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Abstract We introduce a class of overdetermined systems of partial differential equa-
tions of finite type on (pseudo-) Riemannian manifolds that we call the generalized
Ricci soliton equations. These equations depend on three real parameters. For special
values of the parameters they specialize to various important classes of equations in
differential geometry. Among them there are: the Ricci soliton equations, the vacuum
near-horizon geometry equations in general relativity, special cases of Einstein–Weyl
equations and their projective counterparts, equations for homotheties and Killing’s
equation. We also prolong the generalized Ricci soliton equations and, by comput-
ing differential constraints, we find a number of necessary conditions for a (pseudo-)
Riemannian manifold (M, g) to locally admit non-trivial solutions to the generalized
Ricci soliton equations in dimensions 2 and 3. The paper provides also a collection
of explicit examples of generalized Ricci solitons in dimensions 2 and 3 (in some
cases).
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1 Introduction

Let (Mn, g) be an oriented smooth manifold of dimension n with (pseudo-) Rie-
mannian metric g. Let us consider the system of equations

LX g = −2c1 X � � X � + 2c2 Ric + 2λg (1)

on a vector field X . Here LX g is the Lie derivative of the metric g with respect to X, X �

is a 1-form such that 〈X, X �〉 = g(X, X), Ric is the Ricci tensor of g and c1, c2 and λ

are arbitrary real constants. In abstract index notation equation (1) can be rewritten as

∇(a Xb) + c1 Xa Xb − c2 Rab = λgab (2)

where the 1-form Xa , which is not necessarily closed, is given by Xa = gab Xb. Here
∇ is the Levi-Civita connection for the metric g. Let us call (2) the generalized Ricci
soliton equations. We note that there is not a unique way of assigning a name to this
class of equations, and our choice is a matter of convenience (some other names were
proposed such as GRicci solitons and grolitons). A more general form for (1) has been
introduced in [3], where the authors considered the gradient case. A pair (g, X) is
called a generalized Ricci soliton if (2) is satisfied for some non-zero Xa and metric
gab.

If c1 �= 0, we can redefine X̃a = c1 Xa , so that (2) is satisfied iff

∇(a X̃b) + X̃a X̃b − c̃2 Rab = λ̃gab (3)

holds, where c̃2 = c1c2 and λ̃ = c1λ. Hence we can redefine constants and study the
equations

∇(a Xb) + Xa Xb − c2 Rab = λgab (4)

if c1 �= 0, and

∇(a Xb) − c2 Rab = λgab (5)

if c1 = 0.
In the case where c1 = 0, if c2 �= 0 we can further rescale Xa by X̃a = − 1

c2
Xa , to

set c2 = −1. In this case (5) is satisfied iff

∇(a X̃b) + Rab = λ̃gab (6)

holds, where λ̃ = − λ
c2

. This is the classical Ricci soliton equation. If c1 = 0 and
c2 = 0, Eq. (5) reduces to the equation for homotheties.
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Table 1 Examples of
generalized Ricci solitons

Equation c1 c2 λ

Killing’s equation 0 0 0

Equation for homotheties 0 0 ∗
Ricci solitons 0 −1 ∗
Cases of Einstein–Weyl 1 − 1

n−2 ∗
Metric projective structures

with skew-symmetric Ricci
tensor in projective class

1 − 1
n−1 0

Vacuum near-horizon geometry equation 1 1
2 ∗

1.1 Motivation

The generalized Ricci soliton equations (2) contain in many cases equations of impor-
tance and interest in differential geometry.

The c1 = 0, c2 = −1 case is the Ricci solitons with constant λ, which is called
steady if λ = 0, expanding if λ < 0, and shrinking if λ > 0; see [2,4] for a survey.
We note that some definitions of Ricci solitons, such as in [2], assume completeness
of the metric.

The c1 = 0, c2 = 0 case is the equation for homotheties of the metric, i.e., the
solutions give rise to homothetic vector fields Xa (conformal Killing with constant
divergence λ).

The situation with c1 = c2 = λ = 0 is Killing’s equation, the equation determining
infinitesimal isometries of the metric.

The c1 = 1, c2 = − 1
n−2 cases are special cases of the Einstein–Weyl equation in

conformal geometry for n > 2; see [1] for definitions.
The c1 = 1, c2 = − 1

n−1 , λ = 0 cases are the equations determining whether a
metric projective structure admits a skew-symmetric Ricci tensor representative in its
projective class. See [20,21] for further details. We remark that coefficient 1

n−1 appears
in the equation because the projective Schouten tensor P is related to the Ricci tensor
of a metric connection by Pab = 1

n−1 Rab.

The c1 = 1, c2 = 1
2 case is the vacuum near-horizon geometry equation. This

equation is recently studied in general relativity in the context of existence of extremal
black holes. In this equation λ is the cosmological constant of the spacetime. See
[5,10,17] for further discussions and refer to Table 1.

The generalized Ricci soliton equations constitute an overdetermined system of
PDEs of finite type. They are linear in Xa in the case where c1 = c2 = 0 (homotheties),
non-homogeneous linear in Xa when c1 = 0 (Ricci solitons), and quadratic in Xa in
the case c1 = 1. The leading term in all these equations have the same symbol as the
differential operator Xa �→ ∇(a Xb).

The first part of the paper (Sects. 2–5) is devoted to prolongation of (2) to derive
algebraic constraints and obstructions in dimensions 2 and 3 (in some cases), while
the second part (Sects. 6–8) is devoted to constructing explicit examples mainly in
dimension 2. In particular, in the second part of the paper we put in a broader context
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such important examples as the celebrated Hamilton’s cigar Ricci soliton (see Propo-
sition 7.5), extremal Kerr black hole horizon (see Corollary 7.20), and reduction of
dKP equation to 2 dimensions in Lorentzian signature (see Proposition 8.5). We also
give some 3 dimensional examples in Example 4.5 and in Remark 7.16.

We raise and lower indices of tensor fields with respect to the metric g, and we will
not distinguish between 1-forms and vector fields when convenient.

2 Generalized Ricci Solitons: Prolongation and Closed System

We now prolong Eq. (2) to get a closed system.
If we denote Fab = ∇[a Xb], then we get

∇a Xb + c1 Xa Xb − c2 Rab = Fab + λgab. (7)

We shall prolong (7) and get differential constraints for g to admit a solution X to (7).
We will concentrate on dimensions 2 and 3 (with c1 = 0 in the 3 dimensional case),
although some parts of the prolongation will be valid in any higher dimensions.

In any dimension, the prolongation gives

∇a Xb = − c1 Xa Xb + c2 Rab + Fab + λgab

∇a Fbc = c2(∇b Rca − ∇c Rba) + Rbc
d

a Xd + 2c1 Fcb Xa + c1 Xb Fca − c1 Xc Fba

+ λc1 Xbgca − λc1 Xcgba + c1c2 Xb Rca − c1c2 Xc Rba .

(8)
Note that Xa appears quadratically in the closed system. Note also, that both equations
of the closed system have inhomogeneous terms; these, such as for example c2∇a Rbc,
depend on the parameters c1, c2, λ and geometric quantities associated with the metric,
but do not depend on the unknowns Xa and Fab.

With redefined constants, for c1 = 1, we get

∇a Xb = − Xa Xb + c̃2 Rab + Fab + λ̃gab

∇a Fbc = c̃2(∇b Rca − ∇c Rba) + Rbc
d

a Xd + 2Fcb Xa + Xb Fca − Xc Fba

+ λ̃Xbgca − λ̃Xcgba + c̃2 Xb Rca − c̃2 Xc Rba,

while for c1 = 0, we obtain

∇a Xb = c2 Rab + Fab + λgab

∇a Fbc = c2(∇b Rca − ∇c Rba) + Rbc
d

a Xd .
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3 2D Generalized Ricci Solitons: Theory

3.1 Prolongation and Constraints of 2D Generalized Ricci Soliton Equations

In 2 dimensions, we have Rabcd = K (gacgbd − gad gbc), Rab = R
2 gab = K gab,

where R is the scalar curvature and K = R
2 is the Gauss curvature. We can also use

the volume form εab to dualize all 2-forms. In the Riemannian signature case we have
εabεac = δb

c, ε
abεab = 2 while in the Lorentzian signature case we have εabεac =

−δb
c and εabεab = −2, so we take εabεac = eδb

c, ε
abεab = 2e where e = {±1}

depending on the signature of the metric. We therefore can write Fab = e
2εab F where

F = εab Fab. Also note that we have εabεcd = e(gacgbd − gad gbc).
The second equation of (8) in 2 dimensions reduces to:

e

2
εbc∇a F = c2(gca∇b K − gab∇c K ) + K Xbgca − K Xcgba − 3e

2
c1εbc F Xa

+ λc1 Xbgca − λc1 Xcgba + c1c2 K Xbgca − c1c2 K Xcgba,

so that contracting throughout with εbc gives

∇a F = 2c2ε
b

a∇b K + 2(λc1 + K (1 + c1c2))Xbε
b

a − 3c1 F Xa .

The prolonged system of the generalized soliton equation (2) therefore reduces to

∇a Xb = − c1 Xa Xb + c2 K gab + e

2
Fεab + λgab

∇a F = − 3c1 Xa F + 2εb
a(c2∇b K + (1 + c1c2)Xb K + λc1 Xb)

(9)

in 2 dimensions.
Let us call

Lb = c2∇b K + (1 + c1c2)Xb K + λc1 Xb = c2∇b K + ((1 + c1c2)K + λc1)Xb.

Then from differentiating

∇a F = −3c1 Xa F + 2εb
a Lb

we obtain

∇b∇a F = −3c1(∇b Xa)F − 3c1 Xa(∇b F) + 2εc
a(∇b Lc),

and upon skewing with the volume form εba (recall that εba∇b Xa = εba Fba = F)
we get

0 = −3c1 F2 + 6ec1 Xb Lb + 2e∇b Lb. (10)
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Now a further computation yields that

∇e La = c2∇e∇a K + (1 + c1c2)(∇e Xa)K + λc1(∇e Xa) + (1 + c1c2)Xa∇e K ,

from which we obtain by tracing indices

∇a La = c2�K + (1 + c1c2)(∇a Xa)K + λc1(∇a Xa) + (1 + c1c2)Xa∇a K .

Since

∇a Xa = −c1 Xa Xa + 2c2 K + 2λ,

this gives

∇a La = c2�K + (1 + c1c2)(−c1 Xa Xa + 2c2 K + 2λ)K

+ λc1(−c1 Xa Xa + 2c2 K + 2λ) + (1 + c1c2)Xa∇a K ,

and so (10) is given by

0 = − 3c1 F2 + 6ec1(c2 Xb∇b K + (1 + c1c2)Xb Xb K + λc1 Xb Xb)

+ 2e

(
c2�K + (1 + c1c2)(−c1 Xa Xa + 2c2 K + 2λ)K

+ λc1(−c1 Xa Xa + 2c2 K + 2λ) + (1 + c1c2)Xa∇a K

)
.

Collecting like terms together we obtain the first differential constraint as

− 3c1 F2 + 4ec1
(
(1 + c1c2)K + λc1

)
Xb Xb + 2e(1 + 4c1c2)Xa∇a K

+ 2e

(
c2�K + (

(1 + c1c2)K + λc1
)
(2c2 K + 2λ)

)
= 0.

(11)

We can differentiate (11) further and use the closed system to obtain a second
constraint, from which we try to solve for Xa . It turns out that to derive this second
constraint is tough and technically demanding, and so it might be more worthwhile to
look at certain special cases instead.

Remark 3.1 From the first constraint we see that in order for the quadratic term Xa Xa

to vanish, we need either c1 = 0 or K is of constant curvature with K = − λc1
1+c1c2

. In
the second situation, this implies ∇a K = 0 (and hence �K = 0), and the differential
constraint reduces to

0 = −3c1 F2,

so that F = 0 if c1 �= 0. We also see that the linear term involving Xa∇a K vanishes
at the critical value of 1 + 4c1c2 = 0.
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Remark 3.2 When 1 + 4c1c2 = 0, the term involving Xa∇a K in (11) vanishes and
the equation reduces to

2e

(
c2�K + ((1 + c1c2)K + λc1)(2c2 K + 2λ)

)

− 3c1 F2 + 4ec1((1 + c1c2)K + λc1)Xb Xb = 0.

Setting c1 = 1 and c2 = − 1
4 , we obtain

− e

2
�K + e

4
(3K + 4λ)(4λ − K ) − 3F2 + e(3K + 4λ)Xb Xb = 0.

Further setting λ = 0, and taking e = 1 in the Riemannian setting gives the differential
constraint

�K + 3

2
K 2 + 6F2 − 6K Xb Xb = 0. (12)

For an explicit example in Lorentzian signature see the end of Sect. 8.2.

3.2 2D Gradient Generalized Ricci Soliton

We call a solution (g, X) to (2) a gradient generalized soliton if Fab = ∇[a Xb] = 0.
In such case Xa = ∇a f for some function f locally.

In 2 dimensions, in the case when F = 0, the second equation in the prolonged
system (9) forces La to vanish, i.e.,

c2∇b K + ((1 + c1c2)K + λc1)Xb = 0.

In this case Xa is necessarily given by

Xa = − c2∇a K

(1 + c1c2)K + λc1
. (13)

We therefore have

Proposition 3.3 Let (M, g) be a (pseudo-) Riemannian 2-manifold, with the Gauss
curvature K of g not equal to − λc1

1+c1c2
. Then in order for M to admit a solution to the

gradient generalized Ricci soliton equations, we must necessarily have (2) satisfied
for Xa given by (13). Conversely, suppose that Eq. (2) is satisfied for some Xa given
by (13), then M admits a solution to the gradient generalized Ricci soliton equations.

As a Corollary to Proposition 3.3, we have:

Corollary 3.4 The local obstruction for a 2-dimensional (pseudo-) Riemannian met-
ric g with K �= − λc1

1+c1c2
to admit a gradient generalized Ricci soliton (g, X) is the

obstruction tensor �ab given by
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�ab = − c2∇a∇b K

(1 + c1c2)K + λc1
+ c2(1 + 2c1c2)∇a K∇b K

((1 + c1c2)K + λc1)2 − (c2 K + λ)gab.

This vanishes if and only if the pair

(g, X) =
(

g,− c2∇a K

(1 + c1c2)K + λc1

)

is a gradient generalized Ricci soliton.

Example 3.5 The metric on R
2 given by

g = y4 + 6

6
dx2 + 6

y4 + 6
dy2

cannot lead to a gradient generalized Ricci soliton (g, X) for generic chosen values
of c1 = 1, c2 = 1, λ = 1. For this example, K = −y2, and our formula for X yields

X = − 2y

2y2 − 1
dy,

so that dX = 0 and plugging this formula for X back into the generalized Ricci soliton
equation gives

�abdxadxb = 4y8− 9y6 + 27y4 − 54y2 + 18

18(2y2 − 1)
dx2 + 6(4y6− 7y4 + 13y2 + 1)

(y4 + 6)(2y2 − 1)2 dy2

which is non-zero.

3.3 2D Ricci Solitons

The case where c1 = 0, c2 = −1. Note that if g is a metric of constant curvature,
the generalized Ricci soliton equation with c1 = 0, c2 = −1 is just an equation for
homotheties. We therefore exclude the pairs (g, X) such that g is a metric of constant
curvature from the analysis in this section. Since these solutions belong to the category
of homotheties, we will discuss them in Sect. 3.4.

For the convenience of the reader we present the closed system (9) for the general-
ized Ricci solitons and its integrability conditions (11) specialized to the case c1 = 0
and c2 = −1. This gives the equations describing the proper Ricci solitons:

∇a Xb = − K gab + e

2
Fεab + λgab

∇a F = 2εb
a(−∇b K + Xb K )

(14)

Xa∇a K − �K + 2Kλ − 2K 2 = 0. (15)
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Excluding the constant curvature case, the proper Ricci solitons can be characterized
by the following theorem.

Theorem 3.6 A 1-form X defining a 2-dimensional Ricci soliton (g, X) is of the form

Xa = 1

ρ

(−2(∇c K )∇c�K + 2(3λ − 5K )M
)
εab∇b K

+ 1

ρ

(
�K + 2K 2 − 2Kλ

)
εab∇b M,

where K is the Gauss curvature of g,

M = gab∇a K∇b K and ρ = εab∇a K∇b M,

provided that ρ �= 0.
If ρ = 0, then X is of the form

Xc = −1

ν

(
εab∇a�K∇b K − 1

2
M F

)
εcd∇d K + 1

ν

(
�K + 2K 2 − 2Kλ

)
εcd N d ,

where

Nc = (∇a∇c K )εab∇b K and ν = εab∇a K Nb,

provided that ν �= 0.
If ν = 0, in the Riemannian case, e = 1, the vector X is locally a gradient and this

situation is a specialization of the results of Proposition 3.3 with c1 = 0 and c2 = −1.

Proof For the c1 = 0 equations, we have

0 = c2(�K + 2K 2) + 2Kλ + Xa∇a K ,

and we can set c2 = −1 to get

Xa∇a K = (�K + 2K 2) − 2Kλ. (16)

Differentiating this gives

0 = − ∇a�K − 4K∇a K + 2(∇a K )λ + (∇a Xb)∇b K + Xb∇a∇b K

= − ∇a�K − 4K∇a K + 2(∇a K )λ +
( e

2
εa

b F + δa
b(λ−K )

)
∇b K + Xb∇a∇b K ,

(17)

upon which contracting by ∇a K gives
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0 = − (∇a K )∇a�K − 4K∇a K∇a K + 2∇a K (∇a K )λ

+ ((λ − K ))∇b K∇b K + Xb∇a K∇a∇b K

= − (∇a K )∇a�K + (3λ − 5K )∇b K∇b K + Xb∇a K∇a∇b K .

Let us call (∇a K )(∇a K ) = M , so that ∇a M = 2(∇b K )(∇a∇b K ). Then we have the
second constraint given by

Xa∇a M = 2(∇a K )∇a�K − 2(3λ − 5K )M. (18)

Now assuming ρ := εab∇a K∇b M �= 0, the vectors εa
b∇b K and εa

b∇b M form a
basis and the Eqs. (16) and (18) give the components of Xa in this basis. We get:

Xa = 1

ρ

(−2(∇c K )∇c�K + 2(3λ − 5K )M
)
εab∇b K

+ 1

ρ

(
�K + 2K 2 − 2Kλ

)
εab∇b M,

so that Xa is completely determined by invariants of the metric. Then, plugging Xa

from this formula back into Eq. (2) with c1 = 0, c2 = −1 gives us local if-and-only-if
obstructions for the metric to admit any Ricci soliton (g, X).

There is an alternative formula for X , again determined by invariants of the metric,
which is convenient for us to use when ρ = 0. To get it we first need a formula

0 = − εab∇a�K∇b K + 1

2
M F + Xcεab(∇a∇c K )∇b K , (19)

which is obtained by contracting the differential constraint (17) with εab∇b K . Then
we define

Nc = (∇a∇c K )εab∇b K ,

and obtain its projection

Xc Nc = εab∇a�K∇b K − 1

2
M F (20)

onto X , by (19). We also have

Xc∇c K = �K + 2K 2 − 2Kλ

by (16).
Using these projections and assuming

ν := εab∇a K Nb �= 0,
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we express Xc in the basis given by εcd N d and εcd∇d K obtaining:

Xc = −1

ν

(
εab∇a�K∇b K − 1

2
M F

)
εcd∇d K + 1

ν

(
�K + 2K 2 − 2Kλ

)
εcd N d .

In the situation where ρ = 0, we can use the above formula to compute X provided
ν �= 0.

In the case where ρ = 0 and ν = 0 we can write

∇a M = 
∇a K

for some function 
. Also note that in such case ν can be expressed in terms of 
,�K
and M as follows:

ν = εab∇a K (∇b∇e K )(εed∇d K )

= e(gaegbd − gad gbe)∇a K∇d K (∇b∇e K )

= e((∇a K )(∇b K )∇a∇b K − M�K )

= e

(
1

2
∇a K∇a M − M�K

)

= e

(



2
− �K

)
M.

To complete the proof we have to prove that in the Riemannian e = 1 case, with
ρ = 0 and ν = 0, we have F = 0.

For this we will use formula (20), and first show that

εab∇a K∇b�K = 0, (21)

and then show that Xc Nc = 0.
Indeed, since ρ = 0 we have ∇a M = 
∇a K , so by differentiating and anti-

symmetrizing, we get that

εab∇a K∇b
 = 0. (22)

On the other hand, the assumption about the Riemannian signature (e = 1), implies

M = ∇a K∇a K > 0,

because we excluded the constant curvature case. Hence the condition ν = 0 gives

 = 2�K . This, when compared with (22), gives (21), as claimed.

Moreover ν = 0 gives:

Nc = j∇c K

for some function j , which implies
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0 = 1

2
εab∇a M∇b K = ∇c K (∇a∇c K )εab∇b K = j∇c K∇c K = j M.

Therefore, the fact that M > 0 is non-zero, implies j = 0, so Na = 0. Now, (20)
gives F = 0, again by the Riemannian condition M > 0. Hence Xa is a gradient. 
�
Corollary 3.7 The local obstruction for a 2-dimensional (pseudo-) Riemannian met-
ric g with ρ �= 0 to admit a Ricci soliton (g, X) is the obstruction tensor �

(1)
ab given

by

�
(1)
ab = ∇(a X (1)

b) + K gab − λgab

where

X (1)
a = 1

ρ

(−2(∇c K )∇c�K + 2(3λ − 5K )M
)
εab∇b K

+ 1

ρ

(
�K + 2K 2 − 2Kλ

)
εab∇b M.

The obstruction tensor �
(1)
ab vanishes if and only if

(g, X) = (g, X (1))

is a Ricci soliton.

Remark 3.8 When ρ = 0 and ν �= 0, the formula for Xa obtained in the proof of
Theorem 3.6 given by

Xc = −1

ν

(
εab∇a�K∇b K − 1

2
M F

)
εcd∇d K + 1

ν

(
�K + 2K 2 − 2Kλ

)
εcd N d

(23)

still involves the unknown quantity F . To solve for F , we can substitute Xc given
by (23) back into the first three Ricci soliton equations (14) and use the last two
equations (14) to eliminate derivatives of F that appear. The first three equations will
then only involve differential invariants of the metric and F . The function F can thus
be algebraically determined in terms of the metric invariants, by solving one of these
equations. Now the substitution of this F back into (23) determines Xc completely.
To obtain obstructions in this case one inserts Xc back into the two Ricci soliton
equations (out of the first three equations (14)) which were not used in determining F .
We therefore will have at most 2 scalar local obstructions for g with ρ = 0, ν �= 0 to
admit a Ricci soliton. We also remark that another procedure for finding obstructions
may be more convenient to use. This consists in inserting X , as in (23), into the last two
equations (14), and then in using the integrability conditions (∇a∇b − ∇b∇a)F = 0
by applying the covariant derivatives on ∇a F . Since the derivatives ∇a F , after an
insertion of X in them, are only expressible in terms of the metric invariants and F ,

123

Author's personal copy



Generalized Ricci Solitons

this leads either to a formula for F , or to an obstruction independent of F , expressed
in terms of the metric invariants only.

Explicitly, if we write Xc = Ac + Bc F , where

Ac = − 1

ν

(
εab∇a�K∇b K

)
εcd∇d K + 1

ν

(
�K + 2K 2 − 2Kλ

)
εcd N d ,

Bc = 1

2ν
Mεcd∇d K ,

then the last 2 equations of (14) give

∇a F = Ca + F Ea,

where

Ca = 2εab∇b K − 2εab Ab K ,

Ea = − 2εab Bb K .

The integrability condition (∇a∇b − ∇b∇a)F = 0 then implies that

0 = εab∇aCb + εabCa Eb + (εab∇a Eb)F. (24)

If εab∇a Eb = 0, then εab∇aCb +εabCa Eb is an obstruction. Otherwise, we can solve
for F in (24) and plug this formula back into (23) to determine X completely in terms
of metric invariants. We explicitly show this alternative procedure in the following
example, where we have εab∇a Eb = 0. The obstruction εab∇aCb + εabCa Eb is then
a 5th order ODE on a single function f (x).

Example 3.9 Consider the metric

g = e2 f (dx2 + dy2),

with a real function f of variable x only, f = f (x). Our aim in this example is to find
obstructions for g to admit a Ricci soliton.

We easily calculate that:

ρ ≡ 0, ν = −e−10 f f ′(2 f ′ f ′′ − f (3))3.

Thus, assuming that f ′(2 f ′ f ′′ − f (3)) �= 0, because ρ ≡ 0, we have to calculate Xc

using formula (23). This, according to Theorem 3.6, is the necessary form of Xc, for
it to be a Ricci soliton (g, X). Explicitly, (23) gives:

X = f (4) − 4 f ′ f (3) − 4 f ′′2 + 4 f ′2 f ′′ − 2e2 f λ f ′′

f (3) − 2 f ′ f ′′ e−2 f ∂x + F

2 f ′ ∂y . (25)
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Here F is the unknown function F = F(x, y) responsible for the skew symmetric
part of ∇a Xb. We now insert this X to the last two of the closed system equations (14)
and solve for the derivatives Fx and Fy . We get:

Fx = f ′′

f ′ F, Fy = 2e−2 f (2e2 f λ f ′′2 + 4 f ′′3 + f (3)2 − f ′′ f (4))

f (3) − 2 f ′ f ′′ .

We now have to assure that Fxy = Fyx , which requires that f = f (x) satisfies a
certain 5th order ODE. This is precisely the obstruction obtained in (24). From this
we have the 5th derivative f (5). Now, we insert (25) in the first four closed system
equations (14). By using the computed Fx , Fy , and their integrability condition, which
gives us the 5th derivative of f , we see that these four equations reduce to a single
one, which is

f (4)( f ′′ − f ′2) − 4 f ′4 f ′′ − 2e2 f λ f ′′2 + 2 f ′2 f ′′2 − 4 f ′′3

+ (e2 f λ f ′ + 4 f ′3 + f ′ f ′′) f (3) − f (3)2 = 0. (26)

This gives a lower order obstruction for g to admit any Ricci soliton.
We now solve for f (4) from this equation, and recalculate our X, Fx and Fy , obtain-

ing:

X = f (3) − 3 f ′ f ′′ − e2 f λ f ′

f ′′ − f ′2 e−2 f ∂x + F

2 f ′ ∂y

and

Fx = f ′′

f ′ F, Fy = 2e−2 f f ′(e2 f λ f ′′ + 2 f ′2 f ′′ + f ′′2 − f ′ f (3))

f ′′ − f ′2 .

Having this we observe, that now Fxy = Fyx is equivalent to the Eq. (26). Hence
we can forget about the 5th order ODE for f , we have used previously. We have just
proved that this is implied by (26).

So the conclusion, up to now, is that (26) is the only condition needed for g to admit
any Ricci soliton.

With this equation satisfied, we can solve for F . Integration of Fx gives:

F = h f ′,

with the function h depending on variable y only, h = h(y). Now, insertion of this
into the formula for Fy gives the following equation:

h′ = 2e−2 f (e2 f λ f ′′ + 2 f ′2 f ′′ + f ′′2 − f ′ f (3))

f ′′ − f ′2 .
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Since the left-hand side of this equation depends only on y, and the right-hand side
only on x , then both sides must be equal to a real constant, say 2a. Then we have
h = 2ay +2b, with a real constant b; the function f must satisfy the third order ODE:

f (3) f ′ − f ′′2 + (ae2 f − 2 f ′2 − e2 f λ) f ′′ − ae2 f f ′2 = 0. (27)

It follows that, if f satisfies this equation, then it automatically satisfies Eq. (26). In
other words, this equation is the first integral for (26).

In such a way, we solved for X, F , and the only equation to be satisfied for g to
have a Ricci soliton, is just the third order ODE (27). We summarize the consideration
in this example in the following proposition.

Proposition 3.10 The metric

g = e2 f (dx2 + dy2),

admits a Ricci soliton if and only if the function f = f (x) satisfies a third order ODE:

f (3) f ′ − f ′′2 + (ae2 f − 2 f ′2 − e2 f λ) f ′′ − ae2 f f ′2 = 0.

If this equation is satisfied the soliton is given by a vector field

X = e−2 f f ′′ + λ − a

f ′ ∂x + (ay + b) ∂y .

Here a and b are real constants. The soliton is a gradient Ricci soliton if and only if
a = b = 0.

3.4 2D Homotheties

The case where c1 = 0, c2 = 0.
Again for the convenience of the reader we present the closed system (9) for the

homothety equations and its integrability conditions (11) by setting c1 = c2 = 0:

∇a Xb = e

2
Fεab + λgab

∇a F = 2εb
a Xb K

(28)

Xa∇a K + 2λK = 0. (29)

Our characterization of homotheties in 2 dimensions is given by the following
theorem:
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Theorem 3.11 A 1-form X defining a 2-dimensional homothety pair (g, X) is of the
form

Xa = 1

ρ

(
6Mλεab∇b K − 2Kλεab∇b M

)
,

provided that ρ �= 0.
If ρ = 0, then X is of the form

Xc = M F

2ν
εcd∇d K − 2Kλ

ν
εcd N d ,

(where again Nc = (∇a∇c K )εab∇b K and ν = εab∇a K Nb), provided that ν �= 0.
If ν = 0, in the Riemannian case, e = 1, the vector X is locally a gradient and we

return to the situation of Proposition 3.3 as before.

Proof In the case where c1 = c2 = 0 we obtain from (11) that

Xa∇a K = − 2Kλ. (30)

Differentiating this equation gives

0 = 2(∇a K )λ + (∇a Xb)∇b K + Xb∇a∇b K

= 2(∇a K )λ +
( e

2
εa

b F + δa
bλ

)
∇b K + Xb∇a∇b K , (31)

and contracting by ∇a K results in

0 = 3λM + Xb∇a K∇a∇b K

= 3λM + Xa∇a M

2
.

Thus, the second constraint is given by

Xa∇a M = − 6Mλ. (32)

Now assuming ρ := εab∇a K∇b M �= 0, the vectors εa
b∇b K and εa

b∇b M form a
basis. The Eqs. (30) and (32) give the components of Xa in this basis. Therefore we
get

Xa = 1

ρ

(
6Mλεab∇b K − 2Kλεab∇b M

)
.

Thus Xa is again completely determined by invariants of the metric. And now, again
as in the Ricci soliton case, plugging this formula for Xa back into the equations for
homotheties ((2) with c1 = 0, c2 = 0), gives us local obstructions for the metric to
admit a solution to the homothety equation.
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Alternatively, we can contract (31) by εab∇b K like before and get

Xb Nb = −1

2
M F.

Hence if ρ = 0 and ν is non-zero we can still solve for

Xc = −1

ν

(
−1

2
M F

)
εcd∇d K − 2Kλ

ν
εcd N d .

In the Riemannian setting, if ν = 0, then Na = 0 as before in the proof of Theorem
3.6, so that F = 0 and X is again a gradient. 
�
Corollary 3.12 The local obstruction for a 2-dimensional (pseudo-) Riemannian met-
ric g with ρ �= 0 to admit a homothety (g, X) is the obstruction tensor �

(2)
ab given

by

�
(2)
ab = ∇(a X (2)

b) − λgab,

where

X (2)
a = 1

ρ

(
6Mλεab∇b K − 2Kλεab∇b M

)
.

The obstruction tensor �
(2)
ab vanishes if and only if

(g, X) = (g, X (2))

with ρ �= 0 is a homothety.

Remark 3.13 Again we observe that in the case ρ = 0 and ν �= 0, the formula for Xa

obtained in the proof of Theorem 3.11 given by

Xc = M F

2ν
εcd∇d K − 2Kλ

ν
εcd N d , (33)

still involves the unknown quantity F . To solve for F , we can proceed as in the Remark
3.8, and in the end obtain local if-and-only-if obstructions for g with ρ = 0, ν �= 0 to
admit a homothety. Let us show this with an example.

Example 3.14 We again consider the metric

g = e2 f (dx2 + dy2), (34)

with f = f (x), as in Example 3.9.
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We now find f s for which g has homotheties. As before we have: ρ ≡ 0 and
ν = −e−10 f f ′(2 f ′ f ′′− f (3))3, so if f ′(2 f ′ f ′′− f (3)) �= 0 the homothety necessarily
has the form (33). Explicitly, (33) gives:

X = 2λ f ′′

2 f ′ f ′′ − f (3)
∂x + F

2 f ′ ∂y . (35)

Here F is the unknown function F = F(x, y) responsible for the skew symmetric
part of ∇a Xb. We now insert this X to the last two of the closed system equations (28)
and solve for the derivatives Fx and Fy . We get:

Fx = f ′′

f ′ F, Fy = 4λ f ′′2

f (3) − 2 f ′ f ′′ .

Requiring that Fxy = Fyx we get:

4λ f ′′ ( f ′ f ′′ f (4) − 2 f ′ f (3)2 + (2 f ′2 f ′′ + f ′′2) f (3) − 4 f ′ f ′′3) = 0.

Now there are three cases.
The first one, f ′′ ≡ 0, corresponds to flat metrics, K ≡ 0, and we will not comment

on it anymore.
The second case is when

λ = 0.

As such, this case corresponds to Xa which is a Killing vector. In this case we have
Fy = 0, and by integration we get that F = 2a f ′, where a is a constant. This, when
inserted in (35) gives X = a∂y , which is obviously a Killing vector for metric (34),
regardless of what the function f = f (x) is.

We are left with the analysis of the third case, which requires that

( f ′ f ′′ f (4) − 2 f ′ f (3)2 + (2 f ′2 f ′′ + f ′′2) f (3) − 4 f ′ f ′′3) = 0. (36)

In this case we insert (35) in the first four closed system equations (28). By using
the computed Fx , Fy , and their integrability condition (36), which gives us the 4th

derivative of f , we see that these four equations reduce to a single one, which when
λ �= 0, is equivalent to (

f ′′

f ′2

)′
= 0. (37)

This equation can be explicitly solved. It follows that its solutions automatically solve
the 4th order ODE (36) and as such lead to the metrics (34) admitting homotheties.
Solving for F we get the most general solution. Modulo a redefinition of coordinates
this most general solution is given by the following proposition.
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Proposition 3.15 Modulo a change of coordinates (x, y) �→ (αx + β, y), a nonflat
metric

g = e2 f (dx2 + dy2),

with f = f (x), admits a proper homothetic vector Xa if and only if

g = x2s(dx2 + dy2),

with constant s such that s(s +1) �= 0. In such case homothetic vector fields are given
by a 2-parameter family:

X = b(x∂x + y∂y) + a∂y,

parameterized by constants a and b. The parameter b is related to the expansion of
X, via

∇(a Xb) = (s + 1)bgab.

3.5 2D Killing Equations

The case where c1 = 0, c2 = 0, λ = 0. The Killing equation has been stud-
ied extensively and much is known in the classical literature. The vanishing of
ρ = εab∇a K∇b M is necessary for the metric to admit an isometry and is known
by geometers such as Liouville and Darboux as I1. The quantity ρ coincides with
the projective invariant ρ in [21] up to some non-zero multiple. It is also known as
ν5 by Liouville. There is another invariant known as I2, which is given by non-zero
multiple of εab∇a K∇b�K , whose vanishing together with I1 characterize metrics
that are locally surfaces of revolution. See [6,7,12,19] for details.

3.6 2D Metric Projective Structures with Skew-Symmetric Ricci Tensor

The case where c1 = 1, c2 = −1, λ = 0. For this section we give just the closed system
and integrability conditions for metric projective Einstein–Weyl (pEW) equations. The
pEW equation is introduced in [20,21]. Local obstructions (at least in the Riemannian
setting) have already been found in [21]. The 2 dimensional projective Einstein–Weyl
equations obtained from setting c1 = 1, c2 = −1, λ = 0 in the generalized Ricci
soliton equations are

∇a Xb + Xa Xb + K gab = Fab, (38)

with Fab = e
2εab F = ∇[a Xb] where Fabεab = F . (Note that εacε

bc = eδb
c).
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We prolong to get the closed system

∇a Xb = −Xa Xb − K gab + e

2
Fεab,

∇a F = −3Xa F − 2εb
a∇b K .

(39)

The constraint equation is given by

Xa∇a K = − e

2
F2 − �K

3
. (40)

3.7 2D Near-Horizon Geometry Equations

The case where c1 = 1, c2 = 1
2 , λ = 0. For this section we just show the computa-

tions that lead to algebraic constraints for the near-horizon geometry equations in 2
dimensions. The near-horizon geometry equations in 2 dimensions are given by

∇a Xb + Xa Xb − K

2
gab = Fab, (41)

where again Fab = e
2εab F = ∇[a Xb] with Fabεab = F . We prolong to get the closed

system

∇a Xb = −Xa Xb + K

2
gab + e

2
Fεab,

∇a F = −3Xa F + εb
a∇b K + 3εb

a Xb K .

(42)

The integrability condition is given by

Xa∇a K = e

2
F2 − Xa Xa K −

(
�K

6
+ K 2

2

)
.

We call Xa Xa = σ and μ = �K
6 + K 2

2 , so that the constraint equation is now

Xa∇a K = e

2
F2 − σ K − μ. (43)

Observe that as a consequence of the first equation in (42), we have

∇aσ = eεab Xb F + K Xa − 2Xaσ.
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Differentiating (43) one more time, and using (42), we obtain

(
eF

2
εa

b + K

2
δa

b − Xa Xb
)

∇b K + Xb(∇a∇b K )

= −3eXa F2 + eεb
a(∇b K )F + 3eεb

a Xb K F

− eεab Xb K F − K 2 Xa + 2Xaσ K − σ(∇a K ) − ∇aμ.

Now contract the above equation with ∇a K , and define M := ∇a K∇a K . We get

K M

2
− (Xa∇a K )(Xb∇b K ) + 1

2
Xb∇b M

= −3e(Xa∇a K )F2 − 4eεab∇a K Xb K F − K 2(Xa∇a K )

+ 2(Xa∇a K )σ K − σ M − ∇a K∇aμ. (44)

Let us define

A := e

2
F2 − σ K − μ,

so that (43) is now

Xa∇a K = A.

Note that A depends on unknowns σ, F and metric invariants K , μ. Equation (44)
becomes

Xb(∇b M + 8eεa
b(∇a K )K F

) = 2A2 − K M − 6eAF2 − 2AK 2

+ 4AKσ − 2σ M − 2∇a K∇aμ.

Now define

B := 2A2 − K M − 6eAF2 − 2AK 2 + 4AKσ − 2σ M − 2∇a K∇aμ.

Again B depends on unknowns σ, F and metric invariants K , μ, M,∇a K∇aμ, so that

Xb∇b M + 8eεab∇a K Xb K F = B.

We can now express Xa in the basis εab∇b K and εab∇b M , assuming

ρ = εab∇a K∇b M �= 0.

We obtain

Xa = − 1

ρ

(
B − 8eεcd(∇c K )Xd K F

)
εab∇b K + A

ρ
εab∇b M. (45)
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Observe that the term Xd still appears on the right-hand side of the above expression,
which we now eliminate. Contracting with εca∇c K , we get

εca∇c K Xa = eM

ρ
(B − 8eεab∇a K Xb K F) − eA

ρ
∇b K∇b M.

Define N := ∇a K∇a M . We therefore have

(ρ + 8K F M)εab∇a K Xb = e(M B − AN ),

from which we get

εab∇a K Xb = e(M B − AN )

ρ + 8K F M
. (46)

Now assuming ρ + 8K F M �= 0, we can substitute (46) back into the expression for
Xa given by (45), but also observe that ∇a K and εab∇b K constitute a new basis.
Assuming that M �= 0, we therefore obtain

Xa = AN − M B

M(ρ + 8K F M)
εab∇b K + A

M
∇a K . (47)

We therefore obtained an expression for X , provided that the near-horizon geome-
try equation is satisfied, involving unknowns F, σ and metric invariants K , μ, M,

∇a K∇aμ, N . Next, we try to eliminate σ . We find that

σ = Xa Xa = e(AN − M B)2

M(ρ + 8K F M)2 + A2

M
.

Let us call J = ρ + 8K F M . Rearranging the terms, we find that

M J 2σ = e(AN − M B)2 + A2 J 2, (48)

and since A is linear in σ, B is quadratic in σ , this means that Eq. (48) gives us a quartic
polynomial equation that σ has to satisfy, with coefficients of the polynomial given
by expressions involving differential invariants of the metric and also the unknown
F . Since quartic polynomials are solvable, we can solve for σ (in terms of metric
invariants and F) and plug this expression for σ back into (47) to get X determined
now only in terms of F and its metric invariants. We can then substitute X back into
original equation and derive further algebraic constraints. To summarize, we have:

Proposition 3.16 A 1-form X defining a generalized Ricci soliton (g, X) with
(c1, c2, λ) = (1, 1

2 , 0) is of the form

Xa = AN − M B

M(ρ + 8K F M)
εab∇b K + A

M
∇a K ,
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provided J = ρ + 8K F M �= 0, M �= 0. Here A, B are quantities as defined above
involving the unknowns σ = Xa Xa, F and metric invariants. Moreover, σ must satisfy
a quartic polynomial equation

M J 2σ = e(AN − M B)2 + A2 J 2

still involving the unknown F and the metric invariants that appear in M, J, A, B, N.

Because of the tedious and difficult nature of the computations we shall not proceed
further. Finally, note that in the case where J = ρ+8K F M = 0, we have F = − ρ

8K M
and also M B = AN . Equation (48) becomes an identity.

Let us now turn to gradient generalized Ricci solitons in higher dimensions.

4 Gradient Generalized Ricci Solitons

The case where Fab = 0 in n dimensions. In this section we generalize the results of
Sect. 3.2 on 2-dimensional gradient generalized Ricci soliton to arbitrary dimensions.
Such a soliton has the vector field Xa that is locally a gradient. Therefore in this section
all our considerations are about the case when

Fab ≡ 0

in the closed system (8).

Proposition 4.1 Let (M, g) be a (pseudo-) Riemannian n-manifold. Let Rab be the
Ricci tensor and R be the Ricci scalar curvature for g. Assume that

ρa
b := (1 − c1c2)Ra

b + ((n − 1)λc1 + c1c2 R) δa
b

has non-zero determinant. Then a necessary condition for X to be a gradient gener-
alized Ricci soliton (g, X) is that

Xa = −c2

2
ρ̃a

b∇b R, (49)

where the symbol ρ̃a
b denotes the matrix inverse of ρa

b. The vector field Xa is a
gradient generalized Ricci soliton if and only if it further satisfies

∇a Xb = − c1 Xa Xb + c2 Rab + λgab. (50)

As a corollary to Proposition 4.1, we have:

Corollary 4.2 The local obstructions for a n-dimensional (pseudo-) Riemannian met-
ric g with ρa

b invertible to admit a gradient generalized Ricci soliton (g, X) is the
obstruction tensor �

(3)
ab given by

�
(3)
ab = ∇a X (3)

b + c1 X (3)
a X (3)

b − c2 Rab − λgab
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where

X (3)
a = −c2

2
ρ̃a

b∇b R.

The obstruction tensor �
(3)
ab vanishes if and only if (g, X) = (g, X (3)) is a gradient

generalized Ricci soliton.

Proof of Proposition 4.1 If we look at the equations in the closed system (8) and
consider the case Fab = 0, we get from the second that

0 = c2(∇b Rca − ∇c Rba) + Rbc
d

a Xd

+ λc1 Xbgca − λc1 Xcgba + c1c2 Xb Rca − c1c2 Xc Rba,

from which, tracing c and a indices, gives

0 = c2(∇b R − ∇c Rca) + Rbd Xd + (n − 1)λc1 Xb + c1c2 Xb R − c1c2 Rbd Xd .

Rearranging, and using the contracted Bianchi identity that ∇a R = 2∇b Rab, we obtain

0 =c2

2
∇b R + (1 − c1c2)Rbd Xd + ((n − 1)λc1 + c1c2 R) Xb,

or that

−c2

2
∇b R =

[
(1 − c1c2)Rb

d + ((n − 1)λc1 + c1c2 R) δb
d

]
Xd .

Hence, supposing that the tensor given by

ρa
b := (1 − c1c2)Ra

b + ((n − 1)λc1 + c1c2 R) δa
b

has non-zero determinant, we have its inverse ρ̃a
b such that

ρ̃a
bρ

b
c = δa

c.

In this case, we solve for Xa , obtaining

Xa = −c2

2
ρ̃a

b∇b R.

This proves that Xa is of the form (49). To make this necessary condition for Xa

sufficient, vector field Xa must satisfy the Eq. (50). This ends the proof. 
�
Remark 4.3 Although it is not evident at the first glance, it follows from the proof, as
a consequence of Fab = 0, that the vector field Xa given by formula (49) is locally a
gradient.
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Example 4.4 (Gradient Ricci solitons: c1 = 0, c2 = −1) We see that in this case,
ρab = Rab. For example, can the metric in R

3 given by

g = et2
dx2 + et dy2 + dt2

admit a steady (λ = 0) gradient Ricci soliton? We find for this metric that the Ricci
tensor is given by

Rabdxadxb = et2
(2t2 + t + 2)

2
dx2 − et (1 + 2t)

4
dy2 −

(
t2 + 5

4

)
dt2

and therefore is invertible on the open set where (2t2 + t + 2)(1 + 2t) is non-zero.
We compute, and find that Xa = 1

2 ρ̃a
b∇b R gives

X = −2(4t + 1)

4t2 + 5
dt.

Plugging this back into the steady gradient Ricci soliton equation gives

�
(3)
ab dxadxb = et2

(8t4 + 4t3 + 2t2 + t + 10)

2(4t2 + 5)
dx2

+ et2
(8t3 + 4t2−6t+1)

4(4t2 + 5)
dy2 + 64t6 + 240t4 + 428t2 + 64t−35

4(4t2 + 5)2 dt2,

which is non-zero. We conclude that this metric does not admit a solution to the steady
gradient Ricci soliton equations even locally.

Example 4.5 (Gradient Ricci solitons: c1 = 0, c2 = −1) For a positive example,
consider the metric on R

3 given by

g = tdx2 + tdy2 + 2t
√

2−2

(at
√

2 − b)2
dt2.

We find for this metric that the Ricci tensor is given by

Rabdxadxb = − a2(2 + √
2)t2+√

2 − 4abt2 − b2(
√

2 − 2)t2−√
2

8t
dx2

− a2(2 + √
2)t2+√

2 − 4abt2 − b2(
√

2 − 2)t2−√
2

8t
dy2

− a(
√

2 + 1)t
√

2 + b(
√

2 − 1)

2(at
√

2 − b)t2
dt2
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and therefore is invertible on the open set where

(a2(2 + √
2)t2+√

2 − 4abt2 − b2(
√

2 − 2)t2−√
2)

(
a(

√
2 + 1)t

√
2 + b(

√
2 − 1)

)

is non-zero. We compute, and find that Xa = 1
2 ρ̃a

b∇b R gives

X =
√

2(a2(2
√

2 + 3)t2+2
√

2 + b2(2
√

2 − 3)t2)

2(at
√

2 − b)(a(
√

2 + 1)t
√

2 + b(
√

2 − 1))t3
dt.

Plugging this back into the steady gradient Ricci soliton equation gives

�
(3)
ab dxadxb = 0.

We therefore conclude that

g = tdx2 + tdy2 + 2t
√

2−2

(at
√

2 − b)2
dt2,

X =
√

2(a2(2
√

2 + 3)t2+2
√

2 + b2(2
√

2 − 3)t2)

2(at
√

2 − b)(a(
√

2 + 1)t
√

2 + b(
√

2 − 1))t3
dt,

is a 2-parameter family of steady gradient Ricci solitons.

Remark 4.6 In the case where 1 = c1c2, we see that ρab is a multiple of the metric
and so Xa will be some multiple of the gradient of R.

5 3D Ricci Solitons and Homotheties

Again because of the difficulty in considering the c1 �= 0 case, let us now consider
the case for the generalized Ricci solitons with c1 = 0 (proper Ricci solitons and
homotheties) in 3 dimensions.

The prolongation gives

∇a Xb = c2 Rab + Fab + λgab

∇a Fbc = c2(∇b Rca − ∇c Rba) + Rbc
d

a Xd
(51)

Tracing over a and b indices in the second equation and using the contracted Bianchi
identity gives

∇a Fac = − c2

2
∇c R − Rcd Xd .
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Differentiating this equation once more and using (51) yields

∇b∇a Fac = − c2

2
∇b∇c R − (∇b Rcd)Xd − Rcd(c2 Rb

d + Fb
d + λδb

d).

Contracting upon b and c and using the identity ∇a∇b Fab = 0, which is true for any
2-form by the Ricci identity, we obtain

Xd∇d R = −c2�R − 2c2 Rbd Rbd − 2λR (52)

as an integrability condition to (51). To get further algebraic constraints, we can dif-
ferentiate (52).

Differentiating the last equation in (51) gives

∇d∇a Fbc = c2(∇d∇b Rca −∇d∇c Rba)+(∇d Rbc
e

a)Xe+Rbc
e

a(c2 Rde+Fde + λgde),

so that skewing gives

Rad
e

b Fec + Rad
e

c Fbe = c2(∇d∇b Rca − ∇d∇c Rba) − c2(∇a∇b Rcd − ∇a∇c Rbd)

+ (∇d Rbc
e

a − ∇a Rbc
e

d)Xe + c2 Rbc
e

a Rde + Rbc
e

a Fde

+ λRbcda − c2 Rbc
e

d Rae − Rbc
e

d Fae − λRbcad .

Using the Bianchi identities,

∇d Rbc
e

a − ∇a Rbc
e

d = ∇d Re
abc − ∇a Re

dbc = ∇e Rdabc,

and tracing d and b indices, we obtain

Xe∇e Rac + Rb
c

e
a Fbe + Rc

e Fae + Rb
a

e
c Fbe + Ra

e Fce

= c2(−Rc
e Rae − Rb

c
e

a Rbe) − 2λRca

+ c2(∇a∇b Rcb − ∇a∇c R) − c2(�Rca − ∇b∇c Rba).

Let us denote the right-hand side by Sac:

Sac = c2(−Rc
e Rae − Rb

c
e

a Rbe) − 2λRca

+ c2(∇a∇b Rcb − ∇a∇c R) − c2(�Rca − ∇b∇c Rba).

Let us write

Rab = Pab + Pgab.

Here Pab is the Schouten tensor and P = gabPab is its metric trace. Decomposing

Rabcd = gacPbd − gbcPad + gbdPac − gbcPad ,
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we then get

Xe∇e Rac + (gbePca − δc
ePa

b + Pbegca − δa
bPc

e)Fbe + Rc
e Fae

+ (gbePac − δa
ePc

b + Pbegca − δc
bPa

e)Fbe + Ra
e Fce

= Xe∇e Rac − Pa
b Fbc − Pc

b Fba

= Sac.

Let εabc denote the volume form in 3 dimensions. Again setting e = 1 when g is
Riemannian (+ + +) and e = −1 when g is Lorentzian (+ + −), we have

εabcεde f = e
(
gad gbegcf + ga f gbd gce + gaegbf gcd − gad gbf gce

−gaegbd gcf − ga f gbegcd
)
,

from which we get

εabcεde
c = e(gad gbe − gaegbd).

We can use the volume form to dualize the 2-form Fab, so that

Fab = e

2
εabc Fc

where Fa = εabc Fbc. We can therefore write

Xe∇e Rac = Sac + Pc
b Fba + Pa

b Fbc

= Sac + e

2
εbadPc

b Fd + e

2
εbcdPb

a Fd

= Sac − ePb
(cεa)bd Fd . (53)

Tracing the a and c indices gives the integrability condition (52). Now let us call

E(ca)d = Pb
(cεa)bd .

A computation shows that

E (ca)
b E(ca)d =

(
1

2
Peaεc

eb + 1

2
Pecεa

eb

) (
1

2
P f

aεc f d + 1

2
P f

cεa f d

)

= 1

2
PeaP f

aεc
ebεc f d + 1

2
PeaP f

cε
c

ebεa f d

= e

2
PeaP f

a
(
gef gbd − ged gbf

) + e

2
PeaP f

c
(
δc

agef gbd + δc
d geagbf

+δc
f ged gba − δc

agbf ged − δc
d gbagef − δc

f gbd gea
)
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= e(PacPacgbd + PPbd − 3

2
Pb

ePde − 1

2
P2gbd)

= eQbd .

Contracting (53) throughout with E (ca)
b, we obtain

(Xe∇e Rac)E (ac)
b = Sac E (ab)

b − Qbd Fd .

Hence provided that Qb
d is invertible, (so that there exists Q̃a

c such that Q̃a
c Qc

b =
δa

b), we can solve for Fd in terms of Xa and invariants of the (pseudo-) Riemannian
structure, to obtain

Fa = Q̃ab(Sdc E (dc)b − (Xe∇e Rdc)E (dc)b). (54)

In other words there is an algebraic relation between Xa and Fa in 3 dimensions.
Plugging the expression for Fa given by (54) back into the differential constraint

Xe∇e Rac = Sac − eE(ca)d Fd

gives

Xe∇e Rac = Sac − eE(ca)d Q̃d
b(S f k E ( f k)b − Xe(∇e R f k)E ( f k)b),

so that

Xe∇e Rac − Xe(∇e R f k)eE(ca)d Q̃d
b E ( f k)b = Sac − eE(ca)d Q̃d

b S f k E ( f k)b,

which implies

Xe(∇e Rac − e(∇e R f k)E(ca)d Q̃d
b E ( f k)b) = Sac − eE(ca)d Q̃d

b S f k E ( f k)b.

This is not identically zero, and we have eliminated Fa without differentiating (54)
further. Also, by taking the metric trace, we obtain the constraint (52). To summarize,
we have:

Proposition 5.1 Let (M, g) be a (pseudo-) Riemannian 3-manifold. Let Pab be the
Schouten tensor and P = gabPab be its trace. Assume that

Qb
d = PacPacδb

d + PPb
d − 3

2
PbePde − 1

2
P2δb

d

has non-zero determinant. Then every c1 = 0 generalized Ricci soliton (g, X) has

Xe(∇e Rac − e(∇e R f k)E(ca)d Q̃d
b E ( f k)b) = Sac − eE(ca)d Q̃d

b S f k E ( f k)b. (55)
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In formula (55) the symbol Q̃a
b denotes the matrix inverse of Qa

b. We also have

Sac = c2(−Rc
e Rae − Rb

c
e

a Rbe) − 2λRca + c2(∇a∇b Rcb

−∇a∇c R) − c2(�Rca − ∇b∇c Rba)

and

E(cd)b = Pa
(cεd)ab.

For certain examples constraint (55) is already sufficient to conclude that locally
some metrics cannot admit any solution to the generalized Ricci soliton equations with
c1 = 0. Instead of a tensorial obstruction, we obtain algebraic relations that force a
linear system of equations to be inconsistent. To illustrate this, let us take the metric
given by

g = ezdx2 + e−zdy2 + zdz2.

We ask: can this metric admit a homothetic vector field that is not Killing (c1 =
0, c2 = 0, λ �= 0)? For generic c2 and λ, we compute and find that

Qabdxadxb = ez(4z2 − 4z + 1)

32z4 dx2 + e−z(4z2 + 4z + 1)

32z4 dy2 + 1

8z3 dz2,

and this is invertible on an open set away from (2z − 1)2(2z + 1)2 = 0. We obtain

Q̃abdxadxb = 32z4ez

4z2 − 4z + 1
dx2 + 32e−z z4

4z2 + 4z + 1
dy2 + 8z5dz2.

We find that Sab E (ab)c = 0, so the right-hand side expression of (55) reduces to

Sacdxadxc =ez(−2λz3 + 2c2z2 − 7c2)

4z5
dx2 − e−z(−2λz3 + 2c2z2 − 7c2)

4z5
dy2

− −2λz3 + c2z2 − 2c2

2z3 dz2.

Let

X = X1(x, y, z)∂x + X2(x, y, z)∂y + X3(x, y, z)∂z

denote the vector field X in (55). The left-hand side of (55) gives

−ez X3

2z3 dx2 + e−z X3

2z3 dy2 + X3

2z
dz2.
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Equating both sides, we obtain the constraint that:

− ez(−2λz3+ 2X3z2+ 2c2z2 −7c2)

4z5
dx2 + e−z(−2λz3 +2X3z2 +2c2z2− 7c2)

4z5
dy2

+ −2λz3 + X3z2 + c2z2 − 2c2

2z3 dz2 = 0. (56)

The metric trace of this equation gives

−2λz3 + X3z2 + c2z2 − 2c2

2z4 = 0,

which is the scalar constraint (52) obtained previously. This gives

X3 = 2λz3 − c2z2 + 2c2

z2 .

Substituting this expression for X3 back into the constraint (56) gives

0 = −ez(2λz3 − 3c2)

4z5
dx2 + e−z(2λz3 − 3c2)

4z5
dy2.

For c2 = 0, this is non-zero unless λ = 0 also. Hence we conclude that locally this
metric cannot admit any homothetic vector field unless λ = 0. It can be verified that
this metric admits Killing symmetries, but solving the equations for homotheties with
λ �= 0 gives rise to an inconsistent system.

6 Rewriting Generalized 2D Ricci Soliton Equations in Terms of a Potential

We now restrict ourselves to the 2-dimensional setting to get explicit examples of
generalized Ricci solitons. In this section we focus on the situation where Xa is non-
null, i.e.,

Xa Xa �= 0.

We recall that with our notation as in Sect. 3, the generalized Ricci soliton equations
in two dimensions are given by

c1 = 1 : ∇(a Xb) + Xa Xb − (c2 K + λ)gab = 0, (57)

c1 = 0 : ∇(a Xb) − (c2 K + λ)gab = 0. (58)
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6.1 Generalization of Jezierski’s Formulation of 2D Near-Horizon Equations

It was recently noted [11] in the context of General Relativity that the special case
c1 = 1, c2 = 1

2 , λ = 0 of generalized Ricci soliton equations admits a convenient
description as follows.

The generalized Ricci soliton equation in this case,

∇(a Xb) + Xa Xb − K

2
gab = 0, (59)

called by the General Relativity community the basic equation of vacuum near-horizon
geometry, is equivalent to the system of 3 equations:

∇a�a = 1,

∇[a�b] = 0,

∇a Xa + Xa Xa − K = 0,

(60)

where

�a = Xa

Xb Xb
.

The second of equations (60) is considered as a condition for a local existence of a
potential V such that �a = ∇a V . The first equation is then the Poisson equation

�V = 1

for the potential V . A solution to the Poisson equation is then a solution to the basic
equation of near horizon geometry if and only if the vector field Xa satisfies the last
Eq. (60).

The Poisson system,

∇[a�b] = 0, ∇a�a = 1

corresponds to the trace-free part of the basic equation of near horizon geometry. The
last equation in the system (60) is its trace.

In [10,11] an axially symmetric ansatz for g was made, with a particular class of
solutions to the Poisson’s equations chosen, such that the last Eq. (60) reduced to a
second order linear ODE on a single function of one variable. See Sect. 7 of the present
paper to get our version of this result.

In the rest of this section we give two propositions which extend this “near-horizon
geometry” approach to the case of the generalized Ricci soliton equations with general
c2, general λ, and with c1 = 1 or 0.

Proposition 6.1 (Poisson) The 2-dimensional generalized Ricci soliton equation with
c1 = 1

∇(a Xb) + Xa Xb − (c2 K + λ)gab = 0,

123

Author's personal copy



Generalized Ricci Solitons

is equivalent to solving the equations

∇a�a = 1,

∇[a�b] = 0,

∇a Xa + Xa Xa − 2c2 K − 2λ = 0,

where �a = Xa
Xb Xb .

Proposition 6.2 (Laplace) The 2-dimensional generalized Ricci soliton equation with
c1 = 0

∇(a Xb) − (c2 K + λ)gab = 0

is equivalent to the equations

∇a�a = 0,

∇[a�b] = 0,

∇a Xa − 2c2 K − 2λ = 0,

(61)

where the relation between X and � is given by �a = Xa
Xb Xb .

The proofs of the propositions are straightforward. They parallel the proof of Theorem
4 in [11], and are therefore omitted.

7 2D Examples of Generalized Ricci Solitons

We now produce explicit examples of 2-dimensional generalized Ricci solitons (g, X)

of both signatures: Riemannian (++) and Lorentzian (+−). In the Lorentzian situation
we only consider the case when Xa Xa �= 0, i.e., when the soliton (g, X) vector X is
non-null. The case where X is null will be treated in Sect. 8.

In the Riemannian setting, we use the following metric ansatz:

g = A(y)dx2 + 1

A(y)
dy2, (62)

The Gaussian curvature of this metric is:

K = −1

2
A′′(y).

A similar metric ansatz will be used in the Lorentzian setting. In this situation we
will use the metric

g = A(y)dx2 − 1

A(y)
dy2, (63)

where again A(y) is a function of a single variable y. For this metric,
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K = 1

2
A′′(y).

In the rest of this section we will impose the generalized Ricci soliton equations (2)
on the pairs (g, X), with g being one of (62) or (63). We will first give the solutions
with c1 = 0, and then with c1 �= 0. Some important classical examples, such as the
Hamilton cigar soliton and its Lorentzian counterpart, as well as the generalized Ricci
soliton describing the extremal Kerr black hole horizon, will be obtained as special
cases.

7.1 2D Ricci Solitons and Homotheties

To get explicit examples of Riemannian c1 = 0 generalized Ricci solitons (g, X), we
take the metric g as in (62), and the 1-form X given by

X = A(y)νdx + μdy, (64)

with μ, ν real constants, such that μ2 + ν2 �= 0. We then have:

F = dX = − ν A′(y)dx ∧ dy,

so the gradient case, F ≡ 0, is obtained when either ν = 0 or g is flat.
It turns out that for such X the generalized Ricci soliton equations with c1 = 0

reduce to a single second order ODE

c2 A′′ + μA′ − 2λ = 0. (65)

This is the only equation to be solved for the ansatz (62) and (64) to obtain c1 = 0
Ricci solitons.

Remark 7.1 If we refer back to Sect. 6, then the 1-form �a related to our Xa via
�a = Xa

Xb Xb , identically satisfies the Laplace condition given by the first two equations
of Proposition 6.2. The remaining part of the system (61), namely the scalar equation
for the trace ∇a Xa , becomes our ODE (65).

The most general solution to (65) when c2 �= 0 and μ �= 0 is

A (y) = 2
λ

μ
y + αe

− μ
c2

y + β,

where α, β are constants.
If μ = 0, the general solution is:

A (y) = λ

c2
y2 + αy + β, (66)
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but the solution has constant Gaussian curvature K = − λ
c2

. Likewise, if c2 = 0 and
μ �= 0 we obtain the flat metric with the general solution to (65) given by:

A (y) = 2
λ

μ
y + β. (67)

Eventually, the most degenerate case: c2 = 0 and μ = 0, gives λ = 0, with any
arbitrary A(y) being a solution to (65). This last fact says that the vector field X = ∂x ,
corresponding to the 1-form X = A(y)νdx is always a Killing symmetry for the
metric (62), whatever A = A(y) is.

Now restricting to the general non-constant-curvature and non-Killing case we have
the following proposition:

Proposition 7.2 For every λ and c2 �= 0 there is a 4-parameter family of Riemannian
Ricci solitons, parameterized by (α, β, μ �= 0, ν) explicitly given by:

g =
(

2
λ

μ
y + αe

− μ
c2

y + β
)

dx2 + 1

2 λ
μ

y + αe
− μ

c2
y + β

dy2,

X = ν
(

2
λ

μ
y + αe

− μ
c2

y + β
)

dx + μdy.

The Gauss curvature of the metric is:

K = −αμ2

2c2
2

e
− μ

c2
y
,

and the 2-form Fab is given by

F = ν
αμ2e

− μ
c2

y − 2c2λ

μc2
dx ∧ dy.

For the Lorentzian metric (63), we take the same X given by (64) but now with real
constants μ, ν such that ν2 − μ2 �= 0. The generalized Ricci soliton equations with
c1 = 0 in the Lorentzian case reduce to a single second order ODE

c2 A′′ + μA′ + 2λ = 0. (68)

The most general solution to (68) when c2 �= 0 and μ �= 0 is

A (y) = −2
λ

μ
y + αe

− μ
c2

y + β,

where α, β are constants; the other cases besides the most degenerate one give metrics
of constant curvature.

Specializing to the case c2 = −1, we have
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Proposition 7.3 There is a 4-parameter family of Lorentzian Ricci solitons explicitly
given by:

g =
(

−2
λ

μ
y + αeμy + β

)
dx2 − 1

−2 λ
μ

y + αeμy + β
dy2,

X = ν
(

− 2
λ

μ
y + αeμy + β

)
dx + μdy.

Example 7.4 (Generalized Hamilton’s cigar) Let us now specialize to the steady case,
λ = 0.

In such case the formulae from Proposition 7.2 simplify significantly if we introduce
a variable r related to y via:

y = c2

μ
log

α

β
(

tanh2
(μ

√
β

2c2
r
) − 1

) .

With such r , and with λ = 0, the metric becomes:

g = dr2 + β tanh2
(

μ
√

β
2c2

r
)

dx2, (69)

and the soliton X becomes:

X = βν tanh2
(

μ
√

β
2c2

r
)

dx + μ
√

β tanh
(

μ
√

β
2c2

r
)

dr. (70)

As

F = −β
3
2 μν

c2
sech2

(
μ

√
β

2c2
r
)

tanh
(

μ
√

β
2c2

r
)

dx ∧ dr,

and since we have assumed that μ �= 0, the soliton is a gradient if and only if βν = 0.
We also note that the Gauss curvature is now:

K = βμ2

2c2
2

sech2
(

μ
√

β
2c2

r
)

,

so β �= 0 is needed for the metric not to be flat.
Now it is worthwhile to note that the metric (69) and the vector field (70) become

the Hamilton cigar soliton if ν = 0 and β > 0. The solution (69), (70) for ν �= 0 and
β > 0 gives a 1-parameter of nongradient Ricci solitons, on the background of the
Hamilton cigar metric (69). They degenerate to the classical Hamilton gradient Ricci
soliton when ν → 0.

Note also that the solution (69), (70) for the steady Ricci soliton equations makes
sense for β < 0. Despite of the appearance of

√
β in formulas for g and X , these

formulas are real and give rise to a Riemannian metric g even for β < 0. Rewriting
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β < 0 as −|β| we get the following another real form of the generalized Hamilton’s
cigar:

g = dr2 + |β| tan2
(

μ
√|β|
2c2

r
)

dx2,

X = |β|ν tan2
(

μ
√|β|
2c2

r
)

dx − μ
√|β| tan

(
μ

√|β|
2c2

r
)

dr.

The 1-form X has

F = −|β| 3
2 μν

c2
sec2

(
μ

√|β|
2c2

r
)

tan
(

μ
√|β|
2c2

r
)

dx ∧ dr,

and the metric g has the Gauss curvature:

K = −|β|μ2

c2
2

sec2
(

μ
√|β|
2c2

r
)

,

so again it represents a non-trivial gradient soliton if ν = 0. In [4], it is called the
exploding soliton and the metric is incomplete.

Summarizing we have the following

Proposition 7.5 For steady case (λ = 0), the 4-parameter family of Riemannian
Ricci solitons (c1 = 0, c2 = −1) obtained in Proposition 7.2, specialize to either the
complete Hamilton cigar given by

g = dr2 + β tanh2
(

μ
√

β
2 r

)
dx2,

X = βν tanh2
(

μ
√

β
2 r

)
dx − μ

√
β tanh

(
μ

√
β

2 r
)

dr,

for β > 0, or the incomplete “exploding” soliton given by

g = dr2 + |β| tan2
(

μ
√|β|
2 r

)
dx2,

X = |β|ν tan2
(

μ
√|β|
2 r

)
dx + μ

√|β| tan
(

μ
√|β|
2 r

)
dr.

for β < 0.

7.2 Examples with Nonvanishing Quadratic Term

7.2.1 An Ansatz for the Riemannian Case

If the quadratic in X term in (2) does not vanish we may always put c1 = 1. For the
c1 = 1 generalized Ricci soliton equations, we take the Riemannian metric ansatz

(62) and the 1-form
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X = A(y)p(y)dx + q(x, y)dy, (71)

with q = q(x, y) being a function of both variables x and y, and p = p(y) being a
function of variable y, only.

With this ansatz we solve the generalized Ricci soliton equation (2) with c1 = 1 in
three steps. In step one we solve for q = q(x, y) from the dxdx component of this
equation. This gives:

q(x, y) = 2λ − 2A(y)p(y)2 − c2 A′′(y)

A′(y)
.

In particular, this means that the function q(x, y) cannot depend on x , and hence
we have q(x, y) = q(y). Now, in step two, inserting this function back in (71), and
looking at the component dxdy of (2) for X with such q(x, y), enables us to solve for
A′′(y). This can be only done when

c2 p(y) �= 0.

In such case A′′(y) is given by:

A′′(y) = 4λp(y) − 4A(y)p(y)3 + A′(y)p′(y)

2c2 p(y)
.

In step three we use the information about A′′(y) and look at the last of equations (2),
the one for the component dydy. This reduces to an ODE

2p(y)p′′(y) − 3p′(y)2 + 4p(y)4 = 0

for p(y) that can be solved easily. The general solution is:

p(y) = γ

1 + γ 2(y + β)2 ,

where γ �= 0 and β are real constants. We now insert this p(y) in the equation for
A′′(y) obtaining an ODE for A = A(y). This, when solved, gives us the general
solution to the generalized Ricci soliton equation with c1 = 1 and c2 �= 0.

To make this general solution more transparent, it is convenient to pass to new
variables (x, y, γ ) → (x, z, α), where

z = γ (y + β), γ = α−1.

This brings the equation for A = A(y), which now is considered as a function A =
A(z), into:

c2(1 + z2)2 A′′(z) + z(1 + z2)A′(z) + 2A(z) = 2λα2(1 + z2)2. (72)
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Our aim now is to show that this, is closely related to the (associated) Legendre
equation.

Indeed, changing the independent variable A = A(z) into a new variable B = B(z),
which relates to A = A(z) via:

A(z) = (1 + z2)
2c2−1

4c2 B(z) + λα2(1 + z2)

1 + c2
, (73)

we change (72) into the (associated) Legendre equation for B = B(z) (see Remark
7.7). Of course, this is only possible when c2 �= −1 . In such case we arrive at the
following proposition.

Proposition 7.6 If c2 �= 0,−1 and X ∧ dz �= 0, the most general generalized c1 = 1
Ricci soliton corresponding to the ansatz (62), (71) is given by:

g =
(
(1 + z2)

2c2−1
4c2 B(z) + λ

α2(1 + z2)

1 + c2

)
dx2 + α2dz2

(1 + z2)
2c2−1

4c2 B(z) + λ
α2(1+z2)

1+c2

,

X =
( (1 + z2)

− 1+2c2
4c2

α
B(z) + λα

1 + c2

)
dx + z

1 + z2 dz.

Here α �= 0 is a constant, and the function B = B(z) satisfies an ODE:

(1 + z2)B ′′(z) + 2zB ′(z) −
(
( 1

2c2
− 1) 1

2c2
− ( 1

2c2
+ 1)2

1 + z2

)
B(z) = 0. (74)

The Gauss curvature of the metric K is:

K = (1 + z2)
− 1+2c2

4c2

2c2α2

((
1 − 1

2c2
+ 1 + 1

2c2

1 + z2

)
B(z) + zB ′(z)

)
− λ

1 + c2
,

and the Maxwell form F of the soliton is

F = dX = (1 + z2)
− 1+6c2

4c2

α

(
(1 + 1

2c2
)zB(z) − (1 + z2)B ′(z)

)
dx ∧ dz.

Remark 7.7 As we already mentioned, the Eq. (74), under the substitution

z = iξ, 
 = 1
2c2

− 1, m = 1
2c2

+ 1,

becomes:
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(1 − ξ2)B ′′(ξ) − 2ξ B ′(ξ) +
(

(
 + 1) − m2

1 − ξ2

)
B(ξ) = 0,

i.e., the (associated) Legendre equation in its standard form. The solutions to this
equation are given as linear combinations of the associated Legendre functions Pm


 (ξ)

and Qm

 (ξ).

We have the following corollary.

Corollary 7.8 Every generalized Ricci soliton with c1 = 1 and c2 �= 0,−1 corre-
sponding to the ansatz (62), (71), and satisfying X ∧ dz �= 0, is obtained by using
Proposition 7.6, with the function B = B(z) given by:

B(z) = β P
+2

 (−i z) + γ Q
+2


 (−i z), (75)

where Pm

 and Qm


 , with 
 = 1
2c2

− 1, are the associated Legendre functions, and the
complex constants β and γ are chosen in such a way that the expression (75) is real.

The associated Legendre functions arise in the study of spherical harmonics. As
we see below, for some specific values of the parameter c2, including the important
case of c2 = 1

2 , the function B = B(z) can be expressed in terms of the elementary
functions. For the case of the generalized Ricci soliton equations with c2 = − 1

N
where N is some integer (related to the dimension n), such as the EW equation,
or the equation determining metric projective structures with skew-symmetric Ricci
tensor representative in its projective class, we have 
 and m taking integer and half-
integer values. Again in these cases the associated Legendre functions in (75) reduce
to elementary functions (and in some cases polynomials).

In the singular case c2 = −1 , not much is changing when passing from (72) to
the (almost) Legendre equation (74). Simply, instead of replacing A(z) with B(z) via
(73), we make the change:

A(z) = (1 + z2)
2c2−1

4c2 B(z) − λα2z
√

1 + z2 arcsinhz,

or, which is the same,

A(z) = (1 + z2)
3
4 B(z) − λα2z

√
1 + z2 arcsinhz. (76)

This brings the Eq. (72) for A(z) with c2 = −1 into the equation for B(z), which is the
(almost) Legendre equation (74). This for c2 = −1 becomes the (almost) associated
Legendre equation

(1 + z2)B ′′(z) + 2zB ′(z) −
(

3
2 × 1

2 −
( 1

2

)2

1 + z2

)
B(z) = 0,

or the exact associated Legendre equation
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(1 − ξ2)B ′′(ξ) − 2ξ B ′(ξ) +
(


(
 + 1) − (
 + 2)2

1 − ξ2

)
B(ξ) = 0, (77)

with 
 = − 3
2 (and m = − 1

2 ) for the variable z = iξ .
This time, the coincidences in particular values of 
 = − 3

2 and m = 
 + 2 = 1
2 ,

make the general solution to the associated Legendre equation (77), to be expressible
in terms of elementary functions. Actually we have that

B(ξ) = β̃(ξ2 − 1)
1
4 + γ̃

ξ

(ξ2 − 1)
1
4

,

with complex constants β̃ and γ̃ , is the general solution to

(1 − ξ2)B ′′(ξ) − 2ξ B ′(ξ) +
(

3
4 −

1
4

1 − ξ2

)
B(ξ) = 0.

Returning to the real variable z, using (76), we conclude that this implies that the most
general real solution for A(z) of (72) with c2 = −1 is:

A(z) = β(1 + z2) + γ z
√

1 + z2 − λα2z
√

1 + z2 arcsinhz,

with real constants β and γ , from which we get

Proposition 7.9 If c2 = −1, the most general generalized c1 = 1 Ricci soliton
corresponding to the ansatz (62), (71) is given by:

g =
(
β(1 + z2) + γ z

√
1 + z2 − λα2z

√
1 + z2 arcsinhz

)
dx2

+ α2

β(1 + z2) + γ z
√

1 + z2 − λα2z
√

1 + z2 arcsinhz
dz2,

X =
(β

α
+ γ z

α
√

1 + z2
− λαz√

1 + z2
arcsinhz

)
dx + z

1 + z2 dz,

where α �= 0 is a constant. In this case, the 2-form F is

F = dX = 1

α(1 + z2)
3
2

(
λα2z

√
1 + z2 + λα2 arcsinhz − γ

)
dx ∧ dz.

For c2 = 0 the ODE (72) reduces to a first order ODE, whose general solutions
are:

A(z) = β
1 + z2

z2 + λα2(1 + z2)
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with an arbitrary constant β. In this case we have

g = (λα2 + β

z2 )(1 + z2)dx2 + α2dz2

(λα2 + β

z2 )(1 + z2)
,

X = 1

α
(λα2 + β

z2 )dx + zdz

1 + z2 .

The transformation to B(z) is not possible. Note that this solution is not well-defined
on the set {z = 0}.

For p(y) = 0 , the solutions obtained are gradient-like.
In this case we find that the dxdx component of the c1 = 1 generalized Ricci soliton

equations with metric given by (62) and 1-form given by

X = q(y)dy,

gives

A′′(y) = 2λ − q(y)A′(y)

c2
.

From this, substituting this expression into the dydy component we get

q(y)2 + q ′(y) = 0,

whose general solutions are q(y) = 1
y+β

.
Redefining coordinates by introducing z = y +β, we conclude that in this case the

metric can be written as: g = A(z)dx2 + 1
A(z)dz2, and the 1-form X as X = dz

z . The
only equation to be satisfied for this pair to be the c1 = 1 generalized Ricci soliton is
an ODE

c2z A′′(z) + A′(z) − 2λz = 0 (78)

for the function A = A(z).
General solution to (78) depends on whether or not c2(c2

2 − 1) is zero. In any case
the solution is always expressible in terms of elementary functions. The corresponding
solitons have

X = dz

z

and
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g =
(αc2z

c2−1
c2

c2 − 1
+ λz2

c2 + 1
+ β

)
dx2 + dz2

αc2z
c2−1

c2

c2−1 + λz2

c2+1 + β

if c2(c
2
2 − 1) �= 0,

g =
(
λz2 + β

)
dx2 + dz2

λz2 + β
if c2 = 0,

g =
(
α ln z + β + λ

2
z2

)
dx2 + dz2

α ln z + β + λ
2 z2

if c2 = 1,

g =
(α

2
z2 + β + λ

2
z2 − λz2 ln z

)
dx2 + dz2

α
2 z2 + β + λ

2 z2 − λz2 ln z
if c2 = −1,

with α and β being arbitrary constants.

7.2.2 An Ansatz for the Lorentzian Non-null Case

For the Lorentzian ansatz

g = A(y)dx2 − 1

A(y)
dy2,

X = A(y)p(y)dx + q(y)dy, (79)

we proceed in the same way as we did in the Riemannian case. In particular we obtain
an ODE for p(y) as before. In the case c2 p(y) �= 0, the ODE is

4p(y)4 − 2p(y)p′′(y) + 3p(y)2 = 0,

and has

p(y) = γ

γ (y + β)2 − 1

as a general solution.
Making the change of variables (x, y, γ ) �→ (x, z, α) via z = γ (y + β), α = γ −1

as before, we reduce all the generalized Ricci soliton equations for our ansatz to a
single ODE for A(z) given by

c2(1 − z2)2 A′′(z) − z(1 − z2)A′(z) − 2A(z) = −2λα2(1 − z2)2. (80)

Restricting now to the case when c2 �= 0,−1, we again change the independent
variable A = A(z) into a new variable B = B(z), which relates to A = A(z) via:

A(z) = (1 − z2)
2c2−1

4c2 B(z) + λα2(1 − z2)

1 + c2
. (81)
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This changes (80) into the (associated) Legendre equation for B = B(z). In such case
we arrive at the following proposition.

Proposition 7.10 If c2 �= 0,−1 and X ∧dz �= 0, the most general generalized c1 = 1
Ricci soliton corresponding to the ansatz (63), (79) is given by:

g =
(

(1 − z2)
2c2−1

4c2 B(z) + λ
α2(1 − z2)

1 + c2

)
dx2 − α2dz2

(1 − z2)
2c2−1

4c2 B(z) + λ
α2(1−z2)

1+c2

,

X = −
⎛
⎝ (1 − z2)

− 1+2c2
4c2

α
B(z) + λα

1 + c2

⎞
⎠ dx − z

1 − z2 dz.

Here α �= 0 is a constant, and the function B = B(z) satisfies the associated Legendre
equation:

(1 − z2)B ′′(z) − 2zB ′(z) +
(


(
 + 1) − (
 + 2)2

1 − z2

)
B(z) = 0, (82)

with 
 = 1
2c2

− 1. The Gauss curvature of the metric K is:

K = (1 − z2)
− 1+2c2

4c2

2c2α2

((
1 − 1

2c2
+ 1 + 1

2c2

1 − z2

)
B(z) + zB ′(z)

)
− λ

1 + c2
,

and the Maxwell form F of the soliton is

F = dX = (1 − z2)
− 1+6c2

4c2

α

(
(1 + 1

2c2
)zB(z) + (1 − z2)B ′(z)

)
dx ∧ dz.

Remark 7.11 Again if we refer back to Sect. 6, the 1-form �a related to the Xa from
Proposition 7.10 via �a = Xa

Xb Xb , satisfies the Poisson condition given by first two
equations of Proposition 6.1. The ODE (80) is the remaining trace equation in Propo-
sition 6.1.

We have the following:

Corollary 7.12 Every Lorentzian generalized Ricci soliton with c1 = 1 and c2 �=
0,−1 corresponding to the ansatz (63), (79) is obtained by using Proposition 7.10,
with the function B = B(z) given by:

B(z) = β P
+2

 (z) + γ Q
+2


 (z), (83)

where 
 = 1
2c2

−1 and the functions Pm

 and Qm


 are the associated Legendre functions.
Note that contrary to the Riemannian case, now the constants β and γ parameterizing
the solutions are real.
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In the singular case c2 = −1, we change from A(z) to B(z) via:

A(z) = (1 − z2)
2c2−1

4c2 B(z) + λα2z
√

1 − z2 arcsinz,

or, which is the same,

A(z) = (1 − z2)
3
4 B(z) + λα2z

√
1 − z2 arcsinz.

This brings the Eq. (80) for A(z) with c2 = −1 into the equation for B(z), which is
the associate Legendre equation (82) with 
 = − 3

2 . Using its general solution

B(z) = β(1 − z2)
1
4 + γ

z

(1 − z2)
1
4

,

with real constants β and γ , we get the most general solution for A(z) of (80) with
c2 = −1:

A(z) = β(1 − z2) + γ z
√

1 − z2 + λα2z
√

1 − z2 arcsinz,

from which we get

Proposition 7.13 If c2 = −1, the most general generalized c1 = 1 Ricci soliton
corresponding to the ansatz (63), (79) is given by:

g =
(
β(1 − z2) + γ z

√
1 − z2 + λα2z

√
1 − z2 arcsinz

)
dx2

− α2

β(1 − z2) + γ z
√

1 − z2 + λα2z
√

1 − z2 arcsinz
dz2,

X = −
(β

α
+ γ z

α
√

1 − z2
+ λαz√

1 − z2
arcsinz

)
dx − z

1 − z2 dz,

where α �= 0 is a constant. In this case, the 2-form F is

F = dX = 1

α(1 − z2)
3
2

(
λα2z

√
1 − z2 + λα2 arcsinz + γ

)
dx ∧ dz.

For c2 = 0 the ODE (80) reduces to a first order ODE, with general solution:

A(z) = β
1 − z2

z2 + λα2(1 − z2)
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with an arbitrary constant β. In this case we have

g = (λα2 + β

z2 )(1 − z2)dx2 − α2dz2

(λα2 + β

z2 )(1 − z2)
,

X = − 1

α
(λα2 + β

z2 )dx − zdz

1 − z2 .

The transformation to B(z) is not possible. Note that this solution is not well-defined
on the set {z = 0}.

For p(y) = 0 , the solutions obtained are gradient-like.
Repeating what we have done in the p(y) = 0 Riemannian case, we find that the

Lorentzian c1 = 1 generalized Ricci soliton equations are solved by the metric given
by

g = A(z)dx2 − dz2

A(z)
,

and 1-form X given by X = dz
z , provided that the function A(z) satisfies an ODE

c2z A′′(z) + A′(z) + 2λz = 0. (84)

General solution to (84) depends on whether or not (c2
2 −1)c2 is zero. Like the Rie-

mannian situation the solution is always expressible in terms of elementary functions.
The corresponding solitons have

X = dz

z

and

g =
⎛
⎝αc2z

c2−1
c2

c2 − 1
− λz2

c2 + 1
+ β

⎞
⎠ dx2 − dz2

αc2z
c2−1

c2
c2−1 − λz2

c2+1 + β

if c2(c2
2 − 1) �= 0,

g =
(

− λz2 + β
)

dx2 − dz2

−λz2 + β
if c2 = 0,

g =
(
α ln z + β − λ

2
z2

)
dx2 − dz2

α ln z + β − λ
2 z2

if c2 = 1,

g =
(α

2
z2 + β − λ

2
z2 + λz2 ln z

)
dx2 − dz2

α
2 z2 + β − λ

2 z2 + λz2 ln z
if c2 = −1,

with α and β being arbitrary constants.
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7.3 Examples of 2D Metric Projective Structures with Skew-Symmetric Ricci
Tensor Representative

The generalized Ricci soliton equations with parameters c1 = 1, c2 = −1, λ = 0, is
the equation determining whether the projective class of the Levi-Civita connection of
a given 2D metric admits skew-symmetric Ricci tensor representative (see [21]). In [20,
21] it is known as the projective Einstein–Weyl (pEW) equations. Projective structures
with skew-symmetric Ricci tensor are of geometric interest for their relationship with
3-webs and Veronese webs (see [13]).

In the Riemannian setting, solutions to the pEW equations are obtained by setting
the parameters c1 = 1, c2 = −1, λ = 0 in Proposition 7.9, while in the Lorentzian
setting, solutions to the pEW equations are obtained by setting the parameters c1 =
1, c2 = −1, λ = 0 in Proposition 7.13. The skew-symmetric part of the Ricci tensor
is some constant multiple of F (see [21]) for details. We obtain

Proposition 7.14 There is a 3-parameter family of Riemannian generalized Ricci
soliton pairs satisfying the projective Einstein–Weyl (pEW) equation. They are given
by:

g =
(
β(z2 + 1) + γ z

√
z2 + 1

)
dx2 + α2

β(z2 + 1) + γ z
√

z2 + 1
dz2,

X =
(β

α
+ γ z

α
√

z2 + 1

)
dx + z

1 + z2 dz,

where α �= 0 is a constant. In this case, the 2-form F is

F = dX = − γ

α(z2 + 1)
3
2

dx ∧ dz.

A similar example is obtained in the Lorentzian setting. There is a 3-parameter family
of Lorentzian generalized Ricci soliton pairs satisfying the pEW equations explicitly
given by:

g =
(
β(1 − z2) + γ z

√
1 − z2

)
dx2 − α2

β(1 − z2) + γ z
√

1 − z2
dz2,

X = −
(β

α
+ γ z

α
√

1 − z2

)
dx − z

1 − z2 dz,

where α �= 0 is a constant. In this case, the skew-symmetric Ricci tensor is given by
some constant multiple of the 2-form

F = dX = γ

α(1 − z2)
3
2

dx ∧ dz.
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Observe that in order for F to be non-vanishing we require γ to be non-zero. If γ = 0,
we obtain a metric of constant curvature. This agrees with the fact that projectively
Einstein or Ricci-flat surfaces in 2 dimensions are projectively flat.

For example, in the Riemannian case taking α = 1, β = 1, γ = 1 we have

g =
(

z2 + 1 + z
√

z2 + 1
)

dx2 + 1

z2 + 1 + z
√

z2 + 1
dz2

and A(z) = z2 + 1 + z
√

z2 + 1 > 0 on R
2. The Gauss curvature for this example is

given by

K = − 1 − z(2z2 + 3)

2(z2 + 1)
3
2

.

The Liouville or Cotton tensor for metric projective structures is given by

Ya = εbcYbca = εbc(∇b Rca − ∇c Rba) =2εb
a∇b K .

For this example,

Y = 3(2z2 + 1 + 2z
√

z2 + 1)

(z2 + 1 + z
√

z2 + 1)(z2 + 1)
3
2

dx .

The local obstructions obtained in [21] vanish for this example. For the general solution
with α = 1, we have the second order ODE associated with the projective structure
given by

d2z

dx2 =3

2

(
2 βz

√
z2 + 1 + γ (2z2 + 1)

)
√

z2 + 1
(
γ z

√
z2 + 1 + β(z2 + 1)

)
(

dz

dx

)2

+
(
γ z

√
z2 + 1 + β(z2 + 1)

) (
2βz

√
z2 + 1 + γ (2z2 + 1)

)

2
√

z2 + 1
.

Remark 7.15 If we take α = 1, β = 0, γ = 1, so that A(z) = z
√

z2 + 1 on R
2

we observe there is an apparent singularity at the line {z = 0}, but since the Gauss
curvature given by

K = − z(2z2 + 3)

2(z2 + 1)
3
2

is defined everywhere, this singularity at z = 0 arises from the coordinates we have
chosen.
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Remark 7.16 Let (g�, X�) denote a soliton pair from Proposition 7.14 satisfying the
pEW equations on a 2D Riemannian or Lorentzian manifold (�, g�). Taking the
conformal class of the product metric g� + dt2 on � × R gives us a Riemannian
or Lorentzian Einstein–Weyl structure with the Weyl connection given by pulling
back X� to � × R. Higher dimensional solutions to pEW (resp., Einstein–Weyl)
equations on the product manifold � × R

n−2 can be obtained by solving the relevant
generalized Ricci soliton on � with parameters (c1, c2, λ) = (1,− 1

n−1 , 0) (resp.,

(c1, c2λ) = (1,− 1
n−2 , 0) ) and taking the product metric with the flat one on R

n−2.

7.4 Vacuum Near-Horizon Geometries Examples

To get vacuum near-horizon geometries examples we specialize to the case c1 =
1, c2 = 1

2 , λ = 0 in Proposition 7.6. We obtain

A (z) = B(z) = β
2z

1 + z2 + γ
(1 − z2)

1 + z2 . (85)

Remark 7.17 The solution (85) is the general solution to the (almost) Legendre dif-
ferential equation (74) with the parameter c2 = 1

2 . Writing this equation explicitly we
have

(1 + z2)B ′′(z) + 2zB ′(z) + 4

1 + z2 B(z) = 0. (86)

The familiar form B1(z) = 2z
1+z2 , B2(z) = 1−z2

1+z2 of the fundamental solutions con-

stituting (85), and the fact that B2
1 (z) + B2

2 (z) = 1, suggests the introduction of a
variable θ such that

cos θ = 1 − z2

1 + z2 and sin θ = 2z

1 + z2 . (87)

The variable change z → θ , given by (87), is the inverse stereographic projection
from the unit circle parameterized by θ ∈ [0, 2π ] to the real line parameterized by
z ∈]−∞,∞[. The fact that the solution for B(z) can be rewritten in the new variable
θ as

B(θ) = β cos θ + γ sin θ

means, that under the variable change z → θ , the (almost) Legendre equation (86)
magically becomes the harmonic oscillator equation

B ′′(θ) = −B(θ).

Actually making a more general variable change

cos(ωθ) = 1 − z2

1 + z2 and sin(ωθ) = 2z

1 + z2
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we bring the (almost) Legendre equation with 
 = 0, m = 2 to the most general
harmonic oscillator equation B ′′(θ) = −ω2 B(θ).

Using the solution (85) we get the following specialization of the Proposition 7.6.

Proposition 7.18 There is a 3-parameter family of generalized Ricci soliton pairs
satisfying the near-horizon geometry equation. They are given by:

g =
(

2βz + γ (1 − z2)

1 + z2

)
dx2 +

(
α2(1 + z2)

2βz + γ (1 − z2)

)
dz2,

X = (2βz + γ (1 − z2))

α(1 + z2)2 dx + z

1 + z2 dz.

The Gauss curvature for these solitons is:

K = 2γ (1 − 3z2)

α2(1 + z2)3 + 2βz(3 − z2)

α2(1 + z2)3 ,

and the Maxwell 2-form

F =
( 2γ z(3 − z2)

α(1 + z2)3 + 2β(3z2 − 1)

α(1 + z2)3

)
dx ∧ dz.

It is well known that in this class of solitons the extremal Kerr horizon geometry is
included (see, e.g., [10,11,14]). In the next section we will pick up this soliton using
simple geometric analysis arguments.

7.4.1 How Singular Can an Extremal Horizon with Killing Symmetry Be?

Since the metric g of the soliton given in Proposition 7.18 has a Killing symmetry ∂x ,
we interpret g as a metric of a surface of revolution, with the azimuthal coordinate x .

Looking at the formula for g in Proposition 7.18 we see that the metric is regular
for all values of the coordinates (x, y) except the points (x, z) for which A(z) = 0, or
explicitly, at the points (x, z) satisfying

γ z2 − 2βz − γ = 0.

Thus there are at most two values of z, for which g is singular.
We have two cases: either γ �= 0 and we have two singular z’s, namely

z∓ = β
γ

∓
√

1 + β2

γ 2 ,

or γ = 0 and we have only one z, namely z0 = 0.
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Although the Gauss curvature K (z) of the metric is regular at points where A(z) =
0:

K∓ = K (z∓) = − γ

2α2 (1 ± β√
β2+γ 2

), K (0) = K0 = 0,

a further analysis is needed to determine if the singularity of the metric at z∓, z0 comes
from a bad choice of coordinates or if it is essential.

We first analyze the case when γ �= 0 .
Our interpretation of g as a metric of a surface of revolution, and the fact that the

dx2 term in the metric vanishes at z±, enables us to think about the singular points
(x, z±) as two antipodal points on the symmetry axis of the metric. Whether these two
points are in finite metric distances from the regular points of the surface, and if so,
whether they are regular or singular points of the surface, is to be determined.

One way of detecting an essential singularity at a suspected point consists in passing
to “polar” coordinates (x, y) centered at this point. For our suspected point z−, such
“polar” coordinates are given by the relation: (x, z) = (x, y2 + z−), with the “pole”
at the singular point (x, y = 0). To see if the “pole” is smooth, or if it has an essential
singularity we check for the “conic angle” at the “pole”. This is the number 2π − �,
where

� = lim
ε→0

c(ε)

s(ε)
,

with s(ε) being the radius of a small metric circle centered at the “pole”, and with c(ε)
being the circumference of this circle.

Only if � equals to 2π , the “pole” is a smooth point.
If � does not equal to 2π , but if it is still a well defined real number, we have a

relatively simple “conic” singularity, with the conic angle 2π − �.
If � is not a real number—more complicated singularity occurs at the “pole”.
In our case of the pole at z− we first transform the soliton metric to the new

coordinates (x, y) obtaining g = gxx (y)dx2 + gyy(y)dy2, and set the range of the
coordinate x on circles tangent to ∂x to be x ∈ [0, χ ]. Then, for small ε, we find that
we have:

s−(ε) =
∫ ε

0

√
gyy(y) dy = 2α

γ
ε

√√
β2 + γ 2 − β + O(ε2)

and

c−(ε) =
∫ χ

0

√
gxx (ε) dx = χ ε

√√
β2 + γ 2 + β + O(ε2).
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Both numbers s−(ε) and c−(ε) are finite for small ε. Because limε→0 s−(ε) �= 0,
also the angle � is a well defined real number:

�− = χ

2α

(√
β2 + γ 2 + β

)
.

Since � is well defined for all α �= 0, we have at most “conic” singularity at z−.
We can remove this kind of singularity, very easily, by an appropriate choice of the

upper limit χ of the interval [0, χ ]. For this we only need that

�− = 2π.

Solving this for χ gives

χ = χ− = 4π
α

γ

(√
1 + β2

γ 2 − β
γ

)
,

and the choice of the range for x to be x ∈ [0, χ−] makes z− a smooth point of the
considered surface.

If we started with z+ instead of z−, we could change coordinates via (x, z) =
(x,−y2 + z+), and perform a similar analysis as above, to show that z+ is a “conic”
singular point with

�+ = = χ

2α

(√
β2 + γ 2 − β

)
.

The conical singularity at this point could be smoothed out by choosing χ such that
�+ = 2π , which would give the following upper limit for the azimuthal coordinate
x :

χ+ = 4π
α

γ

(√
1 + β2

γ 2 + β
γ

)
.

Thus we can always interpret the metric of the soliton as a metric of a closed surface
of revolution, smooth everywhere except one of the points z±. If the non-smooth point
is, say, at z±, then its antipodal point at z∓ is smooth, provided that the azimuthal
coordinate x ranges from 0 to χ∓.

To make this surface smooth also at the antipode of z∓, we have to identify originally
unrelated “azimuthal angles” x of the respective polar coordinate systems around z−
and z+. This in particular means that to have both points z− and z+ smooth, we need
to impose

χ− = χ+.

This is possible if and only if
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β = 0.

Thus only solitons with β = 0 may be interpreted as living on a smooth surface.
In the cases when β �= 0 we still have solitons living on surfaces with topol-

ogy of a 2-sphere, but in these cases the solitons surfaces always have one point
with “conical singularity”. Smoothing out the point z∓, produces a conical singular-
ity at the antipodal point z±. A singularity with a definite “conical angle” equal to

2π

(
1 −

(√
1 + β2

γ 2 ∓ β
γ

))
.

Concluding this part of our analysis we note that although the horizon surfaces
with β �= 0 have a singularity at one point, the singularity there is very mild. It is only
“conical”, as opposed to any kind of a sharper one. We have the following

Proposition 7.19 If α �= 0, γ �= 0 and β �= 0 we have two types of surfaces on
which the 3-parameter family of near horizon geometries described by Proposition
7.18 live. The surfaces in both types have topology of a 2-sphere, and they are smooth
everywhere except one point, in which the surface has conical singularity. The conic
angle at the singular point is

2π

(
1 −

(√
1 + β2

γ 2 ∓ β
γ

))
,

where the ∓ sign distinguishes the two types.

If α �= 0, γ �= 0 and β = 0 , the surface of the near-horizon geometry from Propo-
sition 7.18 is a surface with topology of a 2-sphere, which is smooth everywhere. Since
the surface is a smooth 2-sphere and its metric has Killing vector ∂x , the correspond-
ing near horizon geometry must coincide with Kerr’s extremal horizon geometry by
theorems of Hájíček [9], Lewandowski, Pawlowski [18] and Jezierski [10].

To see this explicitly we use formulas in Proposition 7.18 with β = 0, and redefine
the coordinate x by

√
γ x → x , and the constant α via α√

γ
→ α. This removes the

redundant constant γ from the considered family of solutions. We have the following

Corollary 7.20 There is a 1-parameter family ( α �= 0 , β = 0, γ = 1) of general-
ized Ricci solitons from Proposition 7.18 defining a 1-parameter family of near-horizon
geometries given by:

g = 1 − z2

1 + z2 dx2 + α2(1 + z2)

1 − z2 dz2,

X = 1 − z2

α(1 + z2)2 dx + z

1 + z2 dz.

The extremal horizon lives on a smooth surface of revolution with topology of a 2-
sphere. The surface is parameterized by (x, z), with the following ranges: 0 ≤ x ≤
4απ,−1 ≤ z ≤ 1.
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This near horizon geometry coincides with the Kerr extremal horizon with mass
M = α. The passage to the standard Kerr coordinates is given by: z = cos(θ), x = 2φ.

In the case of γ = 0 the metric g appearing in Proposition 7.18 has only one
singular point at z = 0. Using the arguments presented for the γ �= 0 case, we show
that this point can be interpreted as a smooth point on a surface � parameterized by
(x, z), with the variable x ranging from 0 to

χo = 2π
α

β
.

This regularizes the only singular point on � and defines a smooth surface, with a
near-horizon geometry structure on it. However, contrary to the case γ �= 0, the surface
� is open, as the variable z can now run from z = 0 to z = +∞, and because the
length integral

l =
∫ +∞

0

α√
β

√
1 + z2

z
dz >

∫ +∞

0

α√
β

√
zdz

of any path from the “pole” z = 0 to z = ∞, along constant x , diverges. We again
redefine the coordinate x via

√
βx → x , and the constant α via α√

β
→ α, to obtain

the following

Proposition 7.21 There is a 1-parameter family ( α �= 0 , β = 1, γ = 0) of gener-
alized Ricci solitons from Proposition 7.18, defining a 1-parameter family of near-
horizon geometries given by:

g = 2z

1 + z2 dx2 + α2(1 + z2)

2z
dz2,

X = 2z

α(1 + z2)2 dx + z

1 + z2 dz.

The extremal horizon lives on a smooth open surface of revolution parameterized by
(x, z) with ranges: 0 ≤ x ≤ 2πα, 0 ≤ z ≤ +∞.

For completeness we also present an example in the Lorentzian case. From Propo-
sition 7.10 we obtain

Proposition 7.22 There is a 3-parameter family of Lorentzian generalized Ricci soli-
ton pairs satisfying the near-horizon geometry equation. They are given by:

g =
(

2βz + γ (1 + z2)

1 − z2

)
dx2 −

(
α2(1 − z2)

2βz + γ (1 + z2)

)
dz2,

X = − 1

α(1 − z2)2

(
2βz + γ (1 + z2)

)
dx − z

1 − z2 dz
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8 2D Examples with Null 1-Form

We now pass to the 2-dimensional Lorentzian generalized Ricci soliton (g, X), with
Xa being null. This case is not covered by our generalization of Jezierski’s approach
in Sect. 6, since we cannot rescale Xa to get �a . We first need the following:

Lemma 8.1 Any 2-dimensional Lorentzian metric can be put into the form

g = 2dxdy + H(x, y)dx2. (88)

Any 1-form that is null with respect to this metric is of the form

X = L(x, y)dx or X = 1

2
E(x, y)H(x, y)dx + E(x, y)dy

for some functions L(x, y) and E(x, y).

Proof Any 2-dimensional Lorentzian metric can be put into the form

g = 2e2 f (x,y)dxdy

for some function f . By introducing new coordinate Y = y+h(x, y) for some function
h to be determined, we find that

dY = dy + hx dx + hydy = hx dx + (1 + hy)dy,

upon which a substitution yields

g = 2

1 + hy
e2 f dx(dY − hx dx).

Solving for h in

1 + hy = e2 f

allows us to put the metric into the form

g = 2dxdY + H(x, Y )dx2

for some function H(x, Y ) and we can redefine coordinates. For any vector field X in
these coordinates, we have

X = L(x, y)dx + E(x, y)dy

for some functions L(x, y) and E(x, y). The condition for X to be null then implies

E(x, y)(2L(x, y) − H(x, y)E(x, y)) = 0,

123

Author's personal copy



P. Nurowski, M. Randall

so that either E(x, y) = 0 or L(x, y) = 1
2 H(x, y)E(x, y). 
�

For the metric ansatz given by (88)

g = H(x, y)dx2 + 2dxdy,

we plug in the null 1-form given by

X = L(x, y)dx

into the c1 = 0 and c1 = 1 generalized Ricci soliton equations. We find that dxdy
component of the equations in both cases determines the same L(x, y):

0 = −λ − c2

2

∂2

∂y2 H (x, y) + 1

2

∂

∂y
L (x, y) ,

which implies

L (x, y) = c2
∂

∂y
H (x, y) + 2λy + f (x).

A further computation shows that

F = dX =
(

−c2
∂2

∂y2 H(x, y) − 2λ

)
dx ∧ dy.

8.1 2D Ricci Solitons and Homotheties

For the metric ansatz (88) and the null 1-form X given by

X =
(

c2
∂

∂y
H (x, y) + 2λy + f (x)

)
dx, (89)

the c1 = 0 generalized Ricci soliton equations (Ricci solitons and homotheties), reduce
to a single non-linear second order PDE given by the dxdx component:

0 = − λH(x, y) − c2

2
H(x, y)

∂2

∂y2 H(x, y) + f ′(x) + f (x)

2

∂

∂y
H(x, y)

+ 1

2

(
∂

∂y
H(x, y)

)2

c2 +
(

∂

∂y
H(x, y)

)
λy + c2

∂2

∂y∂x
H(x, y). (90)

We want to solve this PDE. There are two cases: c2 = 0 and c2 �= 0.
If c2 = 0 and λ �= 0, the generalized Ricci soliton equations are the equations for

homotheties and (90) can be totally solved to obtain

X = (2λy + f (x)) dx, H(x, y) = (2λy + f (x)) h(x) + f ′(x)

λ
.
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Here h(x) is an arbitrary function. The Ricci scalar for this metric is 0, so the metric
is flat. We also obtain the flat metric in the case when c2 = 0 and λ = 0. In this case
X = f (x)dx and H(x, y) = h(x) − 2y(log f (x))′.

If c2 �= 0, the Eq. (90) is nonlinear in H(x, y), and we can solve it only in special
cases. For example, setting both λ and f (x) to be zero gives

0 = − H(x, y)
∂2

∂y2 H(x, y) +
(

∂

∂y
H(x, y)

)2

+ 2
∂2

∂y∂x
H(x, y). (91)

This equation admits a solution in the form

H(x, y) = A(x)B(y).

This is given by

A(x) = 1

b − ax
,

B(y) = ec(y+d) + 2a

c
,

where a, b, c, d are constants. The Lorentzian metric given by this solution H(x, y) =
ec(y+d)+2a

c(b−ax)
admits a non-null Killing symmetry given by ∂x + a

c(ax−b)
∂y . We have

Proposition 8.2 There is a 4-parameter family of Lorentzian generalized Ricci soliton
pairs satisfying the steady (λ = 0) Ricci soliton equations given by:

g = 2dxdy + ec(y+d) + 2a

c(b − ax)
dx2,

X = − ec(y+d)

b − ax
dx .

In the other case that X is null for the metric (88), the 1-form X is given by

X = 1

2
E(x, y)H(x, y)dx + E(x, y)dy.

Plugging this ansatz for X into the c1 = 0 generalized Ricci soliton equations, we find
that the dydy component gives

Ey = 0,

from which we obtain

E(x, y) = f (x).
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The remaining equations to solve is the following PDE:

2c2 Hyy(x, y) + 4λ + Hy(x, y) f (x) − 2 f ′(x) = 0.

Outside the singular locus defined by f (x) = 0, its general solution for c2 �= 0 is
given by

H(x, y) = − 2c2e
− f (x)y

2c2 h(x)

f (x)
+ 2

( f ′(x) − 2λ)y

f (x)
+ j (x),

where h(x) and j (x) are arbitrary functions. For c2 = 0, we have

H(x, y) = 2
( f ′(x) − 2λ)y

f (x)
+ j (x),

and the metric with this H(x, y) is flat. We obtain solutions to the c1 = 0, c2 �= 0
generalized Ricci soliton equations given by

g = 2dxdy +
⎛
⎝−2c2e

− f (x)y
2c2 h(x)

f (x)
+ 2

( f ′(x) − 2λ)y

f (x)
+ j (x)

⎞
⎠ dx2,

X = 1

2

(
−2c2e

− f (x)y
2c2 h(x) + 2( f ′(x) − 2λ)y + j (x) f (x)

)
dx + f (x)dy.

For this class of examples, we find that

F = dX =
⎛
⎝− f (x)e

− f (x)y
2c2 h(x)

2
− 2λ

⎞
⎠ dx ∧ dy

and generically I1 and I2 do not vanish, so that in general g has no local Killing
symmetry.

8.2 2D Examples with Nonvanishing Quadratic Term

For the same metric ansatz (88) and null 1-form (89), the c1 = 1 generalized Ricci
soliton equations again reduce to a single non-linear second order PDE on the functions
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H(x, y) and f (x), given by the dxdx component. The PDE is

− λH(x, y) − c2

2
H(x, y)

∂2

∂y2 H(x, y)+
(

∂

∂y
H(x, y)

)2

c2
2 + 4

(
∂

∂y
H(x, y)

)
c2λy

+ 4 λ2 y2 + 2 f (x)c2
∂

∂y
H(x, y) + 4 f (x)λy + f (x)2 + f (x)

2

∂

∂y
H(x, y) + f ′(x)

+ 1

2

(
∂

∂y
H(x, y)

)2

c2 +
(

∂

∂y
H(x, y)

)
λy + c2

∂2

∂y∂x
H(x, y) = 0. (92)

We aim to solve this PDE, and again we have to consider cases.
The first case is when c2 = 0 and λ �= 0. In this situation the PDE (92) reduces to

− λH(x, y) + 4 λ2 y2 + 4 f (x)λy + f (x)2 +
(

∂

∂y
H(x, y)

)
λy

+ f (x)

2

∂

∂y
H(x, y) + f ′(x) = 0.

This can be solved to obtain

H (x, y) = (
2λy + f (x)

)(
h(x) − 2 y

) + f ′(x)

λ
,

with h = h(x) being arbitrary function of x . The Lorentzian metric with this H(x, y)

has constant scalar curvature equal to −8λ. If c2 = 0 and λ = 0, the general solution to
(92) is H(x, y) = h(x)−2y(h(x)+ (log h(x))′), but for such H(x, y) the Lorentzian
metric is flat.

In general case, when c1 = 1 and c2 �= 0, we simplify the Eq. (92) by restricting to
situations when the integration factor f (x) ≡ 0. In such cases (92) reduces to a PDE
on H(x, y), which looks like that:

− λH(x, y)− c2

2
H(x, y)

∂2

∂y2 H(x, y)+
(

∂

∂y
H(x, y)

)2

c2
2 + 4

(
∂

∂y
H(x, y)

)
c2λy

+ 4 λ2 y2 + 1

2

(
∂

∂y
H(x, y)

)2

c2 +
(

∂

∂y
H(x, y)

)
λy + c2

∂2

∂y∂x
H(x, y) = 0.

(93)

Further setting λ = 0, and using the fact that now c2 �= 0, we get

−H(x, y)
∂2

∂y2 H(x, y) + 2

(
∂

∂y
H(x, y)

)2

c2 +
(

∂

∂y
H(x, y)

)2

+2
∂2

∂y∂x
H(x, y) = 0. (94)
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While we do not know what is the general solution to the PDE (94), we can find its
particular solutions by separation of variables with H(x, y) = A(x)B(y). For such
an ansatz the equation (94) reduces to two ODEs:

A′(x) = a A(x)2,

B ′′(y) = 2aB ′(y)

B(y)
+ (2c2 + 1)

B ′(y)2

B(y)
,

for some constant a.
The first ODE has general solution given by

A(x) = 1

b − ax
,

while the second ODE has either a first integral:

B ′(y) = B(y)1+2c2 − 2as

s(1 + 2c2)
, (95)

when c2 �= − 1
2 , or a first integral:

B ′(y) = 2a log(B(y)) − s,

when c2 = − 1
2 . Thus, in the case of the separation H = AB, the solutions for B are

given in terms of quadratures. In these solutions b, c and s are constants.
Taking the appropriate values for c2, this gives new solutions to the pEW and

near-horizon geometry equations.

Example 8.3 (2D metric projective structures with skew-symmetric Ricci tensor and
the reduced dKP equation) We now look closer at the pEW case, in which the value
of the parameters are c1 = 1, c2 = −1, λ = 0.

One class of solutions can be obtained by specializing to the case c2 = −1 in
Eq. (95). If c2 = −1 the general solution to (95) is given implicitly by:

2as B(y) + log
(
1 − 2as B(y)

) − 4a2sy + c = 0,

with c = const. We note that such B(y) is related to the Lambert function W = W (z),
which is defined implicitly as z = W (z)eW (z). Since the function W → W eW is not
injective, one has more than one solutions to the equation z = W (z)eW (z). If z is real,
there are two branches of the Lambert function: W0 defined on [−1/e,+∞[, with
W0 ≥ −1, and W−1 defined on [−1/e, 0[, with W−1 ≤ −1. In terms of the branches
of the Lambert function Wμ,μ = 0,−1, the solution for B reads:

B(y) = 1 + Wμ(−ec−1e4a2sy)

2as
.

We have:
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Proposition 8.4 There are two branches, μ = 0 or μ = −1, of 4-parameter (a �=
0, b, c, s �= 0) Lorentzian generalized Ricci soliton pairs satisfying the pEW equations
(i.e., generalized Ricci soliton equations with c1 = 1, c2 = −1, λ = 0) given by:

g = 2dxdy + 1 + Wμ(−ec−1e4a2sy)

2as(b − ax)
dx2,

X = −2aWμ(−ec−1e4a2sy)

(b − ax)(1 + Wμ(−ec−1e4a2sy))
dx .

These generalized Ricci solitons have F �= 0.

The Lorentzian generalized Ricci solitons described by Proposition 8.4 are partic-
ular examples of solutions to (94) with c2 = −1. It turns out however, that for this
particular value of c2 the general solution of (94) can be found. This is because if
c2 = −1 Eq. (94) becomes:

0 = −H Hyy − H2
y + 2Hxy = (2Hx − H Hy)y, (96)

and as such has an integral
2Hx − H Hy = h(x). (97)

Surprisingly, Eq. (96) is the reduced dispersionless KP (dKP) equation, and its inte-
gral (97) with h(x) ≡ 0 is the dispersionless KdV, also called as the Riemann-Hopf
equation. Equation (96) arises in the study of 3-dimensional Lorentzian Einstein–Weyl
equation with S1 symmetry (see Sect. 3.1 of [8]). General solution to (96) depends
implicitly on one arbitrary function of one variable, say G(y). Using it, after mak-
ing a hodographic transformation, we can write the corresponding Lorentzian pEW
generalized Ricci soliton in the form:

g = 4(xG(y) − 1)dxdy,

where G(y) is one function of one variable, with

X = 2G(y)

xG(y) − 1
dx,

F = 2G ′

(xG(y) − 1)2 dx ∧ dy.

We find that the Gauss curvature is

K = G ′

2(xG(y) − 1)3 .
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In general, this metric does not admit a local isometry unless the invariants I1 and I2
vanish, which is a differential constraint on G:

G ′G2(3G ′′′G ′ − 5(G ′′)2) = 0.

In this case solutions are given by

G(y) = ay + b or G(y) = 3

2
c2

√
−6c

y + d
+ e.

Both solutions have F non-zero. To summarize, we have

Proposition 8.5 In addition to the two 4 parameter families of examples given in
Proposition 8.4, there is also a family of Lorentzian generalized pEW Ricci solitons
depending on one function of one variable given by:

g = 4(xG(y) − 1)dxdy,

X = 2G(y)

xG(y) − 1
dx .

Furthermore, there is a 3-parameter family of examples which admit a Killing sym-

metry, given by G(y) = 3
2 c2

√ −6c
y+d + e, and another 2-parameter family of examples

which admit a Killing symmetry, given by G(y) = ay + b.

The local obstructions to pEW generalized Ricci solitons derived in [21] all vanish
for these examples.

Example 8.6 (2D near-horizon geometry equation) When c2 = 1
2 , we obtain a 2D

non-static Lorentzian solution of the vacuum near-horizon geometry equation with
no Killing symmetry. They again come from the separation H(x, y) = A(x)B(y). If
c2 = 1

2 the general solution to (95) is given by:

B(y) = −√
2as tanh

(√
a(y + c)√

2s

)
,

with c = const. This leads to the following

Proposition 8.7 There is a 4-parameter (a, b, c, s) family of Lorentzian generalized
Ricci soliton pairs satisfying the vacuum near-horizon geometry equations given by:

g = 2dxdy +
√

2as tanh
(√

a(y+c)√
2s

)
ax − b

dx2,

X =
a sech2

(√
a(y+c)√

2s

)
2(ax − b)

dx .
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For this solutions F �= 0. A computation shows that the Lorentzian metric g admits
no local Killing symmetry since the invariants I1 and I2 do not vanish.

Finally, let us consider the case c1 = 1 and the null vector X given by

X = 1

2
E(x, y)H(x, y)dx + E(x, y)dy.

Plugging this ansatz for X into the c1 = 1 generalized Ricci soliton equations, we find
that the dydy component gives

Ey + E2 = 0,

from which we obtain

E(x, y) = 1

y + f (x)
.

This gives the 1-form

X = dy + 1
2 H(x, y)dx

y + f (x)
.

The remaining equations to solve are equivalent to the following PDE:

2
(
c2 Hyy(x, y) + 2λ

)(
y + f (x)

)2 + Hy(x, y) f (x) + Hy(x, y)y

+2 f ′(x) − H(x, y) = 0.

A solution for c2 �= 0,− 1
2 ,− 1

4 is given by

H(x, y) = − 4λ
(
y + f (x)

)(
(1 + 2c2)y − 2c2 f (x)

)
(1 + 2c2)(1 + 4c2)

+ (
y + f (x)

)
h(x) + (

y + f (x)
)− 1

2c2 j (x) + 2 f ′(x),

where h(x) and j (x) are arbitrary functions. For this H(x, y), the Gauss curvature of
the Lorentzian metric is

K = 1
2

⎛
⎝− 8λ

1 + 4c2
+ (1 + 2c2)(y + f (x))

− 1+4c2
2c2 j (x)

4c2
2

⎞
⎠ ,

and the 2-form F is:

F = 1
4

⎛
⎝ 8λ

1 + 4c2
+ (1 + 2c2)(y + f (x))

− 1+4c2
2c2 j (x)

c2

⎞
⎠ dx ∧ dy.
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When c2 = 0, we obtain the solution

H(x, y) = (
y + f (x)

)(
h(x) − 4λ

(
y + f (x)

)) + 2 f ′(x),

where h(x) is an arbitrary function. This gives a Lorentzian metric with constant Gauss
curvature K = −4λ. Even here, if λ �= 0, the corresponding generalized Ricci soliton
is non-gradient as:

F = 2λdx ∧ dy.

When c2 = − 1
2 , we obtain the solution

H(x, y) = (
y + f (x)

)(
4λy − 4λ f (x)

(
log(y + f (x)) − 1

)

+ h(x) + j (x) log(y + f (x))
)

+ 2 f ′(x),

where h(x) and j (x) are arbitrary functions. Here we obtain a Lorentzian metric with
Gauss curvature

K = 2λ + 4λy + j (x)

2(y + f (x))
,

and the 2-form F is:

F = − 4λy + j (x)

2(y + f (x))
dx ∧ dy.

When c2 = − 1
4 , we obtain the solution

H(x, y) = (
y + f (x)

)
×

(
h(x) + y

(
8λ

(
log(y + f (x)) − 1

) + j (x)
)

+ f (x)
(

8λ log(y + f (x)) + j (x)
))

+2 f ′(x),

where h(x) and j (x) are arbitrary functions. Now the Gauss curvature of the Lorentzian
metric is

K = 4λ + 8λ log(y + f (x)) + j (x),

and the 2-form F is:

F = − 1
2 (8λ log(y + f (x)) + j (x))dx ∧ dy.
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To summarize, the corresponding c1 = 1 generalized Ricci solitons with the other
null X are given by

g = 2dxdy + H(x, y)dx2,

X = dy + 1
2 H(x, y)dx

y + f (x)
,

where

H(x, y) = − 4λ
(
y + f (x)

)(
(1 + 2c2)y − 2c2 f (x)

)
(1 + 2c2)(1 + 4c2)

+ (
y + f (x)

)
h(x) + (

y + f (x)
)− 1

2c2 j (x) + 2 f ′(x),

if c2 �= −1

4
,−1

2
, 0,

H(x, y) = (
y + f (x)

)(
h(x) − 4λ

(
y + f (x)

)) + 2 f ′(x), if c2 = 0,

H(x, y) = (
y + f (x)

)
×

(
h(x) + (

8λ
(

log(y + f (x)) − 1
) + j (x)

)
y

+ f (x)
(
8λ log(y + f (x)) + j (x)

))

+ 2 f ′(x), if c2 = −1

4
,

H(x, y) = (
y + f (x)

)(
4λy − 4λ f (x)

(
log(y + f (x)) − 1

) + h(x)

+ j (x) log(y + f (x))
)

+ 2 f ′(x), if c2 = −1

2
.

9 Summary and Outlook

Motivated by the method outlined in Sect. 6, we obtain explicit examples of general-
ized Ricci solitons in 2 dimensions. We also obtain explicit examples in Lorentzian
signature with X null. The next step is to obtain higher dimensional generalized Ricci
solitons. Following the work of [14–17] in constructing explicit examples of higher
dimensional cohomogeneity-1 metrics satisfying the near-horizon geometry equa-
tions, we are able to get explicit generalized Ricci solitons in higher dimensions.
However the presentation of this work will be left elsewhere.
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initialized. We also wish to thank Piotr Chruściel, Jacek Jezierski and Paul Tod for helpful discussions.
Special thanks are due to Gil Bor for his help in Sect. 7.4.1. This research was supported by the Polish
National Science Center (NCN) via Grant DEC-2013/09/B/ST1/01799.

References

1. Calderbank, D.M.J., Pedersen, H.: Einstein–Weyl geometry. In: LeBrun, C., Wang, M. (Eds.) Surveys
in Differential Geometry, vol. VI: Essays on Einstein Manifolds, Suppl. to Journal of Differential
Geometry

2. Cao, H.-D.: Recent progress on Ricci solitons. Adv. Lect. Math. 11(2), 1–38 (2010)
3. Catino, G., Mastrolia, P., Monticelli, D.D., Rigoli, M.: On the geometry of gradient Einstein-type

manifolds. arXiv:1402.3453
4. Chow, B., et al.: The Ricci Flow: Techniques and Applications, Part I. Geometric Aspects. Mathematical

Surveys and Monographs, vol. 135. American Mathematical Society, Providence (2007)
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