] ⊂ N , and that
the self-dual part of the Weyl tensor is algebraically special on M, with N being a multiple
principal field of self-dual totally 2-planes. Then the Cotton tensor of g is degenerate on N ,
A|N ≡ 0.

To discuss the sharpening of the Theorem 5.28 with respect to the implication
((0) & (ii)) ⇒ (i) we introduce two more notions analogous to the II-generiticity.

Definition 5.30 A metric g on a 4-dimensional manifold M is called III-generic if and only
if the points in which its self-dual part of the Weyl tensor degenerates to Petrov types N
or 0 belong to closed sets without interior in M. Similarly, a metric g on a 4-dimensional
manifold M is called N-generic if and only if the points in which its self-dual part of the
Weyl tensor vanishes belong to closed sets without interior in M.

For the III-generic metrics, we have the following

Theorem 5.31 Let M be a 4-dimensional manifold with a III-generic metric g, whose self-
dual part of the Weyl tensor is in addition algebraically special at all points of M. Let N be
the corresponding field of multiple principal totally null 2-planes on M. If the Cotton tensor
A of the metric g satisfies

A( · , Z1, Z2) ≡ 0, ∀Z1, Z2 ∈ N
then the field N is integrable, [N , N ] ⊂ N , on M.

Similarly for the N-generic metrics, we have

Theorem 5.32 Let M be a 4-dimensional manifold with an N-generic metric g, whose self-
dual part of the Weyl tensor is in addition algebraically special at all points of M. Let N
be the corresponding field of multiple principal totally null 2-planes on M. Consider the
2-forms AZ = A(Z , · , · ), where A is the Cotton tensor of the metric g and Z is a complex-
valued vector field Z on M. If for every vector field Z ∈ N the two form AZ is anti-self-dual
at each point of M, then the field N is integrable, [N , N ] ⊂ N , on M.

We first prove Theorem 5.31.

Proof Again we choose a null coframe on (M, g) so that N = SpanC(m, k) and g =
2(M P + N K ) as in (1). Since N consists of multiple principal null 2-planes, according to
Proposition 5.7, we have �0 ≡ �1 ≡ 0 in this coframe. Moreover, in this coframe, the condi-
tion A( · , Z1, Z2) ≡ 0 ∀Z1, Z2 ∈ N means that the coframe components Ai41, i = 1, 2, 3, 4
satisfy

A141 ≡ A214 ≡ A341 ≡ A414 ≡ 0. (45)

Now we again use the Bianchi identities (93, 94) which reduce to

−3σ�2 ≡ 0, and 3κ�2 ≡ 0.
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Similarly as in the proof of the second part of the Theoerm 5.10 this yields κ ≡ σ ≡ 0,
with the exception when �2 ≡ 0. In such a case we have

�0 ≡ �1 ≡ �2 ≡ 0, (46)

and these two Bianchi identities are tautologies. Thus to conclude something about κ and σ

we need to use another pair of Bianchi identities. These are given by (95, 96) and refer to the
respective components A341 and 214 of the Cotton tensor. Now, with the assumed (45) and
(46) these identities reduce to

2σ�3 ≡ 0, and 2κ�3 ≡ 0.

This does not yield κ ≡ σ ≡ 0 only if �3 ≡ 0 in the neighbourhood. But this is forbidden
by our assumption that the metric is III-generic in the considered neighbourhood.

Thus if the metric is III-generic in the neighbourhood we proved that κ ≡ σ ≡ 0 in a
frame adapted to N , which according to Proposition 5.1, means that N is integrable. ��
Proof of Theorem 5.32. Choosing the null frame as in the above proof we first interpret the
condition about the Cotton tensor 2-forms AZ being all anti-self-dual. Since N is spanned
by m and k we only need to consider the 2-forms Am = A(m, · , · ) and Ak = A(k, · , · ).
We have:

Am = A123θ
2 ∧ θ3 + 1

2 (A112 − A134)(θ
1 ∧ θ2 − θ3 ∧ θ4) + A114θ

1 ∧ θ4

+A113θ
1 ∧ θ3 + 1

2 (A112 + A134)(θ
1 ∧ θ2 + θ3 ∧ θ4) + A124θ

2 ∧ θ4

and

Ak = A423θ
2 ∧ θ3 + 1

2 (A412 − A434)(θ
1 ∧ θ2 − θ3 ∧ θ4) + A414θ

1 ∧ θ4

+A413θ
1 ∧ θ3 + 1

2 (A412 + A434)(θ
1 ∧ θ2 + θ3 ∧ θ4) + A424θ

2 ∧ θ4.

So looking at the bases (11) and (12) of the self-dual and anti-self-dual 2-forms � and �′, we
conclude that these 2-forms are anti-self-dual iff the following six conditions for the coframe
components of the Cotton tensor are satisfied:

A114 ≡ A414 ≡ 0 & (47)

A112 − A134 ≡ 0 & (48)

A412 − A434 ≡ 0 & (49)

A123 ≡ A423 ≡ 0. (50)

Now we use the symmetries of the Cotton tensor to give equivalent forms of the conditions
(48, 49). Using (32) we get A112 ≡ A341− A413 and using (31) we get A134 ≡ −A413− A341.
Subtracting the latter from the former, we get the identity

A112 − A134 ≡ 2A341.

In the similar way, we prove the identity

A412 − A434 ≡ 2A214.

Comparing these two identities with (47–50) we conclude that the condition that AZ is
anti-self-dual for all Z ∈ N , in our coframe, is equivalent to the six conditions

A114 ≡ A414 ≡ 0 &

A341 ≡ A214 ≡ 0 &

A123 ≡ A423 ≡ 0.
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Since the first four conditions are precisely A( · , Z1, Z2) ≡ 0 for Z1, Z2 ∈ N , we now use
Theorem 5.31 to conclude κ ≡ σ ≡ 0, provided that we are not in the situation when

�0 ≡ �1 ≡ �2 ≡ �3 ≡ 0 (51)

in the neighbourhod. If this is the case, to show that we still have κ ≡ σ ≡ 0 we need the
additional assumption (50). With this and (51) being assumed, using the Bianchi identities
(97, 98), we easily obtain

−σ�4 ≡ 0 and κ�4 ≡ 0.

This implies that κ ≡ σ ≡ 0 in the neighborhood, on the ground of the N-genericity of the
metric. This finishes the proof. ��
As a counterpart to Corollary 5.29, we have

Corollary 5.33 Let M be a 4-dimensional manifold with a metric g and let N be a field of
self-dual totally null 2-planes on M. Assume that N is integrable, [N , N ] ⊂ N , and that
the self-dual part of the Weyl tensor is algebraically special on M with N being a multiple
principal field of self-dual totally null 2-planes. Then if N has multiplicity equal to three the
Cotton tensor of g satisfies A( · , Z1, Z2) ≡ 0 for all Z1, Z2 ∈ N . If N has multiplicity
equal to four the 2-form AZ of the Cotton tensor A of g is anti-self-dual.

Proof The proof is an immediate application of the Bianci identities (93, 98). ��

6 Interpretation in terms of a characteristic connection

The terms 4ρ A141 +4τ A441 that appear in formula (44) defining S in Example 5.25 suggests
that to describe the geometry of manifolds with κ ≡ σ ≡ 0 it would be useful to have a
vectorial object, say Ba , with components Ba being roughly

Ba = (B1, B2, B3, B4) = (4s−1τ, B2, B3,−4s−1ρ), (52)

where s is a complex constant. If we were able to find a geometric way of distinguishing
such Ba , then the formula for S would be S = (∇4 − s B4)A141 − (∇1 − s B1)A441 and
would have an explicit geometric meaning. Note that the values of components B2 and B3

are totally irrelevant here!. In this section, we show how to geometrically distinguish such
(partially determined) Ba .

6.1 Characteristic connection of a totally null 2-plane

Let us chose an arbitrary 1-form B = Baθa on (M, g = gabθ
aθb). Given a choice of B one

defines a new connection
W∇ on M, which is related to the Levi-Civita connection as follows.

Let �ab = �abcθ
c, be the Levi-Civita connection 1-forms as given in (4). Define

W

�abc = �abc + 1
2 (gca Bb − gcb Ba + gab Bc). (53)

Then the new connection
W∇ is defined on M by

W∇X eb = Xc W∇ceb = Xc W

�
a
bcea,

W

�
a
bc = gad W

�dbc, (54)

where (ea) is a frame dual to the coframe (θa), ea−|θb = δb
a .
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The connection
W∇ is called the Weyl connection. It is the unique torsionless connection

satisfying

W∇g = −Bg. (55)

It has the nice property of being conformal in the sense that if the metric g undergoes a
transformation g → ĝ = e2φg, then Eq. (55) is preserved,

W∇ ĝ = −B̂ ĝ,

with a mere change B → B̂ = B − 2dφ.
The conformal properties of Weyl connections would be very interesting for our purpose

of describing conformal conditions for the Goldberg–Sachs theorem, provided that, we were
able to associate a unique Weyl form B with the main object of this theorem namely a
field of totally null 2-planes N . The following theorem shows that although such a natural
way of chosing B is possible only partially, it nevertheless enables us to define a canonical
connection on N , which encodes its conformal properties.

Theorem 6.1 Let N be a field of totally null 2-planes on (M, g), where g is a 4-dimensional
metric of any (including complex) signature. Let us assume that N is integrable [N , N ] ⊂ N .
Then there exists a unique connection ∇̌ on N , which encodes the conformal properties of
this field of totally null 2-planes.

Proof We define the connection ∇̌ in two steps.

Step One. We first look for a Weyl connection
W∇ on M, as in (53, 54), which has the

property that it preserves N . This means that we ask if there exists a Weyl connection
W∇ on

N , such that

W∇Y X ∈ N ∀ X ∈ N & ∀ Y ∈ TM ? (56)

To answer this question, we work in the adapted null frame (e1, e2, e3, e4) = (m, p, n, k),
with the usual dual coframe (θ1, θ2, θ3, θ4) = (M, P, N , K ), so that the field of totally null
2-planes N is N = Span(e1, e4) = Span(m, k). Then the question (56) is equivalent to the

question of existence of
W∇ such that

(
W∇ce1) ∧ e1 ∧ e4 = 0, & (

W∇ce4) ∧ e1 ∧ e4 = 0, ∀ c = 1, 2, 3, 4,

where we abbreviated
W∇ec to

W∇ec = W∇c. It is very easy to see that, since in the chosen frame
the coefficients of the metric gab are all zero, except g12 = g21 = g34 = g43 = 1, then these
conditions are equivalent to:

(
W∇ce1) ∧ e1 ∧ e4 = W

�11ce2 ∧ e1 ∧ e4 + W

�41ce3 ∧ e1 ∧ e4 = 0

(
W∇ce4) ∧ e1 ∧ e4 = W

�14ce2 ∧ e1 ∧ e4 + W

�44ce3 ∧ e1 ∧ e4 = 0
∀ c = 1, 2, 3, 4

or, what is the same,

W

�11c = W

�14c = W

�44c = 0, ∀c = 1, 2, 3, 4.

Comparing these last equations with (53), we easily see that
W

�11c = W

�44c = 0 is auto-
matically satisfied for all c = 1, 2, 3, 4, and then, by considering the remaining conditions
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W

�14c = W

�41c = 0, we see that (56) is equivalent to:

�14c + 1
2 (gc1 B4 − gc4 B1) = 0 ∀ c = 1, 2, 3, 4. (57)

Now examining these equations for c = 1 and c = 4, we get the conditions that the Levi-
Civita connection coefficients �141 and �144 must satisfy

�141 = �144 = 0. (58)

Examining the Eq. (57) for c = 2 and c = 3, we get the relations between the components
B1 and B4 of the 1-form B and the Levi-Civita connection coefficients �143 and �142. These
are as follows:

B1 = 2�143, B4 = −2�142. (59)

Thus, the requirement that there is a Weyl connection preserving N is equivalent to the fact
that in a coframe adapted to N , we have (58) and (59). Since �141 and �144, in the coframe

adapted to N , are �141 = σ and �144 = κ , then we see that the connection
W∇ exists only if

the field of totally null 2-planes N is integrable. When N is integrable then, in the adapted
coframe (θ i ), the two of the components of the Weyl 1-form B, namely B1 and B4, are totally
determined. They are equal to

B1 = 2τ, B4 = −2ρ,

as desired in (52), with s = 2.
Concluding this part of the proof, we say that the condition (56) that the Weyl connection

preserves N determines this connection only up to the terms B2 and B3 in the Weyl 1-form.
In step two of the proof we restrict this connection to N .

Step two. Since
W∇ preserves N in any direction then, in particular, it preserves it along N .

Thus
W∇, with any choice of B2 and B3, restricts naturally to N . But apriori this restriction

may depend on the choice of B2 and B3. That this is not the case follows from the following.
First observe that because of (58), we have

W

�211 = �211 + B1,
W

�111 = 0,
W

�411 = 0,
W

�311 = �311
W

�214 = �214 + 1
2 B4,

W

�114 = 0,
W

�414 = 0,
W

�314 = �314 + 1
2 B1

W

�241 = �241 + 1
2 B4,

W

�141 = 0,
W

�441 = 0,
W

�341 = �341 + 1
2 B1

W

�244 = �244,
W

�144 = 0,
W

�444 = 0,
W

�344 = �344 + B4.

Thus the covariant derivatives
W∇1e1 = W

�
c
11ec = W

�211e1 + W

�111e2 + W

�411e3 + W

�311e4

W∇4e1 = W

�
c
14ec = W

�214e1 + W

�114e2 + W

�414e3 + W

�314e4

W∇1e4 = W

�
c
41ec = W

�241e1 + W

�141e2 + W

�441e3 + W

�341e4

W∇4e4 = W

�
c
44ec = W

�244e1 + W

�144e2 + W

�444e3 + W

�344e4

of vectors (e1, e4) in the directions e1 and e4 spanning N , are expressible purely in terms of
the Levi-Civita connection coefficients �abc and the totally determined part of B. In these
relations, the unknown coefficients of B, namely B2 and B3, do not appear!
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Thus
W∇ restricts to a unique and totally determined connection on N . We define

∇̌ = W∇|N on N .

Since this connection is constructed with only conformal objects, it is manifestly conformal.
The formulae for this connection in the Newman–Penrose formalism are as follows:

∇̌mm = (β − α′ + 2τ)m − λ′k
∇̌km = (ε − ε′ − ρ)m + (τ − π ′)k

(60)∇̌mk = (ρ′ − ρ)m + (α′ + β + τ)k

∇̌kk = κ ′m + (ε + ε′ − 2ρ)k.

��
The connection ∇̌ defined in Theorem 6.1 is called the characteristic connection of an inte-
grable totally null 2-plane N field.

Now, having any three (complex-valued) vector fields X, Y, Z ∈ N , we define the torsion
Ť and the curvature Ř of ∇̌ via the usual:

Ť (X, Y ) = ∇̌X Y − ∇̌Y X − [X, Y ], (61)

Ř(X, Y )Z = [∇̌X , ∇̌Y ]Z − ∇̌[X,Y ] Z . (62)

By construction these are conformal tensors defined on N . Since both Ť and Ř are
antisymmetric in X, Y they may have at most two, respectively four, independent com-
ponents. Actually we have the following

Theorem 6.2 The characteristic connection ∇̌ of an integrable N is torsionless,

Ť ≡ 0.

Its curvature, Ř, is given by

Ř(m, k)m = 4�1m, (63)

Ř(m, k)k = 4�1k, (64)

where �1 is the Weyl tensor coefficient of the Levi-Civita connection as defined in (10).

Proof The torsionless property of the connection and the formulae (63, 64) for the curvature
can be checked by a direct calculation. Indeed, for the torsionless we only have to show that
Ť (m, k) = 0. One checks that this is a direct consequence of the definitions (61), (60) and
the commutation relation [δ, D] from (13). To check (63) one uses the definition (62), the
commutator [δ, D] and the Newman–Penrose equations (75), (77–79) and (82). Similarly, to
check (64) one uses (62), (13) and the Newman–Penrose equations (75), (76), (79), (80) and
(81). In all of these expressions one has to put the integrability conditions κ ≡ σ ≡ 0. The
rest of the proof is easy pure algebra. ��
Thus, we see that the curvature of ∇̌ has only one independent component, which is a constant
multiple of �1. Moreover, the entire curvature, which may be identified with the curvature
operator Ř(m, k) : N → N , satisfies

Ř(m, k) = (4�1)IdN .

Recalling that �1 is that part of the self-dual part of the Weyl tensor, which if vanishes, makes
it algebraically special, we have the following
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Corollary 6.3 A 4-dimensional manifold M with a metric g and an integrable field of totally
null 2-planes N is algebraically special if and only if the characteristic connection ∇̌ of N
is flat, i.e. iff its curvature Ř ≡ 0.

This proves the following Proposition.

Proposition 6.4 A 4-dimensional manifold (M, g) is algebraically special iff it posesses an
integrable field of totally null 2-planes whose characteristic connection is flat.

6.2 Characteristic connection and the sharpest Goldberg–Sachs theorem

Given an integrable field of totally null 2-planes N , we have the corresponding characteristic
connection ∇̌. Let ( f A) = ( f1, f2) be a frame in N . In the previous section, we found that
the curvature of ∇̌ in the basis ( f A) = (m, k) is

Ř A
BC D = 4�1δ

A
BεC D,

where A, B, C, D = 1, 2, (δA
B ) =

(
1 0

0 1

)
, and (εC D) =

(
0 1

−1 0

)
. Thus, in particular,

the ‘Ricci tensor’ ŘAB = ŘC
AC B of this connection is antisymmetric and equal to

ŘAB = 4�1εAB .

Since the curvature has only one component, it is obvious that the other possible contraction,
namely ŘC

C AB , is proportional to ŘAB : ŘC
C AB = 2ŘAB . Using this Ricci tensor, we are able to

formulate the following strengthening of the generalization of the Goldberg–Sachs theorem
given in Theorem 5.21.

Theorem 6.5 Let N ⊂ TCM be an integrable field of totally null 2-planes on a
4-dimensional manifold (M, g) equipped with metric g. Assume that the tensor ∇̌[C ∇̌D] ŘAB

vanishes everywhere on M,

∇̌[C ∇̌D] ŘAB ≡ 0. (65)

Then (M, g) is algebraically special at every point of M, with a multiple field of principal
totally null 2-planes tangent to N .

Proof For every connection ∇A, the action of the operator ∇[C∇D] on any tensor is a suitable
linear action of the curvature of ∇A on this tensor. Since for ∇̌A the curvature has only one
component �1, the quantity ∇̌[C ∇̌D] ŘAB only involves a constant coefficient sum of terms
of the form �1 ŘAB . Since ŘAB itself is proportional to �1, because of the symmetry, we
conclude that

∇̌[C ∇̌D] ŘAB = c �2
1εABεC D, c = const.

The constant c may be calculated in a particular basis, e.g. in the basis ( f A) = (m, k).
Using this basis, the definitions (60) and the Newman–Penrose equations from the “Appen-
dix”, it is a matter of algebra to check that c = −16.

Now, if ∇̌[C ∇̌D] ŘAB ≡ 0, then also �2
1 ≡ 0, and hence �1 ≡ 0. Since N is integrable,

then we also have �0 ≡ 0, which means that N is a multiple totally null 2-plane. This finishes
the proof. ��

123



Sharp version of the Goldberg–Sachs theorem 327

Remark 6.6 Since S as in (44) is equal to −10�2
1 , and this is turn is 8/5 of the only compo-

nent of the conformal tensor ∇̌[C ∇̌D] ŘAB, it is now clear why an ‘adhoc’ defined object S
in (43) is a weighted scalar.

Remark 6.7 According to the discussion in Example 5.25, the assumption about the con-
formal tensor ∇̌[C ∇̌D] ŘAB ≡ 0, replacing the Ricci flatness condition from the original
Goldberg–Sachs theorem, can not be weakened if one wants to get the implication (κ ≡
σ ≡ 0) ⇒ (�0 ≡ �1 ≡ 0). Thus, although the connection ∇̌ provides plenty of a priori
“weaker” conditions, such as for example ∇̌[E ∇̌F]∇̌[C ∇̌D] ŘAB ≡ 0, or conditions with more
iterations of the curvature operator ∇̌[C ∇̌D], they all are equivalent to the simplest condition
∇̌[C ∇̌D] ŘAB ≡ 0.

7 Generalizations of the Goldberg–Sachs theorem for real metrics

Theorems 5.10, 5.21, 5.24, 5.28, 5.31 and 5.32 were proved assuming that the metric g is
complex. The proofs also work when g is real. To see this it is enough to look at the proofs
assuming one of the reality conditions (L), (E), (Sc) or (Sr ) of Remarks 4.1, 4.2, 4.3 and 4.4.
They impose relations between the components of the Weyl tensor �μ and � ′

ν , between the
Schouten tensor components Pab and between the Cotton tensor components Aabc. These
relations are harmless for the arguments in the proofs. They, however, may be used to shorten
the proofs and may cause that some assumptions appearing in the complex versions can be
dropped off.

We first discuss the Euclidean case.

7.1 Euclidean case

In this case, in every null coframe (M, P, N , K ), as in (1), the reality conditions (E) imply
that in particular:

�4 = �̄0, �3 = �̄1, �2 = �̄2, � ′
4 = �̄ ′

0, � ′
3 = �̄ ′

1, � ′
2 = �̄ ′

2. (66)

In the rest of this section, we consider the self-dual part of the Weyl tensor and principal null
2-planes associated with it. The analysis of the anti-self-dual case is analogous.

Relations (66), when compared with the Eq. (19) defining the principal 2-planes, imply
the following:

Proposition 7.1 If z = z1 is a solution of �4z4 − 4�3z3 + 6�2z2 + 4�1z + �0 = 0 then
is so z2 = − 1

z̄1
.

Proof Inserting (66) and z = z1 in the equation defining the principal null 2-planes (19), we
get

�̄0z4
1 − 4�̄1z3

1 + 6�2z2
1 + 4�1z1 + �0 = 0.

Now dividing this by z−4
1 and taking the complex conjugation of the result, we get

�̄0z4
2 − 4�̄1z3

2 + 6�2z2
2 + 4�1z2 + �0 = 0,

which finishes the proof. ��
Comparing this with Proposition 3.1, we have
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Corollary 7.2 Principal null 2-planes always appear in pairs corresponding to pairs of
solutions (z1, z2) = (z1,

−1
z̄1

) of Eq. (19).

A pair of solutions (z1, z2) = (z1,
−1
z̄1

) of Eq. (19) at a point x distinguishes a pair

(J (z1), J (−1
z̄1

)) of principal hermitian structures J (z1) and J (−1
z̄1

) at x, which are conjugate

to each other, J (−1
z̄1

) = −J (z1).

Proof The only thing to be proven is J (−1
z̄1

) = −J (z1). By definition of these two structures

we have J (z)(m + zn) = i(m + zn), J (z)(k − zp) = i(k − zp) and J (−1
z̄ )(m − 1

z̄ n) =
i(m − 1

z̄ n), J (−1
z̄ )(k + 1

z̄ p) = i(k + 1
z̄ p). The second set of equations is equivalent to

J (−1
z̄ )(z̄m − n) = i(z̄m − n) and J (−1

z̄ )(z̄k + p) = i(z̄k + p), which after conjugation and
the use of the reality conditions (E) gives:

J (−1
z̄ )(k − zp) = −i(k − zp) = −J (z)(k − zp),

J (−1
z̄ )(m + zn) = −i(m + zn) = −J (z)(m + zn).

��
This corollary implies that at each point x of M the self-dual part of the Weyl tensor may be
in one of the following Petrov types:

type G: the generic type, in which the self-dual part of the Weyl tensor does not vanish
at x , and in which we have two distinct pairs (z1, z2) = (z1,

−1
z̄1

) and (z3, z4) =
(z3,

−1
z̄3

), z1 �= z3, of solutions of Eq. (19). In such case the pairs (z1, z2) and
(z3, z4) correspond to two pairs of different mutually conjugate principal hermi-
tian structures (J (z1), J (z2)) and (J (z3), J (z4)) at x .

type D: this is the degeneracy of type G. It occurs when z1 is a double root of (19), i.e.
when z3 = z1. In such case we have only one pair of double principal hermitian
structures (J (z1), J (z2)) at x .

type 0: this is the anti-self-dual type in which the self-dual part of the Weyl tensor vanishes
at x . In this case the sphere of self-dual 2-planes has no distinguished points.

Note that always we may choose a Newman–Penrose frame in which �0 = 0 at x . In types G
or D it is achieved by choosing the Newman–Penrose vectors m and k such that they span the
principal null 2-plane corresponding to z1. Then, in such a frame, the algebraically special
type D is characterized by �1 = 0 and �2 �= 0 at x . If in such a frame �1 �= 0, then the
self-dual part of the Weyl tensor is algebraically general (of type G) at x .

This proves the following

Theorem 7.3 At every point of a 4-dimensional manifold M equipped with a real
Euclidean-signature metric g the self-dual part of the Weyl tensor may be of one of the
types G, D, and 0, with the analogous types for the anti-self-dual part of the Weyl tensor.
Thus, at eavery point of a 4-manifold M equipped with a Euclidean signature metric g we
have 3 × 3 = 9 ‘Petrov’ types.

Thus, the Euclidean reality conditions (E) imply that the number of possible Petrov types
in the Euclidean case is much smaller than in the complex case. This implies that the complex
theorems of the previous section have much stronger Euclidean versions. In particular, the
proof of Theorem 5.28, when the reality conditions (E) are assumed, goes through as in the
complex version, with the only exception, that the II-generiticity property of g may now be
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weakened to the assumption that the self-dual part of the Weyl tensor is nowhere vanishing (or
even to a still weaker assumption that the points at which the self-dual part of the Weyl tensor
vanishes form closed sets without interior). Indeed, in the Euclidean case, the assumption
�0 ≡ �1 ≡ 0 and �2 �= 0, which is needed for the conclusion that κ ≡ σ ≡ 0, means only
that the self-dual part of the Weyl tensor is non-vanishing, since now �0 ≡ �1 ≡ 0 implies
that �4 ≡ �3 ≡ 0. This proves the Riemannian version of the Goldberg–Sachs Theorem
2.1.

One of the corollaries from the complex Theorem 5.28 is also the following

Corollary 7.4 If the self-dual part of the Weyl tensor of a real metric g of Riemannian sig-
nature does not vanish on a 4-dimensional manifold M, then modulo complex conjugation,
such a metric admits at most two hermitian structures that agree with the orientation. If such
hermitian structures exist their spaces of (1,0) vectors coincide with the self-dual principal
totally null 2-planes. In particular, in type D we may have only one hermitian structure,
which exists if and only if the Cotton tensor for g vanishes on its space of (1,0) vectors.

The Euclidean version of Theorem 5.10 is also worth quoting. We have

Corollary 7.5 Assume that a 4-dimensional manifold M equipped with a real metric of
Riemannian signature g has a non-vanishing self-dual part of the Weyl tensor C+. Suppose
that it admits a hermitian structure J which agrees with the orientation, and that its Ricci
tensor vanishes on the space N of (1,0) vectors of J . Then C+ is of type D, with N being
the only principal self-dual null 2-plane.

7.2 Split signature case

To spell out all the possible Petrov types and their interpretations in this case, we first consider
the Newman–Penrose coframe (M, P, N , K ) with the reality conditions (Sc) from Remarks
4.1 and 4.2. In this coframe, the sphere of self-dual totally null 2-planes Nz is spanned by
m + zn and k − zp as in (16). Now, having the reality conditions Sc, we ask which values
of z ∈ C correspond to the non-generic self-dual totally null 2-planes which have real index
equal to two. We have the following

Proposition 7.6 A self-dual 2-plane Nz has real index equal to two if and only if the complex
parameter z ∈ C lies on the unit circle zz̄ = 1.

Proof Due to the reality conditions (Sc) a real non-vanishing vector v = a(m + zn) +
b(k − zp) from Nz must satisfy

a(m + zn) + b(k − zp) = ā(p − z̄k) + b̄(−n − z̄m).

Equating to zero the respective coefficients at m, p, n, k we easily get that this is possible if
and only if zz̄ = 1. Thus Nz includes real nozero vectors if and only if zz̄ = 1. We further
observe that if zz̄ = 1 then v is real if and only if b = −āz̄. Thus, when z is fixed, we have a
1-complex-parameter-family v = v(a) of real vectors in Nz . Choosing two different values
of a we get

v(a) ∧ v(a′) = (aā′ − a′ā)(m ∧ p − z̄m ∧ k − zp ∧ n − n ∧ k).

This shows that Nz with zz̄ = 1 includes independent real vectors (take e.g. a = 1 and
a′ = i), thus it has real inedex two. This finishes the proof. ��
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Let us now choose a Newman–Penrose coframe as in (1). Then the reality conditions (Sc)
imply that we have

�4 = �̄0, �3 = −�̄1, �2 = �̄2, � ′
4 = �̄ ′

0, � ′
3 = −�̄ ′

1, � ′
2 = �̄ ′

2, (67)

and the reality conditions (Sr ) mean that all Weyl tensor coefficients � and � ′ are real:

�0 = �̄0, �1 = �̄1, �2 = �̄2, �3 = �̄3, �4 = �̄4, (68)

(we also have analogous relations for � ′).
We pass to the split signature version of the Petrov classification. We perform the

analysis for the self-dual part of the Weyl tensor; the classification for the anti-self-dual
case is analogous.

Let us fix a point x ∈ M. Let (M, P, N , K ) be a Newman–Penrose coframe around x
satisfying the reality conditions (Sc), and as a consequence (67). We have the following

Proposition 7.7 If z = z1 is a solution of �4z4 − 4�3z3 + 6�2z2 + 4�1z + �0 = 0 then
is so z2 = 1

z̄1
.

Proof Inserting (67) and z = z1 in the equation defining the principal null 2-planes (19) we
get

�̄0z4
1 + 4�̄1z3

1 + 6�2z2
1 + 4�1z1 + �0 = 0.

Now dividing this by z−4
1 and taking the complex conjugation of the result, we get

�̄0z4
2 + 4�̄1z3

2 + 6�2z2
2 + 4�1z2 + �0 = 0,

which finishes the proof. ��

Comparing this Proposition with Proposition 7.6 we get

Corollary 7.8 Self-dual principal null 2-planes always appear in pairs corresponding to
pairs of solutions (z1, z2) = (z1,

1
z̄1

) of Eq. (19). The situation in which z1 = z2 happens
only if the principal self-dual null 2-plane has real index two.

Using Proposition 3.1 we may also reinterpret this corollary as follows

Corollary 7.9 If Eq. (19) at a point x admits a principal self-dual null 2-plane of real index
zero, then at this point we have two distinguished hermitian structures J (z1) and J ( 1

z̄1
)

associated with the solution z1 of (19). Moreover these two structures are conjugate to each
other.

Proof The only thing to be proven is J ( 1
z̄1

) = −J (z1). By definition of these two structures

we have J (z)(m+zn) = i(m+zn), J (z)(k−zp) = i(k−zp) and J ( 1
z̄ )(m+ 1

z̄ n) = i(m+ 1
z̄ n),

J ( 1
z̄ )(k − 1

z̄ p) = i(k − 1
z̄ p). The second set of equations is equivalent to J ( 1

z̄ )(z̄m + n) =
i(z̄m + n) and J ( 1

z̄ )(z̄k − p) = i(z̄k − p), which after conjugation and the use of the reality
conditions (Sc) gives:

J ( 1
z̄ )(k − zp) = −i(k − zp) = −J (z)(k − zp),

J ( 1
z̄ )(m + zn) = −i(m + zn) = −J (z)(m + zn).
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Because of quite different reality conditions (67) and (68) at each point x ∈ M we need
to consider separately two different cases: the generic one a) in which the self-dual part of
the Weyl tensor admits at least one principal totally null 2-plane of real index zero at x , and
the less generic one b) in which all principal null planes have real index two at x .

In the case a) we chose a Newman–Penrose coframe (M, P, N , K ) around x such that
it satisfies the reality conditions (Sc) and that the principal totally null 2-plane of real index
zero corresponds to the solution z = 0 of (19). Then, in such a coframe �0 = 0, and the
equation defining the principal null 2-planes becomes 4�̄1z3 + 6�2z2 + 4�1z = 0, or

2�̄1z2 + 3�2z + 2�1 = 0. (69)

Thus in this coframe, we have two solutions (z1, z2) = (0,∞) corresponding to the mutu-
ally conjugate principal (almost) hermitian structures associated with two fields of principal
2-planes of index zero, and the rest of the principal 2-planes has to be determined as solutions
to the quadratic Eq. (69). The roots of this equations are obviously

z3,4 =
−3�2 ±

√
9�2

2 − 16�1�̄1

4�̄1
.

The interpretation depends on the sign of 9�2
2 − 16�1�̄1 and on whether �1 vanishes or

not. It follows that at each point x ∈ M we have now four cases:

type G: the generic case in which z3 �= z4 = 1
z̄3

, z3 z̄3 �= 1, z3 �= 0 and z3 �= ∞. In such
case, we have two pairs of different mutually conjugate principal hermitian struc-

tures at x corresponding to (J (0), J (∞)) and
(

J (z3), J
(

1
z̄3

))
. This case happens

when 9�2
2 > 16�1�̄1 and �1 �= 0 at x .

type SG: in this case z3 �= z4 = 1
z̄3

, z3 z̄3 = 1. Here, in addition to the pair of mutually
conjugate principal hermitian structures (J (0), J (∞)) at x , we have two differ-
ent principal totally null 2-planes of real index two at x . These real 2-planes are
associated with the solultions z3 and z4, which lie on the circle zz̄ = 1. This case
happens when 9�2

2 < 16�1�̄1 at x .
type II: this is the degenerate case of the type SG. It happens when 9�2

2 = 16�1�̄1 and
�1 �= 0 at x , and the Eq. (69) has double root z3 = z4 at x . We necessarily have
z3 z̄3 = 1 in this case, and thus, in addition to the pair of mutually conjugate prin-
cipal hermitian structures (J (0), (J (∞)) we have also one double principal null
2-plane of real index two at x .

type D: this is another degeneration of the type G. Now �1 = 0 at x and we have z3 = 0
and z4 = ∞ as solutions of (69). Thus in this case the points z = 0 and z = ∞
have multiplicity two, and we have only one pair of double principal hermitian
structures (J (0), J (∞)) at x .

We now pass to the cases in which we do not have a single principal null 2-plane which has
a real index zero at x . The analysis here could still be performed in the Newman–Penrose
coframe satisfying the reality conditions Sc, but since now all the solution of Eq. (19) would
have to satisfy zz̄ = 1, we would not be able to choose the frame in such a way that �0 would
be zero at x . This would lead to the analysis of the roots of the quartic Eq. (19), and it is
why it is now much easier to reason in the coframe that satisfies the reality conditions (Sr ).
So now, we choose a Newman–Penrose coframe (M, P, N , K ) around x , which satisfies the
reality conditions (Sr ) and, since now we have at least one principal null 2-plane of real index
two at x , we may assume that we have �0 = 0 at x . In this coframe, our principal totally
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null 2-plane of real index two corresponds to z1 = 0 and the other principal 2-planes are
determined by

�4z3 − 4�3z2 + 6�2z2 + 4�1 = 0.

Here all the �1, �2, �3 and �4 are real and we admit only real solutions for z. (If the solution
is complex, it corresponds to a 2-plane with real index zero, and corresponds to one of the
cases G, SG, II, or D, considered earlier.)

Now, a fifteenth century substitution z → z − 4�3
3�4

, brings this equation into the form

z3 + pz + q = 0, which has three real roots for z iff 27p4 + 4q3 ≥ 0. This inequality gives
the restriction on the Weyl tensor, which determines the situation we are talking about here.
If the self-dual part of the Weyl tensor satisfies this restriction, the Eq. (19) has four real
roots. This, in addition to G, SG, II and D, defines the five new Petrov types:

type Gr : Equation (19), written in the coframe with reality conditions (Sr ), has four differ-
ent real roots, meaning that we have four different principal null 2-planes of real
index two at x,

type IIr : Equation (19), written in the coframe with reality conditions (Sr ), has one double
and two different real roots, meaning that we have three different principal null
2-planes of real index two at x, one of them with multiplicity two,

type IIIr : Equation (19), written in the coframe with reality conditions (Sr ), has one tri-
ple and one distinct real roots, meaning that we have two different principal null
2-planes of real index two at x, one of them with multiplicity three,

type Nr : Equation (19), written in the coframe with reality conditions (Sr ), has one qua-
druple root, meaning that we have a single quadruple principal null 2-planes of
real index two at x,

type Dr : Equation (19), written in the coframe with reality conditions (Sr ), has two distinct
double real roots, meaning that we have two different principal null 2-planes of
real index two at x, each of them having multiplicity two.

Finally we have the Petrov type corresponding to the situation when the self-dual part of the
Weyl tensor vanishes at x (the metric is anti-self-dual at x).

This proves the following

Theorem 7.10 At every point of a 4-dimensional manifold M equipped withh a real
split-signature metric g the self-dual part of the Weyl tensor may be of one of the types
G, SG, II, D, Gr , IIr , IIIr , Nr , Dr , 0, with the analogous types for the anti-self-dual part of the
Weyl tensor. Thus, at every point of a 4-manifold M equipped with a split signature metric g
we have 10 × 10 = 100 ‘Petrov’ types.

The above analysis also suggest the following terminology: the name algebraically special
for the self-dual part of the Weyl tensor in the split signature case is reserved to the types
II, D, IIr , IIIr , Nr , Dr and 0 only. Although the types SG and Gr are algebraically (and
geometrically!) distinguished from the most general case G, we also call them algebraically
general. With this terminology, Theorems 1.3 and 1.4 follow from our Theorem 5.10.

Because of the huge number of the algebraically special cases to be considered, we skip
the discussion of the split signature versions of further theorems from Sect. 5 here. Such a
discussion deserves a separate paper. This should also answer several interesting questions,
such as for example, the following: ‘are there split-signature Einstein metrics of type II?’, ‘is
it possible to have a split signature Einstein 4-manifold on which an integrable totally null
2-planes can change its real index from 0 to 2?’, etc.

123



Sharp version of the Goldberg–Sachs theorem 333

We close this section by mentioning the recent paper [10]. It is entirely devoted to the
Newman–Penrose formalism adapted to the split signature situation, and it provides a version
of the split-signature Goldberg–Sachs theorem.

7.3 Lorentzian case

Here the Petrov types are precisely the same as in the complex case described by the Defini-
tion 5.4, i.e. we have types G, I I , D, I I I , N and 0 here. The Lorentzian reality conditions
(L) do not make any restriction on the Weyl tensor coefficients �μ. What they do is, they
give a simple ralation between the self-dual part of the Weyl tensor and the anti-self-dual one.
We have � ′

μ = �̄μ, so here the anti-self-dual part of the Weyl tensor is totally determined
by the self-dual one. Since in the proofs in Sect. 5 the coefficients � ′

μ never appear, and
only �μs matter, all the proofs, and the theorems presented in Sect. 5 restrict naturally to the
Lorentzian case without any alteration.

However, since in the Lorentzian signature the fields of totally null 2-planes have always
real index one, it is customary to formulate the Lorentzian theorems in terms of the real
vector field k such that SpanC(k) = N ∩ N̄ . In particular, such a null real vector field is said
to be geodesic and shear-free [25] if it satisfies

Lk g = ag + g(k)ω, (70)

with a function a and a 1-form ω on M. Here g(k) is a 1-form on M such that X−| g(k) =
g(k, X) for any vector field X ∈ TM. When written in terms of the field N of the associated
totally null 2-planes, condition (70) is equivalent to

[N , N ] ⊂ N ,

i.e. to the formal integrability condition for N .
Suppose now the Weyl tensor Cabcd of (M, g) is non-vanishing. It is well known [2] that

the algebraic equation

k[eCa]bc[dk f ]kbkc = 0, (71)

for a null vector k has at most four solutions at every point x ∈ M. The solutions k of Eq.
(71) at x ∈ M are called the principal null directions (PNDs) at x . If Eq. (71) admits exactly
four PNDs at x ∈ M then (M, g) is said to be algebraically general at x . If the number q of
solutions to (71) at x ∈ M is 1 ≤ q ≤ 3 then (M, g) is called algebraically special at x . In
such case the quartic Eq. (71) has at least one multiple root, and the solution k corresponding
to it is called a multiple PND. This notion of the algebraical speciality coincides with the
one in terms of the principal null 2-planes, since on a Lorentzian oriented and time oriented
4-manifold M, there is one to one correspondence between fields of totally null 2-planes in
the complexification and real null vector fields, defined by the intersection of the 2-planes
with their complex conjugations.

Having said this, we present the Lorentzian version of our complex Theorem 5.9.

Theorem 7.11 Let N ⊂ TCM be a field of totally null 2-planes on a Lorentzian 4-dimen-
sional manifold (M, g). Assume that the Ricci tensor Ric of (M, g), considered as a sym-
metric bilinear form on TCM, is degenerate on N ,

Ric|N = 0.

If in addition the field N is integrable, [N , N ] ⊂ N , everywhere on M, or what is the same,
if k such that SpanC(k) = N ∩ N̄ , is geodesic and shear-free, then (M, g) is algebraically
special at every point, with a multiple PND tangent to k.
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Remark 7.12 In [6] we used Theorem 7.11 without proof, since it would have made an already
long paper even longer. Actually some statements equivalent to Theorem 7.11 are known to
a few general relativists, see e.g. Lemma 2.2 on p. 577 of [23]. Since this equivalence is not
easy to decipher, we decided to present this theorem here, as a corollary from the complex
Theorem 5.9.

7.4 Counterexample to Trautman’s conjecture

Trautman in [26] asked if there exists an example of a 4-dimensional Bach flat metric with
non-vanishing self-dual part of the Weyl tensor C+, for which an integrable field of self-dual
totally null 2-planes would not be principal for C+. He conjectured that the answer to this
question is ‘no’. Although the question was formulated in the Lorentzian setting, it makes
sense in any signature. It is also very closely related to the Goldberg–Sachs theorem.

Our analysis of this theorem from Sect. 5.2, especially the discussion in Example 5.25,
suggests that the examples Trautman asks about, should be possible. This is because, the
conditions needed for ‘if and only if’ between conditions (i) and (ii) in Theorem 5.28 are
related to those derivatives of the Cotton tensor that are not present in the Bach tensor. This
is clear from Example 5.25: the integrability conditions for A|N ≡ 0, give S ≡ 0, where S is
given by (44). And although the Bach tensor components may be obtained by differentiating
some components of the Cotton tensor, the derivatives of the Cotton tensor appearing in S
are not (at least algebraically) expressible in terms of the components of the Bach tensor.

Below in this section we present a simple example of a metric with Euclidean signature
which is Bach-flat, admits an integrable hermitian structure which agrees with the orienta-
tion, and whose self-dual part of the Weyl tensor is of general type G.

On R
4, with local coordinates (x1, x2, x3, x4), consider z = x1 + i x2 and w = x3 + i x4,

and a complex-valued function f = f (w, z) holomorphic in both arguments w and z. Given
f define a Riemannian metric

g = 2
(
dwdw̄ + exp

(
f (w, z) + f̄ (w̄, z̄)

)
dzdz̄

)
.

Now introduce the Newman–Penrose coframe by setting

M = dw̄, P = dw, N = e f dz, K = e f̄ dz̄.

They obviously satisfy the Euclidean reality conditions (E). A short calculation shows, that
modulo the complex conjugation, the only non-vanishing Newman–Penrose coefficients are:

α = − 1
2π = β ′ = − 1

2τ ′ = 1
4 fw.

In particular κ = σ = 0, which is obvious since the field of self-dual totally null 2-planes
N spanned by m = ∂w̄ and k = e− f̄ ∂z̄ is integrable. Now our main point is that the only
non-vanishing components of the Weyl tensor are as follows:

�3 = �̄1 = 1
4 e− f fwz .

This in particular means that the field N is principal (since �0 ≡ 0), but when fwz �= 0 it
is not multiple (�3 �= 0 �= �1). Moreover, since � ′

0 ≡ � ′
1 ≡ � ′

2 ≡ � ′
3 ≡ � ′

4 ≡ 0, i.e. the
full anti-self-dual part of the Weyl tensor identically vanishes, the metric is Bach flat. This
answers in positive the question of Trautman we mentioned at the beginning of this section.
Moreover, if fwz �= 0, due to the Corollary 7.5, this self-dual metric can not have Ricci tensor
vanishing on N , and as such is never conformal to an Einstein metric.
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7.5 Characteristic connection in real signatures

We now reexamine the arguments from Sect. 6 from the point of view of the reality conditions.
From Step one of the proof of Theorem 6.1 we know that the Weyl form B of the Weyl

connection which preserves an integrable N , in an adapted to N coframe is given by B =
2τ M + B2 P + B3 N − 2ρK . Thus in the complex case (or in the real cases in which we do
not insist on B to be real) the Weyl 1-form is not totally determined by N .

The situation is quite different in the Riemannian (E) and the split signature (Sc). In these
two cases, the requirements that B is real determines it completely. Indeed, it is easy to see
that the reality conditions (E) or (Sc) together with the requirement that B be real implies
that B is equal to

B = 2τ M + 2π P − 2μN − 2ρK (72)

or, what is the same,

1
2 B = �143θ

1 + �234θ
2 + �321θ

3 + �412θ
4.

This proves the following theorem

Theorem 7.13 Let N be a field of totally null 2-planes on (M, g), where g is a 4-dimensional
metric of Riemannian or split signature. Let us assume that N is integrable [N , N ] ⊂ N and
that it has a real index 0 everywhere on M. Then there exists a canonical Weyl connection
W∇ on M, which encodes the conformal properties of the structure (M, g, N ).

The connection
W∇ is uniquely determined by the requirements that

• it is real,
• it is torsionless,

• it satisfies:
W∇g = −Bg,

• it satisfies:
W∇X N ⊂ N for all X ∈ T M.

In terms of a coframe (θa) adapted to N and the connection 1-forms
W

�
a
b = gad

W

�dbcθ
c the

connection
W∇ is given by

W

�abc = �abc + 1
2 (gca Bb − gcb Ba + gab Bc)

with

1
2 B = �143θ

1 + �234θ
2 + �321θ

3 + �412θ
4.

Here �abc are the Levi-Civita connection coefficients in the adapted coframe.

Definition 7.14 Let J be a hermitian (or pseudohermitian) structure on an 2n-dimensional
manifold (M, g) with a metric of Riemannian (or split) signature. A torsionless conection
H W∇ on (M, g, J ) is called (pseudo)hermitian-Weyl iff

–
H W∇ J = 0,

– and
H W∇ g = −Bg for some real 1-form B on M.

According to our discussion in Sect. 3, integrable totally null 2-planes of real index 0 on
a 4-dimensional manifold (M, g) are in one-to-one correspondence with (pseudo)hermitian
structures J on (M, g), thus Theorem 7.13 can be reformulated as:
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Theorem 7.15 Every 4-dimensional (pseudo)hermitian manifold (M, g, J ) defines a

canonical (pseudo)hermitian-Weyl connection
H W∇ . This connection encodes the conformal

properties of the structure (M, g, J ). It is given by
H W∇ = W∇, where

W∇ is as in Theorem 7.13.

Thus in the (pseudo)hermitian case there is a better connection, namely
W∇, than the charac-

teristic connection ∇̌. It is better, since it enables to differentiate any vector from the tangent
space of M along any other vector from TM. The connection ∇̌ enables for the differentia-

tion along N = T(1,0)M only. And,
W∇ is better, because it contains much more information

than ∇̌. In particluar, ∇̌ is simply the restriction of
W∇ to N .

We now pass to the (pseudo)hermitian part of the Goldberg–Sachs Theorem 6.5.
We need some preparations:

Given the (pseudo)hermitian-Weyl connection
W∇, as in Theorem 7.15, we use the

formula (53) to pass to the connection 1-forms
W

�ab = W

�abcθ
c. Here (θc) is a coframe

adapted to J . The word ‘adapted’ (in accordance with the discussion in Sect. 3) means that
the considered coframe is adapted to N = T(1,0)M as in the definition of this notion at
the begining of Sect. 5. Now, there is a sequence of definitions, which closely mimics the
situation in Riemannian geometry:

Having the connection 1-forms
W

�ab, the metric g and its inverse, represented by gab, we

also have the 1-forms
W

�
a
b = gac

W

�cb. Using them, we define the curvature of the connection
W∇. We do it, in terms of the curvature 2-forms

W

�
a
b , analogous to those given in the formula

(7), by:

1
2

W

Ra
bcdθc ∧ θd = d

W

�
a
b + W

�
a
c ∧ W

�
c
b.

Here
W

Ra
bcd are the curvature coefficents in the coframe (θa). Then we define the Ricci tensor

W

Rab = W

Rc
acb,

and its scalar

W

R = gab W

Rab.

The next step is to define the Schouten tensor

W

Pab = 1
2

W

Rab − 1
12

W

Rgab

and the Cotton tensor

W

Aabc = 2
W∇[b

W

Pc]a .

This defines a linear map

W

A : TM × TM × TM → R

given by

W

A = 1
2

W

Aabcθ
a ⊗ (θb ∧ θc).
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Then the (pseudo)hermitian part of Theorem 6.5 is:

Theorem 7.16 Let (M, g, J ) be a 4-dimensional (pseudo)hermitian manifold and let
W∇ be

its canonical (pseudo)hermitian-Weyl connection
H W∇ . Assume that

W∇X
W

A(Y, X, Y ) ≡ W∇Y
W

A(X, X, Y ) for all vectors X, Y ∈ N = T(1,0)M. (73)

Then the self-dual part of the Weyl tensor for (M, g) is algebraically special at every point
of M, with J being the multiple principal hermitian structure on N .

Proof The proof of this Theorem consists of straightforward calculations using the above

definitions. The key point in these calculations is that
W∇X

W

A(Y, X, Y )− W∇Y
W

A(X, X, Y ), when

X, Y run through all the vectors from N , is always proportional to
W∇4

W

A141 − W∇1
W

A441. Here
the indices 1 an 4 are the components from the coframe adapted to J , in which e1 = m and

e4 = k. By a direct calculation one can check that
W∇4

W

A141 − W∇1
W

A441 = 16�2
1 . Thus, when

W∇X
W

A(Y, X, Y ) ≡ W∇Y
W

A(X, X, Y ), as assumed, �1 ≡ 0, which proves the theorem.

Remark 7.17 When calculating
W∇4

W

A141 − W∇1
W

A441, during the proof of the above theorem,

we observed that the relation
W∇4

W

A141 − W∇1
W

A441 = 16�2
1 is true even without the (pseudo)

hermitian reality conditions (E) or (Sc). For this crucial relation to be true, we need to take
B as in (72) and to assume the integrability of N , i.e. to assume κ ≡ σ ≡ 0. If these two

assumptions are satisfied then
W∇4

W

A141 − W∇1
W

A441 = 16�2
1 irrespective of the signature of

the metric. It is even true when the metric is complex! Thus the Weyl connection
W∇ with B

as in (72) seems to be meaningful in case of g being complex, or having any signature. The
only trouble with such a connection is that in the Lorentzian case it is complex. If one can
live with this, one can replace the condition (65) in Theorem 6.5 by (73) and Theorem 6.5
will be true for complex metrics, as well for metrics of all the other real signatures.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

8 Appendix

The 36 signature independent Newman–Penrose equations, which include 16 first Bianchi
identities, are:

δκ = Dσ + α′κ + 3βκ + κπ ′ − 3εσ + ε′σ + ρσ + ρ′σ + κτ + �0 (74)

∂κ ′ = Dσ ′ + ακ ′ + 3β ′κ ′ + κ ′π − 3ε′σ ′ + εσ ′ + ρ′σ ′ + ρσ ′ + κ ′τ ′ + � ′
0

Dβ = δε − α′ε − βε′ − γ κ − κμ − επ ′ − βρ′ − ασ + πσ − �1 (75)

Dβ ′ = ∂ε′ − αε′ − β ′ε − γ ′κ ′ − κ ′μ′ − ε′π − β ′ρ − α′σ ′ + π ′σ ′ − � ′
1

δρ = ∂σ + κμ′ − κμ + α′ρ + βρ − 3ασ + β ′σ − ρ′τ + ρτ − �1 − P14 (76)

∂ρ′ = δσ ′ + κ ′μ − κ ′μ′ + αρ′ + β ′ρ′ − 3α′σ ′ + βσ ′ − ρτ ′ + ρ′τ ′ − � ′
1 − P24

Dτ = �κ − γ ′κ − 3γ κ + π ′ρ + πσ − στ ′ − ε′τ + ετ − ρτ − �1 + P14 (77)

Dτ ′ = �κ ′ − γ κ ′ − 3γ ′κ ′ + πρ′ + π ′σ ′ − σ ′τ − ετ ′ + ε′τ ′ − ρ′τ ′ − � ′
1 + P24
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�ρ = ∂τ − κν + γρ + γ ′ρ − μ′ρ − λσ − ατ + β ′τ − ττ ′ − �2 − P12 − P34

�ρ′ = δτ ′ − κ ′ν′ + γ ′ρ′ + γρ′ − μρ′ − λ′σ ′ − α′τ ′ + βτ ′ − ττ ′ − � ′
2 − P12 − P34

�α = ∂γ + β ′γ + αγ ′ − βλ − αμ′ − εν + νρ − λτ − γ τ ′ + �3

�α′ = δγ ′ + βγ ′ + α′γ − β ′λ′ − α′μ − ε′ν′ + ν′ρ′ − λ′τ ′ − γ ′τ + � ′
3

�λ = ∂ν − 3γ λ + γ ′λ − λμ − λμ′ + 3αν + β ′ν − νπ − ντ ′ − �4

�λ′ = δν′ − 3γ ′λ′ + γ λ′ − λ′μ′ − λ′μ + 3α′ν′ + βν′ − ν′π ′ − ν′τ − � ′
4

Dλ = ∂π − 3ελ + ε′λ − κ ′ν + απ − β ′π − π2 − λρ − μσ ′ − P22

Dλ′ = δπ ′ − 3ε′λ′ + ελ′ − κν′ + α′π ′ − βπ ′ − π ′2 − λ′ρ′ − μ′σ − P11 (78)

Dμ = δπ − εμ − ε′μ − κν − α′π + βπ − ππ ′ − μρ′ − λσ − �2 − P12 − P34

Dμ′ = ∂π ′ − ε′μ′ − εμ′ − κ ′ν′ − απ ′ + β ′π ′ − ππ ′ − μ′ρ − λ′σ ′ − � ′
2 − P12 − P34

Dα = ∂ε + αε′ − 2αε − β ′ε − γ κ ′ − κλ − επ − αρ + πρ − βσ ′ + P24

Dα′ = δε′ + α′ε − 2α′ε′ − βε′ − γ ′κ − κ ′λ′ − ε′π ′ − α′ρ′ + π ′ρ′ − β ′σ + P14 (79)

�β = δγ + α′γ + 2βγ − βγ ′ − αλ′ − βμ − εν′ + νσ − γ τ − μτ − P13

�β ′ = ∂γ ′ + αγ ′ + 2β ′γ ′ − β ′γ − α′λ − β ′μ′ − ε′ν + ν′σ ′ − γ ′τ ′ − μ′τ ′ − P23

Dρ = ∂κ − 3ακ − β ′κ − κπ + ερ + ε′ρ − ρ2 − σσ ′ − κ ′τ − P44 (80)

Dρ′ = δκ ′ − 3α′κ ′ − βκ ′ − κ ′π ′ + ε′ρ′ + ερ′ − ρ′2 − σσ ′ − κτ ′ − P44 (81)

�μ = δν − λλ′ − γμ − γ ′μ − μ2 + α′ν + 3βν − ν′π − ντ − P33

�μ′ = ∂ν′ − λλ′ − γ ′μ′ − γμ′ − μ′2 + αν′ + 3β ′ν′ − νπ ′ − ν′τ ′ − P33

Dν = �π − ε′ν − 3εν + λπ ′ − γ ′π + γπ + μπ − μτ ′ − λτ + �3 − P23

Dν′ = �π ′ − εν′ − 3ε′ν′ + λ′π − γπ ′ + γ ′π ′ + μ′π ′ − μ′τ − λ′τ ′ + � ′
3 − P13

Dγ = �ε − 2εγ − ε′γ − εγ ′ − κν + βπ + απ ′ − ατ + πτ − βτ ′ − �2 + P34

Dγ ′ = �ε′ − 2ε′γ ′ − εγ ′ − ε′γ − κ ′ν′ + β ′π ′ + α′π − α′τ ′ + π ′τ ′ − β ′τ − � ′
2 + P34

∂μ = δλ − α′λ + 3βλ − αμ − β ′μ + μπ − μ′π − νρ + νρ′ − �3 − P23

δμ′ = ∂λ′ − αλ′ + 3β ′λ′ − α′μ′ − βμ′ + μ′π ′ − μπ ′ − ν′ρ′ + ν′ρ − � ′
3 − P13

δτ = �σ + κν′ + λ′ρ − 3γ σ + γ ′σ + μσ − α′τ + βτ + τ 2 + P11 (82)

∂τ ′ = �σ ′ + κ ′ν + λρ′ − 3γ ′σ ′ + γ σ ′ + μ′σ ′ − ατ ′ + β ′τ ′ + τ ′2 + P22

δα = ∂β + αα′ − 2αβ + ββ ′ − εμ + εμ′ + γρ + μρ − γρ′ − λσ − �2 + P12

∂α′ = δβ ′ + αα′ − 2α′β ′ + ββ ′ − ε′μ′ + ε′μ + γ ′ρ′ + μ′ρ′ − γ ′ρ − λ′σ ′ − � ′
2 + P12

The 20 second Bianchi identities are:

δ�1 = ��0 − DP11 + δP14 − 4γ�0 + μ�0 + 2β�1 − 3σ�2 + 4τ�1

−2κP13 + 2εP11 − 2ε′P11 − 2βP14 − 2π ′P14 + λ′P44 − ρ′P11 − σP12 + σP34 (83)

∂� ′
1 = �� ′

0 − DP22 + ∂P24 − 4γ ′� ′
0 + μ′� ′

0 + 2β ′� ′
1 − 3σ ′� ′

2 + 4τ ′� ′
1

−2κ ′P23 + 2ε′P22 − 2εP22 − 2β ′P24 − 2πP24 + λP44 − ρP22 − σ ′P12 + σ ′P34

D�1 = −∂�0 − DP14 + δP44 + 4α�0 + π�0 + 2ε�1 − 3κ�2 − 4�1ρ + κ ′P11

+ κP12 + 2εP14 − κP34 − 2α′P44 − 2βP44 − π ′P44 − 2ρ′P14 − 2σP24 (84)

D� ′
1 = −δ� ′

0 − DP24 + ∂P44 + 4α′� ′
0 + π ′� ′

0 + 2ε′� ′
1 − 3κ ′� ′

2 − 4� ′
1ρ

′ + κP22

+ κ ′P12 + 2ε′P24 − κ ′P34 − 2αP44 − 2β ′P44 − πP44 − 2ρP24 − 2σ ′P14

��1 = δ�2 + DP13 − δP34 + ν�0 + 2γ�1 − 2μ�1 − 2σ�3 − 3τ�2

−πP11 − π ′P12 + 2ε′P13 + μP14 + λ′P24 + κP33 + π ′P34 + ρ′P13 + σP23 (85)

123



Sharp version of the Goldberg–Sachs theorem 339

�� ′
1 = ∂� ′

2 + DP23 − ∂P34 + ν′� ′
0 + 2γ ′� ′

1 − 2μ′� ′
1 − 2σ ′� ′

3 − 3τ ′� ′
2

−π ′P22 − πP12 + 2εP23 + μ′P24 + λP14 + κ ′P33 + πP34 + ρP23 + σ ′P13

∂�1 = −D�2 + DP12 − δP24 + λ�0 + 2α�1 + 2π�1 + 2κ�3 − 3ρ�2

+ κ ′P13 + πP14 + κP23 + 2α′P24 + π ′P24 − μP44 + ρ′P12 − ρ′P34 + σP22 (86)

δ� ′
1 = −D� ′

2 + DP12 − ∂P14 + λ′� ′
0 + 2α′� ′

1 + 2π ′� ′
1 + 2κ ′� ′

3 − 3ρ′� ′
2

+ κP23 + π ′P24 + κ ′P13 + 2αP14 + πP14 − μ′P44 + ρP12 − ρP34 + σ ′P11

��2 = − δ�3 + �P12 − ∂P13 + 2ν�1 − 3μ�2 − 2β�3 + 2τ�3 + σ�4

+ λP11 + μ′P12 − 2β ′P13 + νP14 + ν′P24 − ρP33 − μ′P34 + τP23 + τ ′P13 (87)

�� ′
2 = − ∂� ′

3 + �P12 − δP23 + 2ν′� ′
1 − 3μ′� ′

2 − 2β ′� ′
3 + 2τ ′� ′

3 + σ ′� ′
4

+ λ′P22 + μP12 − 2βP23 + ν′P24 + νP14 − ρ′P33 − μP34 + τ ′P13 + τP23

D�3 = ∂�2 + �P24 − ∂P34 − 2λ�1 − 3π�2 − 2ε�3 + κ�4 − 2ρ�3 + λP14

+ ρP23 − 2γ ′P24 + μ′P24 + νP44 + σ ′P13 − τP22 − τ ′P12 + τ ′P34 (88)

D� ′
3 = δ� ′

2 + �P14 − δP34 − 2λ′� ′
1 − 3π ′� ′

2 − 2ε′� ′
3 + κ ′� ′

4 − 2ρ′� ′
3 + λ′P24

+ ρ′P13 − 2γ P14 + μP14 + ν′P44 + σP23 − τ ′P11 − τP12 + τP34

��3 = −δ�4 − �P23 + ∂P33 − 3ν�2 − 2γ�3 − 4μ�3 − 4β�4 + τ�4 + νP12

− 2λP13 + ν′P22 − 2γ P23 − 2μ′P23 + 2αP33 + 2β ′P33 − νP34 − τ ′P33 (89)

�� ′
3 = − ∂� ′

4 − �P13 + δP33 − 3ν′� ′
2 − 2γ ′� ′

3 − 4μ′� ′
3 − 4β ′� ′

4 + τ ′� ′
4 + ν′P12

− 2λ′P23 + νP11 − 2γ ′P13 − 2μP13 + 2α′P33 + 2βP33 − ν′P34 − τP33

∂�3 = D�4 − �P22 + ∂P23 − 3λ�2 − 2α�3 + 4π�3 + 4ε�4 + ρ�4

+ 2γ ′P22 − 2γ P22 − μ′P22 − λP12 + 2αP23 − 2νP24 + λP34 + σ ′P33 − 2τ ′P23 (90)

δ� ′
3 = D� ′

4 − �P11 + δP13 − 3λ′� ′
2 − 2α′� ′

3 + 4π ′� ′
3 + 4ε′� ′

4 + ρ′� ′
4

+ 2γ P11 − 2γ ′P11 − μP11 − λ′P12 + 2α′P13 − 2ν′P14 + λ′P34 + σP33 − 2τP13

δP12 = DP13 + �P14 + ∂P11 − 2δP34 − 2αP11 + 2β ′P11 − πP11 − π ′P12 + 2ε′P13

+ 2ρP13 − 2γ P14 + μP14 + 2μ′P14 + λ′P24 + κP33 + π ′P34 + ν′P44 + ρ′P13 (91)

+ σP23 − τP12 + τP34 − τ ′P11

∂P12 = DP23 + �P24 + δP22 − 2∂P34 − 2α′P22 + 2βP22 − π ′P22 − πP12 + 2εP23

+ 2ρ′P23 − 2γ ′P24 + μ′P24 + 2μP24 + λP14 + κ ′P33 + πP34 + νP44 + ρP23

+ σ ′P13 − τ ′P12 + τ ′P34 − τP22

DP34 = −2DP12 + �P44 + ∂P14 + δP24 − ρP12 − κ ′P13 − 2αP14 − πP14 − κP23

−2α′P24 − π ′P24 + ρP34 − 2γ P44 − 2γ ′P44 + μP44 + μ′P44 − ρ′P12 + ρ′P34 (92)

−σP22 − σ ′P11 − 2τP24 − 2τ ′P14

�P34 = DP33 − 2�P12 + ∂P13 + δP23 − λP11 − μP12 − μ′P12 + 2β ′P13 − 2πP13

−νP14 − λ′P22 + 2βP23 − 2π ′P23 − ν′P24 + 2εP33 + 2ε′P33 + ρP33 + μP34

+μ′P34 + ρ′P33 − τP23 − τ ′P13

Using relations (31, 32) we can reexpress identities (83–90) in terms of the components of
the Cotton tensor. After this the Cotton tensor components ‘hide’ the terms with the Schouten
tensor components Pi j , and the respective identities assume a more compact form as follows:

A141 = ��0 + (μ − 4γ )�0 − δ�1 + 2(2τ + β)�1 − 3σ�2 (93)

A414 = ∂�0 − (π + 4α)�0 + D�1 + 2(2ρ − ε)�1 + 3κ�2 (94)

A341 = ��1 + 2(μ − γ )�1 − δ�2 + 3τ�2 − ν�0 + 2σ�3 (95)

A214 = ∂�1 − 2(α + π)�1 + D�2 + 3ρ�2 − λ�0 − 2κ�3 (96)
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A132 = ��2 + 3μ�2 + δ�3 + 2(β − τ)�3 − 2ν�1 − σ�4 (97)

A423 = ∂�2 − 3π�2 − D�3 − 2(ε + ρ)�3 − 2λ�1 + κ�4 (98)

A323 = ��3 + 2(γ + 2μ)�3 + δ�4 + (4β − τ)�4 + 3ν�2 (99)

A223 = ∂�3 + 2(α − 2π)�3 − D�4 − (ρ + 4ε)�4 + 3λ�2, (100)

with the analogous identities for the primed quantities.

References

1. Apostolov, V., Gauduchon, P.: The Riemannian Goldberg–Sachs theorem. Int. J. Math. 8, 421–439 (1997)
2. Cartan, E.: Sur les espaces conformes generalises et l’universe optique. Comput. Rendus Acad. Sci.

Paris 174, 857–859 (1922)
3. Chen, X., LeBrun, C., Weber, B.: On conformally Kähler, Einstein manifolds. J. Am. Math.

Soc. 21(4), 1137–1168 (2008)
4. Goldberg, J.N., Sachs, R.K.: A theorem on Petrov types. Acta. Phys. Polon. Suppl. 22, 13 (1962)
5. Gover, A.R., Nurowski, P.: Obstructions to conformally Einstein metrics in n dimensions. J. Geom.

Phys. 56, 450–484 (2006)
6. Hill, C.D., Lewandowski, L., Nurowski, P.: Einstein equations and the embedding of 3-dimensional CR

manifolds. Ind. Univ. Math. J. 57, 3131–3176 (2008)
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