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• There exists a faithful irreducible representation ρ : SO(3) → SO(5) of the
SO(3) group in dimension five.

• This ρ(SO(3)) may be defined as a subgroup of a SO(5) stabilizing rank
three traceless symmetric tensor Υ ∈ S3

0R5, which is related to the metric g
via:

ΥjkiΥlmi + ΥljiΥkmi + ΥkliΥjmi = gjkglm + gljgkm + gklgjm.
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• Since we are in the Riemannian category, we can identify (r, 0)-rank tensors
with (0, r)-rank tensors by means of the metric and its inverse.

• Given Υijk and a vector field Xi we define a linear map

ΥX : TM5 → TM5

defined by (
(ΥX)(Y )

)
i
= ΥijkX

jY k.

• Now, the fundamental compatibility relation between g and Υ mentioned on
the previous slide is:

Υ2
X(X) = g(X, X)X.
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• An irreducible SO(3) structure (M5, g, Υ) is called nearly integrable if Υ is
a Killing tensor for g:

LC

∇X Υ(X, X, X) = 0, ∀X ∈ TM5.
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Γ = Γ + 1
2T,

where Γ is an so(3)-valued 1-form on M5 and T is a 3-form on M5.

• We interpret Γ as an so(3)-valued metric connection on M5 and T as its
totally skew symmetric torsion.

• Thus, nearly integrable SO(3) structures provide low-dimensional examples
of Riemannian geometries which can be described in terms of a unique metric
connection (Γ) with totally skew symmetric torsion (T ).

• This sort of geometries are studied extensively by the string theorists.
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• Perhaps these structures are so rigid that they must be homogeneous.
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What are the possible dimensions n in which there exists a tensor Υ satisfying:

i) Υijk = Υ(ijk), (total symmetry)

ii) Υijj = 0, (no trace)

iii) ΥjkiΥlmi + ΥljiΥkmi + ΥkliΥjmi = gjkglm + gljgkm + gklgjm?
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Answer:

• E. Cartan: The only possible dimensions are:

n = 5, 8, 14, 26.

• Such tensor is needed to construct isoparametric hypersurfaces in spheres.
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• Coefficients ai of a 4th order polynomial

w4(x, y) = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy3 + a4y

4

form a carier space for the 5-dimensional irreducible representation of the
GL(2, R) group; this is induced on R5 by the defining action of GL(2, R)
on (x, y) ∈ R2.

• A polynomial I , in variables ai, is called an algebraic invariant of w4(x, y) if
it changes according to

I → I ′ = (det b)p I, b ∈ GL(2, R)

under the action of this 5-dimensional representation on ais.
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• The lowest order invariants of w4(x, y) are:

I2 = 3a2
2 − 4a1a3 + a0a4

I3 = a3
2 − 2a1a2a3 + a0a

2
3 − a0a2a4 + a2

1a4.

• Defining Υijk and gij via

Υijkaiajak = 3
√

3I3

gijaiaj = I2,

one can check that the so defined gij and Υijk satisfy the desidered
relations i)-iii).
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• A simoultaneous stabilizer of Υ and g is
SL(2, R) ⊂ SO(3, 2) ⊂ GL(5, R).

• Since the notion of an ivariant is conformal, it is reasonable to consider a
conformal geometry in R5 associated with a class of pairs [(g,Υ)] such that:

? g is a (3, 2) signature metric; Υ is a rank three totally symmetric tensor
? gijΥijk = 0,
? gab(ΥjkaΥlmb + ΥljaΥkmb + ΥklaΥjmb) = gjkglm + gljgkm + gklgjm,
? (g,Υ) ∼ (g′,Υ′) ⇔ g′ = e2φg, Υ′ = e3φΥ.

• The stabilizer of the conformal class [(g,Υ)] is the irreducible GL(2, R) in
dimension five.



Irreducible GL(2, R) geometry in dimension 5



Irreducible GL(2, R) geometry in dimension 5

A 5-dimensional manifold M5 equipped with a class of triples [(g,Υ, A)] such
that:



Irreducible GL(2, R) geometry in dimension 5

A 5-dimensional manifold M5 equipped with a class of triples [(g,Υ, A)] such
that:

• g is a (3, 2) signature metric; Υ is a rank three totally symmetric traceless
tensor field; A is a 1-form on M5



Irreducible GL(2, R) geometry in dimension 5

A 5-dimensional manifold M5 equipped with a class of triples [(g,Υ, A)] such
that:

• g is a (3, 2) signature metric; Υ is a rank three totally symmetric traceless
tensor field; A is a 1-form on M5

• gab(ΥjkaΥlmb + ΥljaΥkmb + ΥklaΥjmb) = gjkglm + gljgkm + gklgjm,



Irreducible GL(2, R) geometry in dimension 5

A 5-dimensional manifold M5 equipped with a class of triples [(g,Υ, A)] such
that:

• g is a (3, 2) signature metric; Υ is a rank three totally symmetric traceless
tensor field; A is a 1-form on M5

• gab(ΥjkaΥlmb + ΥljaΥkmb + ΥklaΥjmb) = gjkglm + gljgkm + gklgjm,

• (g,Υ, A) ∼ (g′,Υ′, A′) ⇔
(
g′ = e2φg, Υ′ = e3φΥ, A′ = A− 2dφ

)
,

is called an irreducible GL(2, R) structure in dimension five.
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Nearly integrable GL(2, R) structures in dimension 5

• Given (M5, [(g,Υ, A)]) and forgetting about Υ we have a Weyl geometry

[(g,A)] on M5. This defines a unique Weyl connection
W

∇ which is
torsionless and satisfies

W

∇X g + A(X)g = 0.

• An irreducible GL(2, R) structure (M5, [(g,Υ, A)]) is called nearly

integrable iff tensor Υ is a conformal Killing tensor for
W

∇:

W

∇X Υ(X, X, X) + 1
2A(X)Υ(X, X, X) = 0, ∀X ∈ TM5.
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• Every nearly integrable GL(2, R) structure in dimension five uniquely defines
a gl(2, R)-valued connection, called characteristic connection, which has
totally skew symmetric torsion.

• This connection is partially characterized by:

∇Xg + A(X)g = 0, ∇XΥ +
3
2
A(X)Υ = 0.

• To achieve the uniqueness one requires the that torsion T of ∇, considered as
an element of

⊗3 T∗M5, seats in a 10-dimensional subspace
∧3T∗M5.
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• In terms of the connection 1-forms of the Weyl connection
W

Γ , and the
characteristic connection Γ, we have

W

Γ= Γ + 1
2T,

where
W

Γ∈ co(3, 2)⊗ T∗M5, Γ ∈ gl(2, R)⊗ T∗M5 and T ∈
∧3T∗M5.

• The converse is also true: if an irreducible GL(2, R) structure in dimension
five admits a connection ∇ satisfying

∇Xg + A(X)g = 0, ∇XΥ +
3
2
A(X)Υ = 0,

and having totally skew symmetric torsion T ∈
∧3T∗M5 then it is nearly

integrable.



Classification of torsion



Classification of torsion

• Group GL(2, R) acts reducibly on the 10-dimensional space of 3-forms∧3R5.



Classification of torsion

• Group GL(2, R) acts reducibly on the 10-dimensional space of 3-forms∧3R5.

• The GL(2, R) irreducible components are:

∧3R5 =
∧

3 ⊕
∧

7

and have respective dimensions three (
∧

3) and seven (
∧

7).



Classification of torsion

• Group GL(2, R) acts reducibly on the 10-dimensional space of 3-forms∧3R5.

• The GL(2, R) irreducible components are:

∧3R5 =
∧

3 ⊕
∧

7

and have respective dimensions three (
∧

3) and seven (
∧

7).

• Can we produce examples of the nearly integrable GL(2, R) geometries in
dimension five?



Classification of torsion

• Group GL(2, R) acts reducibly on the 10-dimensional space of 3-forms∧3R5.

• The GL(2, R) irreducible components are:

∧3R5 =
∧

3 ⊕
∧

7

and have respective dimensions three (
∧

3) and seven (
∧

7).

• Can we produce examples of the nearly integrable GL(2, R) geometries in
dimension five? Can we produce examples with ‘pure’ torsion in

∧
3 or

∧
7?



Classification of torsion

• Group GL(2, R) acts reducibly on the 10-dimensional space of 3-forms∧3R5.

• The GL(2, R) irreducible components are:

∧3R5 =
∧

3 ⊕
∧

7

and have respective dimensions three (
∧

3) and seven (
∧

7).

• Can we produce examples of the nearly integrable GL(2, R) geometries in
dimension five? Can we produce examples with ‘pure’ torsion in

∧
3 or

∧
7?

Can we produce nonhomogeneous examples?



A well known fact



A well known fact

• Ordinary differential equation y(5) = 0 has GL(2, R)×ρ R5 as its group of
contact symmetries. Here ρ : GL(2, R) → GL(5, R) is the 5-dimensional
irreducible representation of GL(2, R).



A well known fact

• Ordinary differential equation y(5) = 0 has GL(2, R)×ρ R5 as its group of
contact symmetries. Here ρ : GL(2, R) → GL(5, R) is the 5-dimensional
irreducible representation of GL(2, R).

• This, in particular, means that y(5) = 0 may be described in terms of a flat
gl(2, R)-valued connection on the principal fibre bundle
GL(2, R) → P → M5 over the solution space M5 of the ODE.



A well known fact

• Ordinary differential equation y(5) = 0 has GL(2, R)×ρ R5 as its group of
contact symmetries. Here ρ : GL(2, R) → GL(5, R) is the 5-dimensional
irreducible representation of GL(2, R).

• This, in particular, means that y(5) = 0 may be described in terms of a flat
gl(2, R)-valued connection on the principal fibre bundle
GL(2, R) → P → M5 over the solution space M5 of the ODE. As a
consequence the solution space M5 is equipped with a nearly integrable
GL(2, R) structure whose characteristic connection is flat and has no torsion.



A well known fact

• Ordinary differential equation y(5) = 0 has GL(2, R)×ρ R5 as its group of
contact symmetries. Here ρ : GL(2, R) → GL(5, R) is the 5-dimensional
irreducible representation of GL(2, R).

• This, in particular, means that y(5) = 0 may be described in terms of a flat
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transformation of the variables.
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• Suppose that the equation satsifies three, contact invariant conditions:
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4 = 0

375D2F3 − 1000DF2 + 350DF 2
4 + 1250F1 − 650F3DF4 + 200F 2

3−
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4 + 14F 4

4 = 0
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• We call the three conditions on F the Wünschmann-like conditions.



Examples of F satisfying the Wünschmann-like
conditions

The three differential equations

y(5) = c
(5y(3)3(5− 27cy′′2)

9(1 + cy′′2)2
+ 10

y′′y(3)y(4)

1 + cy′′2

)
,

with c = +1, 0,−1, represent the only three contact nonequivalent classes of
Wünschmann-like ODEs having the corresponding nearly integrable GL(2, R)
structures (M5, [g,Υ, A]) with the characteristic connection with vanishing
torsion.



In all three cases the holonomy of the Weyl connection
W

Γ of structures
(M5, [g,Υ, A]) is reduced to the GL(2, R). For all the three cases the Maxwell
2-form dA ≡ 0. The corresponding Weyl structure is flat for c = 0. If c = ±1,
then in the conformal class [g] there is an Einstein metric of positive (c = +1)
or negative (c = −1) Ricci scalar. In case c = 1 the manifold M5 can be
identified with the homogeneous space SU(1, 2)/SL(2, R) with an Einstein g
descending from the Killing form on SU(1, 2). Similarly in c = −1 case the
manifold M5 can be identified with the homogeneous space
SL(3, R)/SL(2, R) with an Einstein g descending from the Killing form on
SL(3, R). In both cases with c 6= 0 the metric g is not conformally flat.
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The corresponding structures have 7-dimensional symmetry group.



F =
5y2

4

4y3
, F =

5y2
4

3y3
.

The corresponding structures have 7-dimensional symmetry group.

F =
5(8y3

3 − 12y2y3y4 + 3y1y
2
4)

6(2y1y3 − 3y2
2)

,

F =
5y2

4

3y3
± y

5/3
3 ,

represent four nonequivalent nearly integrable GL(2, R) structures
corresponding to the different signs in the second expression and to the different
signs of the denominator in the first expression. These structures have
6-dimensional symmety group.



F =
1

9(y2
1 + y2)2

×(
5w

(
y6
1 + 3y4

1y2 + 9y2
1y

2
2 − 9y3

2 − 4y3
1y3 + 12y1y2y3 + 4y2

3 − 3y4(y2
1 + y2)

)
+

45y4(y2
1 + y2)(2y1y2 + y3)− 4y9

1 − 18y7
1y2 − 54y5

1y
2
2 − 90y3

1y
3
2 + 270y1y

4
2+

15y6
1y3 + 45y4

1y2y3 − 405y2
1y

2
2y3 + 45y3

2y3 + 60y3
1y

2
3 − 180y1y2y

2
3 − 40y3

3

)
,

where

w2 = y6
1 + 3y4

1y2 + 9y2
1y

2
2 − 9y3

2 − 4y3
1y3 + 12y1y2y3 + 4y2

3 − 3y2
1y4− 3y2y4.

This again has 6-dimensional symmetry group.
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F = (y3)5/3 q
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An ansatz

F = (y3)5/3 q
(y3

4

y4
3

)
,

reduces Wünschmann-like conditions to a single ODE

90z4/3(3q − 4z2/3)
d2q

dz2
− 54z4/3(

dq

dz
)2 + 30z1/3(6q − 5z2/3)

dq

dz
− 25q = 0,

in which z = y3
4

y4
3
.



Nonhomogeneous example

An ansatz

F = (y3)5/3 q
(y3

4

y4
3

)
,

reduces Wünschmann-like conditions to a single ODE

90z4/3(3q − 4z2/3)
d2q

dz2
− 54z4/3(

dq

dz
)2 + 30z1/3(6q − 5z2/3)

dq

dz
− 25q = 0,

in which z = y3
4

y4
3
.

This equation may be solved explicitely giving example of ODEs having its nearly
integrable structure being nonhomogeneous.
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• If a 3rd order ODE y′′′ = F (x, y, y′, y′′) satisfies the Wünschmann condition
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What about other orders of ODEs?

• If a 3rd order ODE y′′′ = F (x, y, y′, y′′) satisfies the Wünschmann condition

9D2F2 − 18F2DF2 − 27DF1 + 4F 3
2 − 18F1F2 + 54Fy = 0,

D = ∂x + y1∂y + y2∂y1 + F∂y2,

then it defines a Lorentzian conformal structure on the 3-dimensional space of
its solutions.

• This conformal structure in dimension three is related to the quadratic
GL(2, R) invariant ∆ = a0a2 − a2

1 of w2(x, y) = a0x
2 + 2a1xy + a2y

2.



• If a 4th order ODE y(4) = F (x, y, y′, y′′, y′′′) satisfies the Wünschmann-like
conditions

4D2F3 − 8DF2 + 8F1 − 6DF3F3 + 4F2F3 + F 3
3 = 0,



• If a 4th order ODE y(4) = F (x, y, y′, y′′, y′′′) satisfies the Wünschmann-like
conditions

4D2F3 − 8DF2 + 8F1 − 6DF3F3 + 4F2F3 + F 3
3 = 0,

160D2F2 − 640DF1 + 144(DF3)2 − 352DF3F2 + 144F 2
2−

80DF2F3 + 160F1F3 − 72DF3F
2
3 + 88F2F

2
3 + 9F 4

3 + 16000Fy = 0,



• If a 4th order ODE y(4) = F (x, y, y′, y′′, y′′′) satisfies the Wünschmann-like
conditions

4D2F3 − 8DF2 + 8F1 − 6DF3F3 + 4F2F3 + F 3
3 = 0,

160D2F2 − 640DF1 + 144(DF3)2 − 352DF3F2 + 144F 2
2−

80DF2F3 + 160F1F3 − 72DF3F
2
3 + 88F2F

2
3 + 9F 4

3 + 16000Fy = 0,

D = ∂x + y1∂y + y2∂y1 + y3∂y2 + F∂y3,



• If a 4th order ODE y(4) = F (x, y, y′, y′′, y′′′) satisfies the Wünschmann-like
conditions

4D2F3 − 8DF2 + 8F1 − 6DF3F3 + 4F2F3 + F 3
3 = 0,

160D2F2 − 640DF1 + 144(DF3)2 − 352DF3F2 + 144F 2
2−

80DF2F3 + 160F1F3 − 72DF3F
2
3 + 88F2F

2
3 + 9F 4

3 + 16000Fy = 0,

D = ∂x + y1∂y + y2∂y1 + y3∂y2 + F∂y3,

then it defines an irreducible GL(2, R) structure on the 4-dimensional space
M4 of its solutions.



• This GL(2, R) structure in dimension four may be understood in terms of a
conformal Weyl-like structure associated with the quartic GL(2, R) invariant

I4 = −3a2
1a

2
2 + 40a

3
2 + 4a3

1a3 − 6a0a1a2a3 + a2
0a

2
3,

of
w3(x, y) = a0x

3 + 3a1x
2y + 3a2xy2 + a3y

3

and a certain 1-form A on M4.
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conformal tensors Υµ and a certain 1-form A given up to a gradient.
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dimension n.

• These GL(2, R) structures can be understood in terms of a certain Weyl-like
conformal geometries [(Υ1,Υ2, ...,Υk, A)] of GL(2, R)-invariant symmetric
conformal tensors Υµ and a certain 1-form A given up to a gradient.

• It seems that rich GL(2, R) geometries, with lots of examples, are possible in
orders 3 ≤ n ≤ 5 only !

This is a report on a joint work with my student Michał Godliński.


