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Abstract

We construct a family of split signature Einstein metrics in four dimensions, corresponding to par-
ticular classes of third-order ODEs considered modulo fiber preserving transformations of variables.
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1. Introduction

Our starting point is a third-order ordinary differential equation (ODE)

y/// — F(.x, y7 y/, y//)7

1)

for a real functiony = y(x). Here F = F(x, y, p, q) is a sufficiently smooth real function

of four real variablesx, y, p = y', g = ).
Given another third-order ODE

V' =Fx YY)
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it is often convenient to know whether there exists a suitable transformation of variables
(x, y, p, q) — (x, v, p, g) which brings(2) to (1). Several types of such transformations are

of particular importance. Here we consider fiber preserving (f.p.) transformations, which
are of the form

x=x(x),  y=yxy). ®3)

We say that two third-order ODE§]) and (2) are (locally) f.p. equivalent iff there ex-

ists a (local) f.p. transformatio(B8), which brings(2) to (1). The task of finding nec-
cessary and sufficient conditions for ODEF and (2)to be (locally) f.p. equivalent,

is called a f.p. equivalence problem for third-order ODEs. In the cases of (more gen-
eral) point transformations and contact transformations, this problem was studied and
solved by Cartarjl] and Chern2] in the years 1939-1941. The interest in these stud-
ies has been recently revived due to the fact that important equivalence classes of third-
order ODEs naturally define three-dimensional conformal Lorentzian structures including
Einstein—Weyl structures. This makes these equivalence problems aplicable not only to
differential geometry but also to the theory of integrable systems and general relativity
[3,8,11]

In this paper we show how to construct four-dimensional split signature Einstein met-
rics, starting from particular ODEs of third-order. We formulate the problem of f.p. equiv-
alence in terms of differential forms. Invoking Cartan’s equivalence method, we con-
struct a six-dimensional manifold with a distinguished coframe on it, which encodes
all information about original equivalence problem. For specific types of the ODEs, the
class of Einstein metrics can be explicitly constructed from this coframe. This result is a
byproduct of the full solution of the f.p. equivalence problem, that will be described in
[5].

We acknowledge that all our calculations were checked by the independent use of the
two symbolic calculations programs: Maple and Mathematica.

2. Third-order ODE and Cartan’s method

Following Cartan and Chern, we rewrifg), using 1-forms

1=dy— pdx,

2—dp—qdx

. p—qdx, @
=dg — F(x,y, p, q) dx,

4 — dx.

These are defined on the second jet sp#tdocally parametrized byx( y, p, g). Each
solutiony = f(x) of (1) is fully described by the two conditions: forms, »?, »° vanish
on a curve { f(2), f/(¢), f”(¢)) and, as this defines a solution up to transformations of

o = dr onthis curve. Suppose now, that Eb) undergoes fiber preserving transformations
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(3). Then the formg4) transform by

ol - ol = aw?,

w? - &% = B(&? + yob),
0® = 02 = €(w® + nw? + xwh),

ot > % = A,

(%)

where functionsy, 8, y, €, n, », A are defined o2, satisfyafeir # 0 and are determined
by a particular choice of transformati@). A fiber preserving equivalence class of ODEs is
described by formg4) defined up to transformatioliS). Egs.(1) and (2)are f.p. equivalent,
iff their corresponding formsu«’) and ) are related as above.

We now apply Cartan’s equivalence mettipd.0]. Its key idea is to enlarge the spagé
to a new manifoldP, on which functionsy, 8, v, €, n, », A are additional coordinates. The
coframe &) defined up to transformatiois), is now replaced by a set of four well-defined
1-forms

ol = aa)l,

6% = B(w? + yo),
03 = e(w® + nw? + xwl),

0% = ra?

onP. If, in addition, the following f.p. invariant conditiof#, 6]

Fgq #0

is satisfied then, there is a geometrically distinguished way of choosing five parame-
ters B, ¢, n, ¢, A to be functions of £, y, p, ¢, o, ¥). Then, on a six-dimensional man-
ifold P parametrized by, y, p, ¢, @, y) Cartan’s method give a way of supplement-
ing the well-defined four 1-forms#{) with two other 1-forms2!, £22 so that the set

(01, 02, 63, 6%, 21, 2°) constitutes a rigid coframe oR. According to the theory of G-
structureg7,10], all information about a f.p. equivalence class of @q satisfyingF,, # 0

is encoded in the coframé’( 62, 63, 6%, 21, 22). Two Egs.(1) and (2)are f.p. equivalent,

iff there exists a diffeomorphisng : P — P, such thaty*6' = ¢/, y*Q24 = 24, where
i=1234andA =1, 2. The procedure of constructing manifgRland the coframe

(6", £24) is explained in details if9,10] for a general case and [4,5] for this specific
problem. Here we omit the details of this procedure, summarizing the results on f.p. equiv-
alence problem in the following theorem.

Theorem 2.1. A third-order ODEy” = F(x, y, y', "), satisfyingF,, # 0, considered
modulo fiber preserving transformations of variablasiquely defines a six-dimensional
manifold P, and an invariant coframéd?, 62, 63, 6%, 21, £22) on it. In local coordinates

GEOPHY 1090 1-14
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(x,y,p=Y.,q =", a,y)this coframe is given by

ol = oca)l,

1
0% = équ(a)Z + yol),
1 1 1
3 3 2 2 1
0° = @qu<a) +<y—§>qu +(§y +K>a) ),
g4 — ﬂwzl
Fyq
1 1 2 2 1,
2 = F—qq —quq]/ + éququ + :—quq + 2qu[1 Y+ quKq
+ 2F 04K — 2Fqy) 0! — L dat

(6)
2 1 1, 1 4
2 Z_Qqu E)/ +§qu+K w
1.1 5, (1 )
+a _EquqV + §ququ+qup Y+ FagqK — Fyqy | ©
1.1 5 (1., 1 4
tog \ 73 Faaa?” +\ gFag T 3FaaaFa+ Faap | ¥
1 1
+ (FygKq — Faqy + FaqqK)y — §ququ — FygKp — §quFqKq
+ §quK> ™+ anq dy,
where K denotes
1 1, 1
K = E(qu =+ quy + qup + Fqu) — §Fq — EFP
ande', i = 1, 2, 3, 4 are defined by the ODE vi@).
Exterior derivatives of the above invariant forms read
dol = Q1 A0 + 0% A 62,
do? = 22 A 01+ ab® A 0% + bO* A B2 + 6% A 63,
dod = 22 A 02 — QL A03 4+ (2—20)63 A 62 + €0 A O + 2b0% A 63,
dot = QL A0+ 0% A 0L + (¢ — 2)6% A 62 + abd* A 63, @)

Al = (2c — 2)22 A0 — 22 A 0% 4 g0 A 67 + WOt A 63
+ kO A 6% — 0% A O,

d22 = Q2 A Q21 —a? A0 — b22 AO* 4+ 161 A 02 + mOL A 0° + not A 04
+ 162 A O3 4 562 A 6% — f03 A O,

wherea, b, c, e, f. g, h, k, I, m, n, r, s are functions or?, which can be simply calculated
due to formulae(6). The simplest and the most symmetric case, when all the func-
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tionsa, b, c, e, f, g h,k,1,m,n,r,s vanish, corresponds to the f.p. equivalence class of
equation

/2
" y

y =

NI w

v

In this case, the manifold® is (locally) the Lie group SO(2) and the coframe

(61, 62,63, 0%, 21, 22) is a basis of left invariant forms, which can be collected to the
s0(2 2)-valued flat Cartan connection #h= SO(2 2). Since the Levi—Civita connection

for the split signature metrics in four dimensions also takes value in 8n(&e ask under
which conditions on f.p. equivalence classes of OPBsEqgs.(7) may be interpreted as

the structure equations for the Levi—Civita connection of a certain four-dimensional split
signature metric.

3. The construction of the metrics

It is convenient to change the basis of 1-forfhse?, 62, 6%, 21, 2?2 onPto
L —opt 4 gt 22 B 221 23, s
=9 =0+ 2% (8)

After this change, Eqs(7) yield the formulae for the exterior differentials of
w1, 72,13, 1%, I, I». These are the formula@3) of Appendix A They can be used to
analyze the properties of the following bilinear tensor field

G= f}ijritj =2t17% 4+ 27344 (9)
on P. The first question we ask here is the following: under which conditions on
a,b,c,e, f,g, h, k1, m,n,r s the first four of Eqs(23) may be identified with
dr’ + I"’.j ATl =0,
where the 1-forms™, i, j = 1, 2, 3, 4 satisfy
Iij =0, and I = f}ikl“}‘.

This happens if and only if

c=0, [=0, r=0, s=0. (20)

2

Now, we call 1-formg, I'> asverticaland 1-formsel, 72, 3, # ashorizontal To be able

to interprete

i _dria oA Tk
R, =dI'i + I AT

GEOPHY 1090 1-14
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ue as a curvature, we have to require that it is horizontal, i.e. contaiig nb terms. This is
u7  equivalent to
118 m =0, a=0, g=0, f =—b. (1))
1o If these conditions are satisfied then the exterior derivativé23)fgive also
120 b=0, h=0. 12)

w1 Concluding, having condition@0)—(12)satisfied, we have the following differentials of
12 the coframed?, 62, 63, 6%, Iy, I):

drl = I ‘L’l,

de?2= - A2+ %ntl AT

ded= - A+ (%n — e) I A4,
det = o A T4,

dry =t A2+ %kl’l ATH

ar, = %kl’l ATt — 3 ATh,

(13)

123

24 and the following formulae for the matrix of 1-forms

- 00 0
Fi_ 0 In o —%ntl + (e — %n)r4
. U VP (e—3n* O I 0
2 2 2
0 00 —I>

1zs  Moreover, introducing the frame of the vector field& (X2, X3, X4, Y1, Y2) dual to the
27 coframer?, ..., %, I't, I we get the following non-vanishing 2-formi®.:

R% =—tlA2— %k‘[l A T4

R% =tlA?+ %krl A 14,

Rﬁ = %krl ATZ+ (%m, +e1— %nl) NG %kr3 A 14,
128
Ri = —%kl’l ATZ — (%n4 +e1— %nl) AT+ %kt3 ATH
RS = %krl AT =3 A 14,

Ry = -3kt ATt + B ATA
e Here f; denotesX;(f). It further follows thatRic;; = Rfkj satisfies

130 Ricl’j = —G,'j. (14)

131 These preparatory steps enable us to associate with each f.p. equivalence class of ODEs
> (1) satisfying conditiong10)—(12)a four-manifold M equipped with a split signature
133 Einstein metridG. This is done as follows.

1

@

GEOPHY 1090 1-14
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e The system(13) guarantees that the distributidhspanned by the vector fieldg, Y»
is integrable. The leaf space of this foliation is four-dimensional and may be identified
with M. We also have the projection: P — M.

e The tensor fieldG is degenerateG(Y1, -) = 0, G(Y2, -) = 0, along the leaves of.
Moreover, equationél3) imply that

Ly,G=0, LyG=0.

Thus,G projects to a well-defined split signature meton M.

e The Levi—Civita connection 1-form fd and the curvature 2-form, pull-backed vi&
to P, identify with I'; and R’,, respectively.

e Thus, due to equatiorﬂ4i the metricG satisfies the Einstein field equations with
cosmological constamt = —1.

Below we find all functionsF' = F(x, y, p, ¢) which solve condition§10)—(12) This
will enable us to write down the explicit formulae for the Einstein met@associated with
the corresponding equation$ = F(x, y, y', y').

The condition$ = 0, ¢ = 0 in coordinates, v, p, ¢, «, y read

1 1 1
qu+§qu+3quoa quqV—qup_ququq""Fz=0'

The most general funtio®(x, y, p, g) defining third-order ODEs satisfying these con-
straints is

4 ox(x, y) + poy(x, y)

P+0(x, y) p+a(x, y) q—i—é(x, Y, P),

F—3
-2

whereg, £ are arbitrary functions of two and three varaibles, respectively. Since the equations
are considered modulo fiber preserving transformations, we canspu@ by transformation
x = x andy = y(x, y) such thaty, = —o(x, y(x, y)). Condition/ = 0 now becomes

P°Eppp — 3p°Epp + 6pE, — 65 =0,
with the following general solution
&= A(x, y)p° + C(x, Y)p* + B(x, y)p-
HenceF is given by
34°

GEOPHY 1090 1-14
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It further follows that it fulfills the remaining conditions= f = g=h=m=r=s5s=0
and that
- C _ Cy—zC—2A, _ 1, 1C+2B,~C
= a2y n= 8a%p ; e=n 160372
A straightforward application ofFheorem 2.1eads to the following expressions for the
‘null coframe’ (¢, 72, 3, t%):

(16)

1 = 20 dy

72 = (da) " C dx + (24 — z2) dy + 2 d¢]
3 = (dap) Y —(r + 2B) dx — Cdy + 2]
= 2ap dx,

where the new coordinatesindt are

Z=Z, ==+
p

K
p
This brings

G = 2(t% + 3

on P to the form that depends only on coordinatesy( z, 7). Thus,G projects to a well-
defined split signature metric

G = —[* + 2B(x, y)]dx? + 2 dr dx + [2A(x, y) — z°]dy® + 2 dz dy

on a four-manifoldM parmetrized byXx, y, z, ).

It follows from the construction that metri@ is f.p. invariant. However, it does not
yield all the f.p. information about the corresponding ODE. It is clear, since the function
C which is proportional to the f. p. Cartan’s invarigkof (13), is not appearing in the
metric G. From the point of view of the metric, functio@ represents a ‘null rotation’
of coframe ¢'). Thus it is not a geometric quantity. Therefd®e although f.p. invariant,
can not distinguish between various f.p. nonequivalent classes of equations such as, for
example, those witld = 0 andC # 0. To fully distinguish all non-equivalent ODEs with
(15) one needs additional structure than the me&id his structure is only fully described
by the bundler : P — M together with the coframert, 72, 3, 4, I'y, I) of (13) on P.

An alternative description, more in the spirit of the split signature m&is presented in
Sectionb.

Now, Eq.(14) imply that the metricG is Einstein with cosmological consatit= —1.

The anti-selfdual part of its Weyl tensor is always of Petrov—Penrose type D. The selfdual
Weyl tensor is of type Il, if the functiond andB are generic. IfA = A(y) andB = B(x)

the selfdual Weyl tensor degenerates to a tensor of type D. Summing up we have following
theorem.
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Theorem 3.1. Third-order ODE

3 y//Z 3 2
Y'= 2y " A(x, )y + C(x, )y + B(x, y)Y

definesby virtue of Cartan’s equivalence meth@dour-dimensional split signature metric
G = —[1? + 2B(x, y)| dx? + 2 dr dx + [2A(x, y) — 22 dy? + 2 dz dy

which is Einstein
Ric(G) = -G

and has Weyl tensol = WASP 1 WSP of Petrov type D + 1] with the exception of the
caseA = A(y), B = B(x), whenitis of type D+ D. The metric G is invariant with respect
to f.p. transformations of the variables of the ODE

4. Uniqueness of the metrics

In this section we prove the following theorem.

Theorem 4.1. The metrics offTheorem 3.lare the unique family of metrics,®vhich
are defined by f.p. equivalence classes of third-order ODEs and satisfy the following three
conditions

e The metrics are split signatur&instein Ric(G) = —G, and each of them is defined on
four-dimensional manifold\1, which is the base of the fibration: P — M.
112
e The family contains a metric corresponding to equatih= 3%-.

2y
e The tensor
G =7"G = w;j0' 07 + via0' 24 + pap2 28,

on P, when expressed by the invariant cofrafde $24) associated with the respective
f.p. equivalence clashas the coefficients;;, via, pap; i, j=1,...,4,A,B=1,2
constant and the same for all classes of the ODEs for which G is defined

To prove the theorem, it is enough to show the uniqguene&sinfthe simplest case of

12 . . .
equationy” = %%— and to repeat the calculations of Sect®fior a generic equation. The

following trivial proposition holds.

Proposition 4.2. Let G be a bilinear symmetric form of signatu¢e- + — — 00) on P,
such that for a vector field N

if G(N,)=0 then LyG =0. (17)
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A distribution spanned by such vector fields N is integrable and defines a four-dimensional
manifold M as a space of its integral leaves. There exists exactly one bilinear form G on
M with the propertyr*G = G, wherer : P — M is the canonical projection assigning

a point of M to an integral leave of the distribution

Our aim now is to find all the metyio@ of Proposition 4.2vhich, when expressed by the
coframet’, 24 (or, equivalently, byt’, I'4), have constant coefficients. Let us consider the
"2

simplest case, corresponding to equat@h= %’yy—/ for which all the invariant functions
appearing in(7) and (23)vanish.P is now the Lie group SO(2), G is a form on Lie
algebra so(22), the distribution spanned by the degenerate fidlds a two-dimensional
subalgebrg C so(2 2). FindingG is now a purely algebraic problem. In our case the basis
(', I'y) satisfies

drl =y A €l de3 = - A T3,

di2 = - A2, di* =TI A T4, (18)

dry = w1 A 72, dry = v A 75,
which agrees with a decomposition sp?2 = so(1, 2) & so(1, 2). A group of transforma-
tions preserving equatiof$8)is O(1, 2) x O(1, 2), thatis the intersection of the orthogonal
group O(2 4) preserving the Killing form: of so(2 2) and the group GL(3X GL(3) pre-

serving the decomposition so@) = so(1 2) @ so(1 2). Each coframei(, I'4), satisfying
(18) is obtained by a linear transformation:

7l 71 73 3
2 |l=A]]1, #“|=B|]|, A BeO®12). (19)
I In I I3

We use transformationd.9) to obtain the most convenient form of the bagig (N>) of
the subalgebrg C so(2 2). We write down the metri& in the corresponding coframe
(1,72, 73,74, I, I») and impose condmon(sl?) This conditions imply that the most
general form of the metric i& = 2u71%2 + 2v7374, whereu, v are two real parameters.
In such case,N1, N2] = 0 andk(N1, N1) <0, K(Nz, N2) < 0. When written in terms of
the coframe €', I'y), G involves six real parameters v, i, ¢, v, ¥, however it appears,
that only parametersg andv are essential; different choices of ¢, v, ¥ define different
degenerate distributions spannedMy N2 and hence space$! are different, but metrics
Gon them are isometric. Thus we can cho@se- 2utl7? + 2vr3r4. ComputingG for

F= 2_ we have, in a suitable coordinate systemy z, 1),

G = —v[f? + 2B(x, y)] dx? + 2vdr dx + u[2A(x, y) — 2] dy? + 2u dz dy.
Parameters, v can be also fixed, if we dema@lto be Einstein with cosmological constant
A = —1. This is only possible ift = 1, v = 1. The the tensor field defined in this way
is unique and has the form

G = 21172 4 21314 = 2022201 + 0%) + 20%(26° + 29).

GEOPHY 1090 1-14
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This formula is used in the generic case explaining our choice of the cofi@gnaed the
metric(9). This finishes the proof ofheorem 4.1

5. The Cartan connection and the distinguished class of ODEs

Here we provide an alternative description of the f.p. equivalence class of third-order
ODEs correspondingts = F(x, y, p, q) of (15). We consider a four-dimensional manifold
M parametrized byx, y, z, ). Then the geometry of a f.p. equivalence class of OQE3
is in one to one correspondence with the geometry of a class of coframes

ré =dy

3 = 3[Cdx+ (24 — 22 dy + 2] (20)
w8 = 3[—(t +2B)dx — Cdy + 2]

tg = dx,

on M given modulo a special SO(2) transformation
20 O 0 0

i i iJ i 0@ o 0

p T = hjto, where (zj) = (21)

0 0 (@to
0 0 0 p

The Cartan equivalence method applied to the question if two cofréZfgare trans-
formable to each other vi@1) gives the full system of invariants of this geometry. These
invariants consist of (i) a fibratiom : P — M of Section3, which now becomes a Cartan
bundle” — P — M with the two-dimensional structure grotpgenerated by, and (ii)

of an so(2 2)-valued Cartan connectiendescribed by the coframeX( 2, =3, 14, I', )
of (13) onP. Explicitely, the connectiow is given by

—3(N+ N+ 7% 0 tt —3
; 0 %(F1+F2+t4) —F2+1'3—%1'4 —%rz
w. =
J %rz %14 %(Fl — I — 14) 0
Fz—r3+%r4 —71 0 %(—F1+F2+7:4)

To see that this is an sq(2) connection it is enough to note tfm}w,{ + gkjwff = 0 with
the matrixg;; given by

0100
1000
0001
0010

8ij =

GEOPHY 1090 1-14
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Now, Eqs(13) are interpreted as the requirement that the curvature
L=do+owArw

of this connectionw has a very simple form

3k 0 0 0
1, 1 1

Q: 10 zk 2(—k+n—2€) —Zn ‘[1/\1;4,
an 0 0 0
sk—n+2e) 0 0 0

wheren, e andk are given by(16). The connectiomw and its curvature? yields all the f.p.
information of the equation corresponding(i®). In particular, all the equations with=
n = e = 0 are f.p. equivalent, all having the vanishing curvature of their Cartan connection
w.

It is interesting to search for a split signature 4-meltitor which the connectiow is
the Levi—Civita connection. The general form of such metric is

H=gyT'T/,

where (1, 72, T3, T%) are four linearly independent 1-forms @hwhich staisfy
dT" + o} AT/ = 0. (22)

Thus, for suctH to exist, the 1-formsx?, 72, T3, T#) must also satisfy the integrability
conditions of(22),

Q{, AT/ =0,

which are just the Bianchi identities far to be the Levi—Civita connection of metrid.
These identities provide severe algebraic constraints on the possible sol@tiprigsing
them, under the assumption th@tx, y) # 0 in the considered region @, we found all
(THs satisfying(22). Thus, with every tripleC # 0, A, B corresponding to an ODE given

by F of (15), we were able to find a split signature metrddor which connectionw is the
Levi—Civita connection. Surprisingly, givesi, B andC # 0 the general solution for7()
involves fourfreereal functions. Two of these functions depend on six variables and the
other two depend on two variables. Thus, each f.p. equivalence class of ODEs representd by
F of (15) defines a large family of split signature metrigsfor which w is the Levi—Civita
connectiont Writing down the explicit formulae for these metrics is easy, but we do not
present them here, due to their ugliness and due to the fact that, regardless of the choice of
the four free functions, they never satisfy the Einstein equations. The proof of this last fact
is based on lengthy calculations using the explicit forms of the general solutiori Jor (

1 The four-manifold on which each of these metrics resides is the leaf space of the two-dimensional integrable
distribution onP which anihilates formsx®, 72, T3, T%).
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s Appendix A

In this appendix we give the formulae for the differentials of the transformed Cartan
invariant coframe®, 72, z3, t*, I't, I'>) onP. These are:

1 1 1 1 1
drlel/\rl+§cF1/\r4—ECFZ/\f4+§ft4/\rl—Ear4A12+§ar4/\t3,

(23a)
1 1 1 1 1
d‘L’2=L—]-lrl/\‘rl—l—(Zr—l)rl/\‘rz—Z-rlwl/\l's—([—l-l-l-és)l_'l/\‘t4

1 . 1 , 1 3 1 1 4
—-IlIhAT —Zrl"z/\r —i—erz/\T + Zl—i——s IDAT

4 2
1 1 1 1
+Zm1:2/\rl— th3/\rl— Enr‘l/\tl—i- zat3/\12
1 1 1 1
+(Zm—§f+b)t4/\r2+(Ef—zm>r4/\r3, (23b)

1 1 1
dr3=ZIF1A11+<c+Zr>F1Ar2—<c+zr)1“1/\t3

1l+1 F/\4+11F/\1 +1 I A T2
Al 35| AT+ gl AT ctgr) 2T

! 1 VAN 3 ll 1 AN 4 ! 2/\ 1
+ |c+ I + +2s I +-m

1 1 1
—Zmrg/\rl—i—<e—§n)t4/\tl+§a1:3/\rz

1 1 1 1
—+—<Zm—b—§f>r4/\r2+(2b+§f—Zm)tA'At?’, (23c)
1 1 1 1 1
de* = +§c1“1 AT+ (1— Ec) DAt + EﬁA ATl — EmA AT+ Ear‘1 AT,
(23d)
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dr 1FA1+1f1FA41FAl+1 1fF/\4
= - T =f—= T - = T —-g— = T
1 48 1 2 48 1 48 2 48 2 2
1 1 1
“htce—1)Patt+—ch At — Skt At
+ (4 +c )‘C 7+ I AT 5 AT

1 1
+ <Zh + c> AT — Zhr4 AT, (23e)

1 1 1 1 1
szzZgF1/\‘L'l—EaplAt2+§aF1AT3+<b+§f—Zg)F1At4

1FA1+1FA21F/\3+1 blfFA4
4gzr Zazr 2a2‘L’ 28 > 2AT

1 1 1 1
+ (Zh—i—c)rz/\rl—Zhrs/\rl—Ekr4/\rl+<zh+c)r4/\r2

+ (1 - %h) A (23f)
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