Rend. Sem. Mat. Univ. Politec. Torino
Vol. 68, 4 (2010), 361 — 367

P. Nurowski

IS DARK ENERGY MEANINGLESS?

Abstract. We show that there are isometrically nonequivalent Robertg/alker metrics
which have the same set of geodesics. While one of thesecsiastatisfies the Einstein
equations of pure dust without a cosmoological constahthal other describe pure dust
with additional energy momentum tensor of cosmologicalktamt type. Since each of these
metrics have the same geodesics it is not clear how to disshgexperimentally between
the Universes whose energy momentum tensor includes oheotdsmological constant
type term.

To interpret the cosmological data one has to assume a mbdphoe-time,
which according to the current paradigm, is a 4-dimensionanhifold M equipped
with the Robertson—Walker metric

2 2
R2 dx? + dy? + dZ

1) g=—dt?+ 3
(1+ %(x2+y2+zz))

K=+1,0,—1.

HereR=R(t) is a real function (the scale factor), of the cosmic timin the following
we use an orthonormal cofrarf®, u=0,1,2, 3, forg. This is given by
Rdx!

) 0' = 1+%(X2+y2+22)7 X = (Xayaz)a

(2) 8% =t

and in it the metrig reads:
g=gu"e’ = 6% 1 8%° 1 67° 1 6%,

In this letter we observe that each Robertson—-Walker spaeéi,g) admits a
1-parameter family of metrigg Which are not isometric tg, but which have the same
set of geodesics dM,g). Then we speculate about the consequences of gsugpér
thangto interpret the cosmological data. In particular, we shioat & pure dust without
a cosmological constant in the Robertson—Walker mgtrd@n be interpreted as a pure
dust with energy momentum tensor of cosmological consygua (dark energy),

DE 1 -~

Tw= —%/\guw
in the corresponding metrig: ~

To see this we proceed as follows:

Consider a 1-parameter family of metrig&A M related tog in (1) by:

6% oL° 62° 6%
3 §— —

®) g (1—sF¥)2+1—sF¥+1—sF¥+1—sF@’

wheresis a real constant. Then we have the following theorem.
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THEOREM 1. For each value of the real parameter s the metric (3) has on M
the same unparametrised geodesics as the Roberston—\Wadkec (1).

Proof. It is well known [1, 2, 3, 4, 10, 11] that two metrigsand d have the same
unparametrized geodesics if and only if their respectiwg-t@ivita connectionsl and
O are related via

OxY = OxY +AX)Y +A(Y)X, vX,Y € TM

with some 1-formA on M.

For our purposes, it is convenient to describe a Levi-Cnitanectiorn’] of a
metricg = g8 in terms of the connection 1-fornid,, associated to the coframe
B via

dequ r% A ev - O, ngJV - ruv - rvu - O, ruv = guprpv

In particular we have
ru\) = g(xih DXV)7
whereX, is a frame dual t&" so thatx, 1 8" = &",. )
In terms of the connection 1-forms the two connectifrendd have the same

unparametrised geodesics if and only if there exists a nwfthand a 1-formA = A,6"
onM, such that the corresponding connection 1-foffysandr’t, are related via

(4) FH =R +3VA+ABM

in this coframé.

Thus, to prove the theorem, it is enough to find a common cadramal a 1-form
A such that the Levi—Civita connection 1-forms for metricsdfid (3) satisfy (4).

It turns out that such a coframe is given by (2). Calculating tevi—Civita
connection 1-formg*, for g as in (1) in this coframe we find that

0 B fe? fe?
R R R
Rot 0 —KkyBl+kx®2  —kzBl41kx@3
( ) M R 2R 2R
5 =
ROZ2 Ky -—kx8? 0 —KZ8%4ky6®
R 2R 2R
RE®  kz®l-—kxe3 Kz02—kyB3 0
R 2R 2R

5The transformation of Levi—-Civita connectiofis— [ is called a projective transformation. To see
that two connections which are transformable to each otleeprojective transformations have the same
geodesics is very easy: the connection coeefficiém,sdefined by the connection 1-forms \i§, = f*{,pef’
define the geodesic equatiofl" + ,,v'v? = 0. If we inserti ™, = ', + 8A; + 8HA, in this equation
we get% + F”\,pv"vp = —2(v-A)W, i.e. again a geodesics equation, but now for the conneEtiand in a
different parametrization.
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Calculations of %, for (3) in this coframe gives:

2sRRe? Re! Re? R&3
1-sR R R R
Ro! sRRA° —kyBl+kx02  —kz0l4+kx03
3 R1sR®) 1R 2R 2R
(6) ruv = . .
RO KyBl—kx6? sRREP —KZ0%+ky03
R(1-sR?) 2R 1-sR 2R
Re3 kz0'—kx63 KZ02—KyB3 sRREY
R(1-sR?) 2R 2R 1-sR

It is a matter of checking that the 1-form

SRR
A= 1- sFé26
is such that (4) holds fdr%, andr'",. This finishes the proof. O

REMARK 1. Note that ifs= 0 the metricgcoincides withg. Observe also that
the metricsgbelong to the Robertson—Walker class for all values: adne can bring
them in the form (1) by an appropriate redefinition of the damatet and the function
R. Thus, associated with each Robertson—Walker mefrithere is an entire one-
parameter family of Robertson—Walker metrigavhich includegy, with the property
that all its metrics have the same unparametrised geodwshds The metricg, being
Robertson—Walker metrics, are all conformally flat. Howefee different values of,
such as e.gs= 0 ands = 1, they are not isometric: their curvature, totally encouhed
the Einstein tensor, has different properties.

_ Calculation of the curvaturé®,,; andRnq, and the Ricci tensoR,e = Ry,
andR,g = R‘i,uo, for the metricgg andd; still using the same coframe (2), yields the
following proposition.

PROPOSITIONL. The respective Einstein tensorg E= Ry — $Rgw andE,, =
Rw — 3RGw, in coframe (2), read:

T
E“V<0 Eij>

with . . )
3(k + R? K+R°+2RR
Eoo = ( R2 )’ B :7T6ija
and )
= (Eopo O
B < 0 E'J) ’
with
= ! - 1 . .
Eoo (1_sR)2 (E00*3SK), Ej = m(E.J +S(K+ 2R+ 2RR)6”)_
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Now we assume that the metgcsatisfies the Einstein equations
(7) Epv = 8T[GTuv7

whereT,, = puyuy is the energy-momentum tensor of pure dust with energy tensi
p and the 4-velocityu = uX;,, orthogonal to the hypersurfaces= const This in
particular means that in the frarXg dual to the coframe (2), we have

uu = (15 O) O) O))
so that the Einstein equations (7) are
3(k+R?
Eoo = 70(;2 ) _ 8nGp
8 . .
®) K+R+2RR
Eij = _Taij =0.
Each solution to these equations satisfies the Friedmaratiegu
. 2GM
9) R="25k,

with a constantM = %T[pR3. From now on we assume the equations (8)—(9) to be
satisfied.

Thus we have a Friedmann—Robertson—Walker Univevseg) filled with the
comoving dust with 4-velocity.

Now if we forget about the parametrization of geodesics is tniverse and
would like to reconstruct the metric from an analysis of uapaetrized geodesics, we
could equally use any metrig @nd any value of the parameter But if we decided
to use a metrig With s 0, we would noticed that now our Universe satsifies quite
different Einstein equations than those in (7).

This is because of the folllowing line of arguments:

The vector fieldu is no longer a unit vector field in the metigc Actually

~ 1
g(u,u):fm.

So obviously we cannot useas the 4-velocity of the fluid in the metrie hstead olu
we now take a rescalled vector field

(= (1—sR)u,

which at each point is in the direction efand has a unit normg(d,d) = —1, in
the metricg” Surprisinglyg'with suchusatisfies the Einstein equations with energy
momentum tensor being a sum of the energy momentum tensatustanoving along

0 and the energy momentum of the cosmological constant type

DE 1 -~
Tw= *%/\gw-

More precisely we have the following theorem.
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THEOREM 2. Consider Robertson—Walker metrics g as in (1) &naks in (3).
If g satisfies the Friedmann equations (8)—(9) for the purstduoving with the 4-
velocity u in M, and having the energy density in the comofrizage equal tg, then
the metric§, which in M has the same unparametrized geodesics as gfisatthe
Einstein equations

for a pure dust,‘fw = PUydy, with 4-velocityli = (1 — sR)u, the energy density

~ s ,2GM
P=rrgelR %)
and the cosmological “constant”
~ 2GM
(11) /\fs(KfT).

Proof. We use Proposition 1. According to it, the nonvanishing congmts of the
Einstein equations (10) are the diagonal onf0} and{ij}. The {00} component
gives:

Eoo— 3k — A = 81Gp,

and the{ij } components give:
Eij +S(k + 2R+ 2RR)&ij + Adij = 0.
Inserting in these equations the valuesgd andE;; from (8) we get:

8NGp — 3« — A = 8nGp

12 . .~
(12) s(k +2R? 4+ 2RR) + A = 0.

Now we insert the value dR from the second equation (8) and the valueRdfom

the Friedman equation (9) in the second equation (12). Afiere simple algebra, this
proves the formula (11) fof\. Inserting this in the first of equations (12) proves the
formula forp. This finishes the proof. O

Using this theorem we address the following issue:

REMARK 2. Since the measurments in cosmology are based on obsewvafi
photons, other elementary particles, or massive bodiassarte all of them move
along geodesics, it is not clear why, based only on obsemnstof geodesics, as-
tronomers decide to use the Robertson—Walker mgtadnterpret their data. Accord-
ing to our analysis they can equally use any majnigith any value of the parameter
s, because in all of these metrics the geodesics look the sematever choice o
in § we make the Universe is always identified with the same mihNb and the
geodesics, i.e. the trajectories of all particles and madsodies, are the same for all
of these choices. But if we accept that we can use the metridth™s= 0 ands+# 0
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on equal footing, we encounter the problem what is reallyahergy content of the
Universe. In particular the celebrated notion of the darkrgyn becomes meaningless
in such case: the dark energy content is absent in the ngewviths = 0 and present
in the metricg'with s=£ 0.

Acknowledgements.l wish to thank VIadimir Matveev for inspiration.

Note added in published version. After submission of this paper to the arXiv (it
appears as arXiv:1003.1503), | received a letter from C.Mrii¢k, informing me
about his article with G.W. Gibbons (arXiv:1003.3845), ttem as a response to my
note. A reader interested in the physics of the problem disedi here should consult
their article, now published as [5], as well as a series aflad of G.S. Hall and D.P.
Lonie [6, 7, 9, 8].
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