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We consider two consecutive Universes (eons) with positive cosmological constants within the
framework of Penrose’s conformal cyclic cosmology. If we assume that both eons are filled with perfect
fluids and that they both are conformal to the metric of Einstein’s static universe by an analytic conformal
transformation, then, using the Eisntein field equations, we prove that a) the fluids can only belong to five
classes (cosmological constant, radiation, dust, and two other classes with negative pressures correspond-
ing to a gas of strings and a gas of domain walls), b) the field equations on both sides of the future/eternity
hypersurface exhibit certain duality, and c) both eons (one at the end and the other at the beginning) are
almost critical so that the future eon is dominated by radiation and resembles the beginning of our Universe.
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In Penrose’s conformal cyclic cosmology (CCC) [1], the
metric ǧ of the Universe is conformally flat at the surface
t ¼ 0 of the initial singularity [2]. Consider a conformal
class ½ǧ� of metrics conformal to ǧ. Assume that the
conformal class ½ǧ� is regular in a strip t ∈� − ϵ; ϵ½. In
particular, this means that there exists a Lorentzian metric g
in the class ½ǧ� that is regular for all t ∈� − ϵ; ϵ½. Penrose
calls g the intermediate metric and relates it to two physical
metrics:

(i) the metric ǧ describing the Universe close to the
singularity, when t ∈�0; ϵ½, and

(ii) the metric ĝ, which is interpreted as the physical
metric of the previous Universe (previous eon),
when t ∈� − ϵ; 0½.

Formally, having chosen the intermediate metric g, one gets
three metrics: ĝ, g, and ǧ in the entire bandage region
t ∈� − ϵ; ϵ½. From now on, we will only consider spatially
homogeneous Universes. In such a case, according to
Ref. [3], the three metrics are related via

ĝ ¼ 1

f2
g; ǧ ¼ f2g; ð1Þ

where f ¼ fðtÞ and fðtÞ is chosen in such a way that ǧ
coincides with the metric ǧ of the current Universe (current
eon), when t ∈ ½0; ϵ½, and ĝ coincides with the physical
metric ĝ of the previous eon, when t ∈� − ϵ; 0�.
In Penrose’s proposal for the CCC, it is the conformal

geometry [g] of the metric g that is relevant for the
cosmology of the Universe in the bandage region
t ∈� − ϵ; ϵ½. According to the paradigm of CCC, around
the end of an old eon (t → 0−) and the beginning of the new
eon (t → 0þ), the Universe loses a part of the information
about the (pseudo-)Riemannian physical metrics (ĝ in
½−ϵ; 0½ and ǧ in �0; ϵ½). The physical remnant of these
(pseudo)-Riemannian geometries around the hypersurface

t ¼ 0 is the conformal geometry [g] of g. The question of
what kind of dynamics this conformal geometry obeys is
not stated by the CCC. Nevertheless, a passage from the
(pseudo-)Riemannian to the conformal setting around the
t ¼ 0 hypersurface eliminates the problem of “singularity”
of the physical Universe there. In a conformal setting, the
t ¼ 0 hypersurface is regular. Actually, the main invariant
of the conformal geometry, namely, the Weyl tensor, is
vanishing, so not only the conformal geometry [g] is not
singular, but it is even flat at t ¼ 0. The singularity of the
(pseudo-)Reimannian metric ǧ at t ¼ 0 is merely a “wrong
choice of coordinates” of the conformal geometry [g],
which at t ¼ 0 can be represented by a “good coordinate” g
or by a “bad coordinate” ǧ.
In this brief paper, we provide a simple model in which

the Einstein equations for the spatially homogeneous
metrics ĝ and ǧ can be consistently solved, when one
assumes that the two consecutive eons have positive
cosmological constants and are filled with perfect fluids.
A framework for the model was discussed in Refs. [4,5].
Before passing to the general discussion, for a motiva-

tion, we present the following simple example. We assume
that ĝ in the strip t ∈� − ϵ; 0½ is given by the de Sitter metric,

ĝ ¼ 1

H2t2
ð−dt2 þ dr2 þ r2dΩ2Þ ¼ 1

H2t2
g;

with g the flat metric in � − ϵ; ϵ½ and H ¼ const. Thus,
comparingwith (1), we get fðtÞ ¼ Ht in � − ϵ; 0½. Extending
fðtÞ from � − ϵ; 0½ to fðtÞ ¼ Ht in � − ϵ; ϵ½, we get

ǧ ¼ H2t2ð−dt2 þ dr2 þ r2dΩ2Þ; ð2Þ

and in �0; ϵ½, we obtain the metric for the radiation-
dominated Universe, for t>0. Indeed, a simple time coor-

dinate transformation t¼
ffiffiffi
2ť
H

q
, brings (2) to the standard form
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ǧ ¼ −dť2 þ ť
t0
ðdr2 þ r2dΩ2Þ;

with t0 ¼ 1
2H. This transforms the de Sitter Universe from the

times when t was before t ¼ 0 to the radiation-dominated
Universe at times t > 0 by a conformal transformation
between the regions � − ϵ; 0½ and �0; ϵ½.
The rest of our paper is a generalization of this example

to more general situations, when the current (t > 0)
Universe has the energy-momentum tensor ofmore general
type than the pure radiation.
In our generalization, the intermediate metric g is a

Friedman-Lemaître-Robertson-Walker (FLRW) metric,

g ¼
�
−dt2 þ h2

ð1þ κ
4
ðx2 þ y2 þ z2ÞÞ2 ðdx

2 þ dy2 þ dz2Þ
�
;

ð3Þ
with spatial curvature κ ¼ const and with h ¼ hðtÞ.
We assume that the metric g is regular at t ¼ 0 so that the

singularity of ǧ at the transition (t → 0) is due to the
behavior of the conformal factor fðtÞ → 0 in ǧ. We there-
fore have

hðtÞ → 1 and fðtÞ → Ct as t → 0; ð4Þ
where the linear dependence of fðtÞ on t for t → 0 comes
from the assumption of the dominance of the cosmological
constant (de Sitter solution) at the end of the previous eon.
The dynamics of the model is governed by the Einstein

equations, satisfied by each of the metrics ĝ and ǧ
separately. The Einstein equations, respectively for ĝ and
ǧ, come with their specific cosmological constants λ̂ and λ̌
and with their own energy momentum tensors. We make an
assumption that both of them are the energy-momentum
tensors of perfect fluids characterized by their respective
energy densities μ̂ and μ̌ and pressures p̂ and p̌. The
Einstein equations for ĝ are

R̂μν −
1

2
R̂ĝμν þ λ̂ĝμν ¼ 8πGT̂μν; ð5Þ

with

T̂μν ¼ ðμ̂þ p̂Þûμûν þ p̂ĝμν: ð6Þ
We also have the identical-looking equations for ǧ with all
the hats replaced by the checks. The respective velocities of
the fluids are

uμ ¼ ð1; 0; 0; 0Þ; ǔμ ¼ 1

f
uμ ûμ ¼ fuμ: ð7Þ

We assume that the cosmological constant is non-negative
for both ĝ and ǧ. Consequently, we write

λ̌ ¼ 3Ȟ2
λ ; λ̂ ¼ 3Ĥ2

λ : ð8Þ
Now, our aim is to find solutions to the above-mentioned

Einstein equations. We make an ansatz for ĝ and ǧ, in which

ĝ and ǧ are given by (1) and in which the intermediate
metric g is the general FLRW metric (3). Thus, to specify a
solution compatible with Penrose’s CCC proposal, we have
to determine f, h, μ̂, μ̌, p̂, and p̌, which are the unknown
real functions of time.
To find solutions for f, h, μ̂, μ̌, p̂, and p̌, we recall that a

consequence of the Einstein equations (5) and (6) is the
conservation of the energy-momentum tensor, ∇̂νT̂μν ¼ 0,
which reduces to

∇̂νT̂μν ¼
�
f

�
μ̂0 þ 3ðμ̂þ p̂Þ

�
ln
h
f

�0�
; 0; 0; 0

�
¼ 0:

Thus, when solving the Einstein equations, we have to
solve the equation

μ̂0 þ 3ðμ̂þ p̂Þ
�
ln
h
f

�0
¼ 0 ð9Þ

as well as the analogous equation

μ̌0 þ 3ðμ̌þ p̌ÞðlnðhfÞÞ0 ¼ 0 ð10Þ
for the checked quantities. The physical interpretation of
Eqs. (9) and (10) is that these are the continuity equations
for the fluids ðμ̂; p̂Þ and ðμ̌; p̌Þ, respectively.
Now, we make the main assumptions to obtain special

solutions to the “hatted” and “checked” Eqs. (5) and (6)
with appealing physical properties.
First, we assume that both perfect fluids ðμ̂; p̂Þ and ðμ̌; p̌Þ

are mixtures of a number of respective perfect fluids
ðμ̂i; p̂iÞ and ðμ̌i; p̌iÞ. This means that we have

μ̂ ¼
X
i

μ̂i; μ̌ ¼
X
i

μ̌i;

p̂ ¼
X
i

p̂i; p̌ ¼
X
i

p̌i:

Second, we assume that the equation of state for each of the
perfect fluids in the mixtures is given by

p̂i ¼ ŵiμ̂i; p̌i ¼ w̌iμ̌i; ð11Þ
with ŵi and w̌i being constants.
In this way, the unknowns we try to determine by using

the hatted and checked Einstein Eqs. (5) and (6) are f, h, μ̂i,
μ̌i, and the constants ŵi and w̌i.
Third, we assume that each perfect fluid ðμ̂i; p̂iÞ con-

sidered separately satisfies its own continuity equation; i.e.,
we assume that

μ̂i
0 þ 3ðμ̂i þ p̂iÞ

�
ln
h
f

�0
¼ 0 ð12Þ

and

μ̌i
0 þ 3ðμ̌i þ p̌iÞðlnðhfÞÞ0 ¼ 0: ð13Þ
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Note that, since Eqs. (9) and (10) are linear in μs andps, each
solution of (12) and (13) also solves (9) and (10). However,
the solutions of (12) and (13) constitute only a subset of all
solutions to (9) and (10). Thus, our third assumption restricts
the general solution of the hatted and checked Einstein
Eqs. (5) and (6) to its subset in which, within a given eon, the
mixtures of perfect fluids neither interact among them-
selves nor convert from one fluid into another.
One may worry that this assumption is incompatible with

the rest of the Einstein Eqs. (5) and (6). It turns out,
however, that this is not the case, as the rest of our analysis
clearly shows.
To see this, we first solve (12) and (13). Here, the general

solutions are

μ̂ ¼
X
i

3μ̂0i
8πG

�
h
f

�
−3−3ŵi

μ̌ ¼
X
i

3μ̌0i
8πG

ðhfÞ−3−3w̌i ; ð14Þ

with μ̂0i and μ̌0i integration constants. This reduces the set
of our unknowns from f, h, μ̂i, μ̌i, and the constants ŵi and
w̌i to functions f, h, and constants ŵi and w̌i.
It follows that the rest of the hatted and checked Einstein

Eqs. (5) and (6) reduces to only two ODEs. They are
parametrized by the constants μ̂0i, μ̌0i, ŵi, and w̌i and read

f2
�
h
f

�02
−
X
i

μ̂0i

�
h
f

�
−1−3ŵi

− Ĥ2
λ

�
h
f

�
2

¼ −κ ð15Þ

for the hats and

ðfhÞ02
f2

−
X
i

μ̌0iðhfÞ−1−3w̌i − Ȟ2
λðfhÞ2 ¼ −κ ð16Þ

for the checks. Thus, for each choice of constants μ̂oi, μ̌oi,
ŵi, and w̌i, we are left with two ODEs. In this way, we end
up with two ODEs for two unknown functions—the system
that definitely has solutions.
From these solutions, we pick up those that are

mathematically elegant and desirable by Penrose’s CCC
proposal. In particular, we want the solutions to satisfy
matching conditions (4) at the big bang/big crunch hyper-
surface t ¼ 0.
We consider a solution “mathematically elegant” if the

functions fðtÞ and hðtÞ are analytic in the variable t around
t ¼ 0. This means that such solutions for f ¼ fðtÞ and h ¼
hðtÞ of our two ODEs are expressible in terms of the Taylor
series in t centered at t ¼ 0. From now on, we consider only
such solutions. Thus, assuming the Taylor series expansions
for fðtÞ and hðtÞ, and the matching conditions (4), we get

�
h
f

�
¼ aðtÞ

t
; f2

�
h
f

�02
¼ bðtÞ

t2
;

fh ¼ tcðtÞ; ðfhÞ02
f2

¼ qðtÞ
t2

;

where a ¼ aðtÞ, b ¼ bðtÞ, c ¼ cðtÞ, and q ¼ qðtÞ are
functions analytic in an interval around t ¼ 0, such that
að0Þ ≠ 0, bð0Þ ≠ 0, cð0Þ ≠ 0, and qð0Þ ≠ 0. Inserting these
relations into the ODEs (15) and (16) gives

bðtÞ −
X
i

μ̂0it3þ3ŵia−1−3ŵiðtÞ − Ĥ2
λa

2ðtÞ þ t2κ ¼ 0

and

qðtÞ −
X
i

μ̌0it1−3w̌iq−1−3w̌iðtÞ − Ȟ2
λt

4q2ðtÞ þ t2κ ¼ 0:

These equations have consequences. First, they show that
−1 − 3ŵi and−1 − 3w̌i must be integers. In particular, each
of the ws must be an integer multiple of 1

3
. Second, this

compared with the usual dominant energy conditions for
the fluids

−1 ≤ ŵi ≤ 1; and − 1 ≤ w̌i ≤ 1;

imply that the possible values of ŵis are

ŵi ¼ −1;−
2

3
;−

1

3
; 0;

1

3
;
2

3
; 1; ð17Þ

and that the possible values of w̌is are

w̌i ¼ −1;−
2

3
;−

1

3
; 0;

1

3
;
2

3
; 1:

Using these values for w̌is we get:

qðtÞ − μ̌01ðtqÞ4 − μ̌02ðtqÞ3 − μ̌03ðtqÞ2 − μ̌04tq − μ̌05

− μ̌06ðtqÞ−1 − μ̌07ðtqÞ−2 − Ȟ2
λt

4q2 þ t2κ ¼ 0:

Since qð0Þ ≠ 0, and qðtÞ is analytic in an interval around 0,
we have limt→0q−1ðtÞ ¼ 1

qð0Þ and limt→0q−2ðtÞ ¼ 1
qð0Þ2. Thus

multiplying the above equation first by t2 and passing to the
limit t → 0, and then multiplying it by t and passing to the
limit t → 0we obtain μ̌07 ¼ μ̌06 ¼ 0. This shows that out of
seven possibilities for w̌is we are left with only five:

w̌i ¼ −1;−
2

3
;−

1

3
; 0;

1

3
: ð18Þ

The perfect fluids corresponding to μ̌07 and μ̌06, i.e. those
with w̌i ¼ 2

3
, 1, are excluded by our assumptions!

This is all what we can deduce about our solutions from
the requirement of their analyticity, matching conditions
(4), and the dominant energy conditions for the energy-
momentum tensors.
The solutions must satisfy two ODEs (15) and (16) with

ŵis and w̌is as in (17) and (18). It is convenient to write
down these two ODEs explicitly. We write them in terms of
new unknowns F̂ ¼ F̂ðtÞ and F̌ ¼ F̌ðtÞ, which are related
to fðtÞ and hðtÞ via

CONFORMAL TRANSFORMATIONS AND THE BEGINNING … PHYSICAL REVIEW D 95, 084016 (2017)

084016-3



F̂ ¼ f
h
; F̌ ¼ fh: ð19Þ

In these variables, Eq. (15) reads

F̌

F̂
F̂02 ¼ ðĤ2

λ þ μ̂01Þ þ μ̂02F̂ þ ðμ̂03 − κÞF̂2 þ μ̂04F̂
3

þ μ̂05F̂
4 þ μ̂06F̂

5 þ μ̂07F̂
6; ð20Þ

and Eq. (16) reads

F̌

F̂
F̌02 ¼ μ̌05 þ μ̌04F̌ þ ðμ̌03 − κÞF̌2 þ μ̌02F̌

3

þ ðȞ2
λ þ μ̌01ÞF̌4: ð21Þ

The system of ODEs (20) and (21) definitely has local
solutions satisfying our matching conditions (4). However,
we cannot say much about them. For this reason, we make a
further (the last) assumption. Before introducing it, we give
a motivation.
Note that the intermediate metric (3) when hðtÞ ¼ 1 and

κ ¼ 1 is the metric of Einstein’s static universe. In the
history of General Relativity, this metric was proposed to
describe cosmology as the first. After Hubble’s discovery
of the expansion of the Universe, the Einstein static
universe was abandoned, and more general Friedman-
Lemaître-Roberston-Walker cosmologies began their life
to be in accordance with observations.
But what if, as almost always, Einstein was in a sense

right? Note that if one assumes Penrose’s CCC scenario
there is a prominent place for the Einstein static universe
metric in (CC) cosmology without being in major contra-
diction with astronomical observations. What if the Penrose
intermediate metric g—the background for the transition
from one eon to another—is just the Einstein static universe
metric? We investigate this question, in a bit more general
setting of general κ, in the rest of this paper.
In the context of our solutions, the Einstein static

universe situation corresponds to the unknown hðtÞ≡ 1
and κ ¼ 1. This suggests looking for the analytic solutions
to (15) and (16) with

hðtÞ≡ 1:

This is equivalent to the assumption that the intermediate
metric g describes one of the following three things: the
Einstein static universe metric (κ > 0), the Minkowski
metric (κ ¼ 0), or the static universe with spatial sections
as hyperboloids (κ < 0). We assume this from now on.
In such a case,

F̂ ¼ F̌ ¼ f;

and the two ODEs (20) and (21) to be solved become

f02 ¼ ðĤ2
λ þ μ̂01Þ þ μ̂02f þ ðμ̂03 − κÞf2

þ μ̂04f3 þ μ̂05f4 þ μ̂06f5 þ μ̂07f6

and

f02 ¼ μ̌05 þ μ̌04f þ ðμ̌03 − κÞf2 þ μ̌02f3 þ ðȞ2
λ þ μ̌01Þf4:

ð22Þ
Subtracting these two equations gives restrictions on the
constants μ̂0i. Indeed, since we have

ðĤ2
λ þ μ̂01 − μ̌05Þ þ ðμ̂02 − μ̌04Þf þ ðμ̂03 − μ̌03Þf2
þ ðμ̂04 − μ̌02Þf3 þ ðμ̂05 − Ȟ2

λ − μ̌01Þf4
þ μ̂06f5 þ μ̂07f6 ¼ 0

and f is an analytic function of t, then we must have

μ̂07 ¼ 0

μ̂06 ¼ 0

μ̂05 ¼ μ̌01 þ Ȟ2
λ

μ̂04 ¼ μ̌02

μ̂03 ¼ μ̌03

μ̂02 ¼ μ̌04

μ̂01 ¼ μ̌05 − Ĥ2
λ : ð23Þ

Note the first two equalities; they exclude the existence of
fluids with ŵ ¼ 2

3
and ŵ ¼ 1 in the previous eon. So, now

both eons have the same number of fluids in the mixture.
In addition, we have duality; for each i ¼ 1, 2, 3, 4, 5, if

in the current eon there is a fluid with w̌i, then it gets
transformed from the fluid with ŵ6−i from the previous eon.
We have

w̌i ¼ ŵi ¼
i − 4

3
; i ¼ 1; 2; 3; 4; 5:

In this sense, fluids with i ¼ 3 corresponding to w ¼ − 1
3
in

both eons are self-dual.
The fluids in both eons get “quantized,” and in each eon,

they can only appear in five types. The fluid in the current
eon with i ¼ 1 corresponds to the cosmological constant.
The two fluids from the current eon with i ¼ 2 and i ¼ 3
have negative pressure and are usually not considered in
cosmology. It is nevertheless worth noting that w ¼ −1=3
corresponds to a gas of strings (Ref. [6], p. 228), while w ¼
−2=3 corresponds to a gas of domainwalls (Ref. [6], p. 219).
The two remaining values of w̌i, namely, w̌4 ¼ 0 and w̌5 ¼ 1

3
,

are usually the only ones used in cosmology on physical
grounds; i ¼ 5 corresponds to radiation, and i ¼ 4 corre-
sponds to matter. We find it interesting that all five of these
physically justified values ofw come out naturally—in both
eons—from the requirement of smoothness of conformal
transformations relating the consecutive eons. It is also
interesting that the radiation is dual to the cosmological
constant, matter is dual to a gas of domainwalls, and a gas of
strings is self-dual on two sides of the transition.
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We close this discussion with a remark that now the only
equation to be solved is Eq. (22) for f ¼ fðtÞ. It is solved in
quadratures, and its most general solution gives f ¼ fðtÞ as
an inverse of a general elliptic function.1

Let us summarize. The metrics

ĝ ¼ 1

f2
g and ǧ ¼ f2g; with

g ¼ −dt2 þ ðdx2 þ dy2 þ dz2Þ
ð1þ κ

4
ðx2 þ y2 þ z2ÞÞ2 ;

in which the function f ¼ fðtÞ is given implicitly by the
elliptic integral [see Eq. (22)]

t¼
Z

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̌05þ μ̌04fþðμ̌03− κÞf2þ μ̌02f3þðȞ2

λ þ μ̌01Þf4
q ;

describe a mixture of perfect fluids ðμ̂i; ŵiμ̂iÞ and ðμ̌i; w̌iμ̌iÞ,
in the bandage region of Penrose’s CCC proposal. The
metric ǧ defining the initial cosmology of the current eon
contains the mixture of five fluids with w̌i ¼ −1, − 2

3
, − 1

3
, 0,

1
3
, similarly to the metric ĝ defining the final stages of
cosmology of the previous eon, in which each of the fluids
with w̌6−i is replaced by a fluid with ŵi. The fluids in the
mixtures have the following respective energy densities:

μ̂i ¼
3ð−Ĥ2

λδi1 þ Ȟ2
λδi5 þ μ̌0;6−iÞ

8πG
f3þ3w̌i and

μ̌i ¼
3μ̌0i
8πG

f−3−3w̌i :

In the previous eon, each of them is moving with the 4-
velocity

û ¼ f∂t;

and in the current eon, each of them is moving with 4-
velocity

ǔ ¼ 1

f
∂t:

The metrics ĝ and ǧ satisfy Einstein’s equations with the
energy momentum of the fluids. They also satisfy matching
conditions (4) at the wound hypersurface t ¼ 0.
Finally, we have the following comment: assuming that

hðtÞ≡ 1, the Hubble parameter for t → 0 is equal to

HðtÞ ¼ −
d
dt

�
1

f

�
→

1

Ct2
; ð24Þ

so the criticality, using (14) and (23), tends to 1 for very
early times:

Ω ¼ 8πGμ̂
3H2

→ 1: ð25Þ

Thus, in our model, the Universe is critical at the early
times. Note that it is also critical at the end when the
dominant contribution to the energy comes from the
cosmological constant.
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