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LETTER TO THE EDITOR

A four-dimensional example of a Ricci flat metric admitting
almost-Kähler non-Kähler structure∗

Paweł Nurowski†§ and Maciej Przanowski‡
† Dipartimento di Scienze Matematiche, Universita degli Studi di Trieste, Trieste, Italy
‡ Instytut Fizyki, Politechnika Ł́odzka, Ẃolczánska 219, 93-005 Ł́odź, Poland
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Abstract. We construct an example of Ricci-flat almost-Kähler non-K̈ahler structure in four
dimensions.

PACS numbers: 0420, 0420C

1. LetM be a 4-manifold equipped with a metricg of signature (++++). The pair (M, g) is
called a Riemannian 4-manifold.

An almost-Hermitian structure on (M, g) is a tensor fieldJ : TM → TM such that
J 2 = −id andg(JX, JY ) = g(X, Y ). An almost-Hermitian structure (M, g, J ) is called
Hermitian ifJ is integrable. Due to the Newlander–Nirenberg theorem this is equivalent to the
vanishing of the Nijenhuis tensorNJ (X, Y ) = [JX, JY ] − [X, Y ] − J [JX, Y ] − J [X, JY ]
for J .

Given an almost-Hermitian structure (M, g, J ) one defines the fundamental 2-formω by
ω(X, Y ) = g(X, JY ). An almost-Hermitian structure (M, g, J ) is called almost-K̈ahler if
its fundamental 2-form is closed. If, in addition,J is integrable then such structure is called
Kähler.

This letter is motivated by the following conjecture [6].

Goldberg’s conjecture

The almost K̈ahler structure of a compact Einstein manifold is necessarily Kähler.

The conjecture was proven in the case of non-negative scalar curvature of the Einstein
manifold by Sekigawa in [11]. In recent work [12] he has additionally shown that Goldberg’s
conjecture holds in four dimensions. This result is relevant for gravitational instantons (see,
e.g., [5]), since it implies that any compact Einstein gravitational instanton admitting an almost-
Kähler structure is necessarily Kähler.

In this letter we show that the assumption about compactness of the Einstein manifold is
essential for the Goldberg conjecture. In particular, we give an explicit example of a Ricci-flat
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almost-K̈ahler non-K̈ahler structure on a non-compact 4-manifold. This result is given by
theorem 1 of point 4.

2. LetU be an open subset ofR4. Let θ i = (M, M̄,N, N̄) be four complex-valued 1-forms
onU such thatM ∧ M̄ ∧N ∧ N̄ 6= 0. Usingθ i we define a metricg onU by

g = 2(MM̄ +NN̄) := M ⊗ M̄ + M̄ ⊗M +N ⊗ N̄ + N̄ ⊗N.
Clearly (U , g) is a Riemannian 4-manifold.

The Weyl tensorW of the metricg splits into self-dual(W+) and anti-self-dual(W−)
parts.(U, g) is said to be (anti-)self-dual iff (W + ≡ 0)W− ≡ 0. If (W + 6= 0)W− 6= 0 then in
every point ofU it defines at most two spinor directions ([α+, β+]) [α−, β−]; see e.g. [7, 10].
(W +) W− is said to be of typeD if (α+) α− coincides with (β+) β−.

Let ei = (m, m̄, n, n̄) be a basis dual toθ i = (M, M̄,N, N̄). For anyξ ∈ C it is
convenient to consider 1-forms

Mξ = M − ξ̄ N̄√
1 + ξ ξ̄

Nξ = N + ξ̄ M̄√
1 + ξ ξ̄

and vector fields

mξ = m− ξ n̄√
1 + ξ ξ̄

nξ = n + ξm̄√
1 + ξ ξ̄

.

The following lemma is well known (see for example [7, 10]).

Lemma 1.
(a) For any value of the complex parameterξ ∈ C ∪ {∞} the expressions

J +
ξ = i(Mξ ⊗mξ −Mξ ⊗mξ +Nξ ⊗ nξ −Nξ ⊗ nξ )
J−ξ = i(Mξ ⊗mξ −Mξ ⊗mξ +Nξ ⊗ nξ −Nξ ⊗ nξ )

define almost-Hermitian structures on(U, g).
(b) The fundamental 2-forms corresponding toJ +

ξ andJ−ξ are given by, respectively

ω+
ξ = i(Mξ ∧Mξ +Nξ ∧Nξ)
ω−ξ = i(Mξ ∧Mξ +Nξ ∧Nξ).

(c) Any almost-Hermitian structure on(U, g) is given either by one ofJ +
ξ or by one ofJ−ξ .

StructuresJ +
ξ are different fromJ−ξ ; also, differentξs correspond to different structures.

(d) If the metricg is not self-dual then amongJ +
ξ s only at most four structures, corresponding

to specific four values of the parameterξ , may be integrable. Analogously, if the metric
g is not anti-self-dual then only at most fourJ−ξ s may be integrable.

3. Let(x1, x2, x3, x4) be Euclidean coordinates onU . Define

z1 = x1 + ix2 z2 = x3 + ix4. (1)

Let ∂k = ∂/∂zk and∂k̄ = ∂/∂zk, k = 1, 2.
Consider two 1-formsM andN onU defined by

M = f (dz1 + h dz2) N = 1

f
dz2, (2)

wheref 6= 0 (real) andh (complex) are functions onU .
SinceM ∧ M̄ ∧N ∧ N̄ = dz1∧ dz̄1∧ dz2∧ dz̄2 6= 0 then the metricg = 2(MM̄ +NN̄)

equipsU with the Riemannian structure. Consider almost-Hermitian structuresJ +
ξ for such
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(U , g). It is interesting to note that ifξ = eiφ = constant then the corresponding fundamental
2-formω+

eiφ reads

ω+
eiφ = i(eiφ dz2 ∧ dz1− e−iφ dz̄2 ∧ dz̄1)

and is closed. Thus, for any eiφ ∈ S1 we constructed an almost-Kähler structure (U , g, J +
eiφ ).

If the functionsf andh are general enough, then the metricg has no chance to be self-dual.
Moreover, since in such a case there are a finite number of Hermitian structures amongJ +

ξ ,
then most of our structures must be non-Kähler. Summing up we have the following lemma.

Lemma 2. Let (z1, z̄1, z2, z̄2) be coordinates onU as in (1). Then for each value of the real
constantφ ∈ [0, 2π [ the metric

g = 2f 2(dz1 + h dz2)(dz̄1 + h̄ dz̄2) + 2
1

f 2
dz2 dz̄2 (3)

and the almost-complex structure

J +
eiφ = 2Re

{
i eiφ

[
f 2(dz1 + h dz2)⊗ (∂2̄ − h̄∂1̄)−

1

f 2
dz2⊗ ∂1̄

]}
(4)

defines an almost-K̈ahler structure onU .
If the functionsf andh are general enough to prevent the metric from being self-dual

then these structures are non-Kähler for almost all values ofφ.

4. We look for not-self-dual Ricci-flat metrics among the metrics of lemma 2. For this purpose
it is convenient to restrict to the metrics (3) whose anti-self-dual part of the Weyl tensor is
strictly of type D. Such a restriction guarantees that all structures (4) are non-Kähler [7, 10].

We recall a useful lemma [8].

Lemma 3.Letg be a Ricci-flat Riemannian metric in four dimensions. Assume that the anti-
self-dual part of the Weyl tensor forg is strictly of type D. Then, locally there always exist
complex coordinates(z1, z2) and a real functionK = K(v, z2, z̄2), v = z1 + z̄1 such that the
metric can be written as

g = εKvv

(Kv)3/2

(
dz1 +

Kv2

Kvv
dz2

)(
dz̄1 +

Kv2̄

Kvv
dz̄2

)
+ 4 e−K

(Kv)
1/2

εKvv
dz2 dz̄2, (5)

whereKv2̄ = ∂2K/(∂v ∂z̄2) etc. The functionK satisfies

KvvK22̄ −Kv2̄Kv2 − 2 e−K
(
Kvv + 2(Kv)

2
) = 0, (6)

Kv > 0, εKvv > 0 (7)

whereε is either plus or minus one.
Also, every functionK = K(v, z2, z̄2) satisfying (6) and (7) defines, via (5), a Ricci-flat

metric. This metric has the anti-self-dual part of the Weyl tensor of strictly type D.

We ask when the metric (3) can be written in the form (5). Identifying coordinates(z1, z2)

in both metrics we see that it is possible if

2f 2 = εKvv

(Kv)3/2
and

2

f 2
= 4 e−K

(Kv)
1/2

εKvv
.

These two equations are compatible only ifKv eK = 1. It is a matter of straightforward
integration that, modulo the coordinate transformations, the general solution of this equation
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which simultaneously satisfies equation (6) is†K = log(v − 2z2z̄2). Using suchK we easily
find that in the region

U ′ = {U 3 (z1, z2) such thatv − 2z2z̄2 > 0}
the metric (3) with

f = 1√
2(v − 2z2z̄2)1/4

, h = −2z̄2,

is Ricci-flat and strictly of type D on the anti-self-dual side of its Weyl tensor. The explicit
expression for suchg reads

g = 1

(v − 2z2z̄2)1/2
(dz1− 2z̄2 dz2)(dz̄1− 2z2 dz̄2) + 4(v − 2z2z̄2)

1/2 dz2 dz̄2. (8)

To gain a better insight into this metric we choose new coordinates

x = (v − 2z2z̄2)
1/2, y = z2 + z̄2, z = i(z̄2 − z2), q = z1− z̄1

2i
onU ′. These coordinates are real. The metric (8) in these coordinates reads

g = x(dx2 + dy2 + dz2
)

+
1

x

(
1
2z dy − 1

2y dz + dq
)2
.

This shows that it belongs to the Gibbons–Hawking class [4] and that its self-dual part of the
Weyl tensor vanishes.

We also recall [9] that a suitable Lie–Backlund transformation brings equation (6) to the
Boyer–Finley–Plebánski [2, 3] equation‡

Fyy + Fzz +
(
eF
)
xx
= 0

for one real functionF = F(x, y, z) of three real variables. It is interesting to note that the
metric (8) corresponds to the simplest solutionF = 0 of this equation.

Summing up we have the following theorem.

Theorem 1.Let (z1, z̄1, z2, z̄2) be coordinates onU ⊂ R4 ∼= C2. The Riemannian manifold
(U ′, g), where

U ′ = {U 3 (z1, z2) such thatv − 2z2z̄2 > 0, v = z1 + z̄1}
and

g = 1

(v − 2z2z̄2)1/2
(dz1− 2z̄2 dz2)(dz̄1− 2z2 dz̄2) + 4(v − 2z2z̄2)

1/2 dz2 dz̄2,

is Ricci-flat, anti-self-dual and has the anti-self-dual part of the Weyl tensor of type D. Moreover,
(U ′, g) admits a circle of almost-K̈ahler non-K̈ahler structures

J +
eiφ = 2Re

{
i eiφ

[
1

2(v − 2z2z̄2)1/2
(dz1− 2z̄2 dz2)⊗ (∂2̄ + 2z2∂1̄)

−2(v − 2z2z̄2)
1/2 dz2⊗ ∂1̄

]}
.

These structures are parametrized by the real constantφ ∈ [0, 2π [. Their fundamental 2-forms
are given by

ω+
eiφ = i

(
eiφ dz2 ∧ dz1− e−iφ dz̄2 ∧ dz̄1

)
.

† This solution was already known to Sławomir Białecki in 1984 [1].
‡ Also known to describe theSU(∞) Toda lattice.
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5. Interestingly, our examples can be globalized.
Indeed, the transformation

t = 1
2 log(v − 2z2z̄2), y = z2 + z̄2, z = i(z̄2 − z2), q = z1− z̄1

2i
brings the structures(g, J +

eiφ , ω
+
eiφ ) of theorem 1 to a form which is regular for all the values of

the real parameters(t, y, z, q) ∈ R4.

6. Finally, we observe that the metric (8), as being anti-self-dual, possesses a strictly Kähler
structure. This is given by

J = i[(dz1− 2z̄2 dz2)⊗ ∂1− (dz̄1− 2z2 dz̄2)⊗ ∂1̄ + dz̄2⊗ (∂2̄ + 2z2∂1̄)

−dz2⊗ (∂2 + 2z̄2∂1)]

and belongs to structures of opposite orientation toJ +
eiφ . It is interesting whether there exist

Ricci-flat metrics that admit almost-K̈ahler non-K̈ahler structures but do not admit any strictly
Kähler structure.
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