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P. Nurowski

IS DARK ENERGY MEANINGLESS?

Abstract. We show that there are isometrically nonequivalent Robertson–Walker metrics
which have the same set of geodesics. While one of these metrics satisfies the Einstein
equations of pure dust without a cosmoological constant, all the other describe pure dust
with additional energy momentum tensor of cosmological constant type. Since each of these
metrics have the same geodesics it is not clear how to distinguish experimentally between
the Universes whose energy momentum tensor includes or not the cosmological constant
type term.

To interpret the cosmological data one has to assume a model of space-time,
which according to the current paradigm, is a 4-dimensionalmanifold M equipped
with the Robertson–Walker metric

(1) g=−dt2+R2 dx2+dy2+dz2

(
1+ κ

4(x
2+ y2+ z2)

)2 , κ =+1,0,−1.

HereR=R(t) is a real function (the scale factor), of the cosmic timet. In the following
we use an orthonormal coframeθµ, µ= 0,1,2,3, for g. This is given by

(2) θ0 = dt, θi =
Rdxi

1+ κ
4(x

2+ y2+ z2)
, xi = (x,y,z),

and in it the metricg reads:

g= gµνθµθν =−θ02
+θ12

+θ22
+θ32

.

In this letter we observe that each Robertson–Walker spacetime (M,g) admits a
1-parameter family of metrics ˜g, which are not isometric tog, but which have the same
set of geodesics as(M,g). Then we speculate about the consequences of using ˜g rather
thang to interpret the cosmological data. In particular, we show that a pure dust without
a cosmological constant in the Robertson–Walker metricg, can be interpreted as a pure
dust with energy momentum tensor of cosmological constant type (dark energy),

DE

T µν =− 1
8πG

Λ̃g̃µν,

in the corresponding metric ˜g.

To see this we proceed as follows:

Consider a 1-parameter family of metrics ˜g onM related tog in (1) by:

(3) g̃=− θ02

(1− sR2)2 +
θ12

1− sR2 +
θ22

1− sR2 +
θ32

1− sR2 ,

wheres is a real constant. Then we have the following theorem.
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THEOREM 1. For each value of the real parameter s the metric (3) has on M
the same unparametrised geodesics as the Roberston–Walkermetric (1).

Proof. It is well known [1, 2, 3, 4, 10, 11] that two metricsg and g̃ have the same
unparametrized geodesics if and only if their respective Levi–Civita connections∇ and
∇̃ are related via

∇̃XY = ∇XY+A(X)Y+A(Y)X, ∀X,Y ∈ TM

with some 1-formA onM.

For our purposes, it is convenient to describe a Levi–Civitaconnection∇ of a
metricg= gµνθµθν in terms of the connection 1-formsΓµ

ν associated to the coframe
θµ via

dθµ+Γµ
ν ∧θν = 0, dgµν−Γµν −Γνµ = 0, Γµν = gµρΓρ

ν.

In particular we have
Γµν = g(Xµ,∇Xν),

whereXµ is a frame dual toθν so thatXµ−| θν = δν
µ.

In terms of the connection 1-forms the two connections∇̃ and∇ have the same
unparametrised geodesics if and only if there exists a coframeθ and a 1-formA= Aµθµ

onM, such that the corresponding connection 1-formsΓ̃µ
ν andΓµ

ν are related via

(4) Γ̃µ
ν = Γµ

ν + δµ
νA+Aνθµ.

in this coframe5.

Thus, to prove the theorem, it is enough to find a common coframe and a 1-form
A such that the Levi–Civita connection 1-forms for metrics (1) and (3) satisfy (4).

It turns out that such a coframe is given by (2). Calculating the Levi–Civita
connection 1-formsΓµ

ν for g as in (1) in this coframe we find that

(5) Γµ
ν =




0 Ṙθ1

R
Ṙθ2

R
Ṙθ3

R

Ṙθ1

R 0 −κyθ1+κxθ2

2R
−κzθ1+κxθ3

2R

Ṙθ2

R
κyθ1−κxθ2

2R 0 −κzθ2+κyθ3

2R

Ṙθ3

R
κzθ1−κxθ3

2R
κzθ2−κyθ3

2R 0




.

5The transformation of Levi–Civita connectionsΓ → Γ̃ is called a projective transformation. To see
that two connections which are transformable to each other via projective transformations have the same
geodesics is very easy: the connection coeefficientsΓ̃µ

νρ defined by the connection 1-forms viaΓ̃µ
ν = Γ̃µ

νρθρ

define the geodesic equation:dvµ

dt + Γ̃µ
νρvνvρ = 0. If we insertΓ̃µ

νρ = Γµ
νρ + δµ

νAρ + δµ
ρAν in this equation

we get dvµ

dt +Γµ
νρvνvρ =−2(v ·A)vµ, i.e. again a geodesics equation, but now for the connectionΓ and in a

different parametrization.
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Calculations of̃Γµ
ν for (3) in this coframe gives:

(6) Γ̃µ
ν =




2sRṘθ0

1−sR2
Ṙθ1

R
Ṙθ2

R
Ṙθ3

R

Ṙθ1

R(1−sR2)
sRṘθ0

1−sR2
−κyθ1+κxθ2

2R
−κzθ1+κxθ3

2R

Ṙθ2

R(1−sR2)
κyθ1−κxθ2

2R
sRṘθ0

1−sR2
−κzθ2+κyθ3

2R

Ṙθ3

R(1−sR2)
κzθ1−κxθ3

2R
κzθ2−κyθ3

2R
sRṘθ0

1−sR2




.

It is a matter of checking that the 1-form

A=
sRṘ

1− sR2θ0

is such that (4) holds for̃Γµ
ν andΓµ

ν. This finishes the proof.

REMARK 1. Note that ifs= 0 the metric ˜g coincides withg. Observe also that
the metrics ˜g belong to the Robertson–Walker class for all values ofs: one can bring
them in the form (1) by an appropriate redefinition of the coordinatet and the function
R. Thus, associated with each Robertson–Walker metricg, there is an entire one-
parameter family of Robertson–Walker metrics ˜g, which includesg, with the property
that all its metrics have the same unparametrised geodesicsonM. The metrics ˜g, being
Robertson–Walker metrics, are all conformally flat. However for different values ofs,
such as e.g.s= 0 ands= 1, they are not isometric: their curvature, totally encodedin
the Einstein tensor, has different properties.

Calculation of the curvaturesRµ
νρσ andR̃µ

νρσ, and the Ricci tensorsRνσ = Rµ
νµσ

andR̃νσ = R̃µ
νµσ, for the metricsg andg̃, still using the same coframe (2), yields the

following proposition.

PROPOSITION1. The respective Einstein tensors Eµν =Rµν− 1
2Rgµν andẼµν =

R̃µν − 1
2R̃g̃µν, in coframe (2), read:

Eµν =

(
E00 0
0 Ei j

)

with

E00 =
3(κ+ Ṙ2)

R2 , Ei j =−κ+ Ṙ2+2RR̈
R2 δi j ,

and

Ẽµν =

(
Ẽ00 0
0 Ẽi j

)
,

with

Ẽ00 =
1

(1− sR2)2

(
E00−3sκ

)
, Ẽi j =

1
1− sR2

(
Ei j + s(κ+2Ṙ2+2RR̈)δi j

)
.
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Now we assume that the metricg satisfies the Einstein equations

(7) Eµν = 8πGTµν,

whereTµν = ρuµuν is the energy-momentum tensor of pure dust with energy density
ρ and the 4-velocityu = uµXµ, orthogonal to the hypersurfacest = const. This in
particular means that in the frameXµ dual to the coframe (2), we have

uµ = (1,0,0,0),

so that the Einstein equations (7) are

(8)
E00=

3(κ+ Ṙ2)

R2 = 8πGρ

Ei j =−κ+ Ṙ2+2RR̈
R2 δi j = 0.

Each solution to these equations satisfies the Friedmann equation

(9) Ṙ2 =
2GM

R
−κ,

with a constantM = 4
3πρR3. From now on we assume the equations (8)–(9) to be

satisfied.

Thus we have a Friedmann–Robertson–Walker Universe(M,g) filled with the
comoving dust with 4-velocityu.

Now if we forget about the parametrization of geodesics in this Universe and
would like to reconstruct the metric from an analysis of unparametrized geodesics, we
could equally use any metric ˜g and any value of the parameters. But if we decided
to use a metric ˜g with s 6= 0, we would noticed that now our Universe satsifies quite
different Einstein equations than those in (7).

This is because of the folllowing line of arguments:

The vector fieldu is no longer a unit vector field in the metric ˜g. Actually

g̃(u,u) =− 1
(1− sR2)2 .

So obviously we cannot useu as the 4-velocity of the fluid in the metric ˜g. Instead ofu
we now take a rescalled vector field

ũ= (1− sR2)u,

which at each point is in the direction ofu and has a unit norm, ˜g(ũ, ũ) = −1, in
the metric ˜g. Surprisinglyg̃ with suchũ satisfies the Einstein equations with energy
momentum tensor being a sum of the energy momentum tensor of adust moving along
ũ and the energy momentum of the cosmological constant type

DE

T µν =− 1
8πG

Λ̃g̃µν.

More precisely we have the following theorem.
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THEOREM 2. Consider Robertson–Walker metrics g as in (1) andg̃ as in (3).
If g satisfies the Friedmann equations (8)–(9) for the pure dust moving with the 4-
velocity u in M, and having the energy density in the comovingframe equal toρ, then
the metricg̃, which in M has the same unparametrized geodesics as g, satisfies the
Einstein equations

(10) Ẽµν + Λ̃g̃µν = 8πGT̃µν

for a pure dust,T̃µν = ρ̃ũµũν, with 4-velocityũ= (1− sR2)u, the energy density

ρ̃ = ρ+
s

8πG

(2GM
R

−4κ
)
,

and the cosmological “constant”

(11) Λ̃ = s
(
κ− 2GM

R

)
.

Proof. We use Proposition 1. According to it, the nonvanishing components of the
Einstein equations (10) are the diagonal ones:{00} and{i j}. The{00} component
gives:

E00−3sκ− Λ̃= 8πGρ̃,

and the{i j} components give:

Ei j + s(κ+2Ṙ2+2RR̈)δi j + Λ̃δi j = 0.

Inserting in these equations the values ofE00 andEi j from (8) we get:

(12)
8πGρ−3sκ− Λ̃= 8πGρ̃

s(κ+2Ṙ2+2RR̈)+ Λ̃ = 0.

Now we insert the value of̈R from the second equation (8) and the value ofṘ from
the Friedman equation (9) in the second equation (12). Aftersome simple algebra, this
proves the formula (11) for̃Λ. Inserting this in the first of equations (12) proves the
formula forρ̃. This finishes the proof.

Using this theorem we address the following issue:

REMARK 2. Since the measurments in cosmology are based on observations of
photons, other elementary particles, or massive bodies, and since all of them move
along geodesics, it is not clear why, based only on observations of geodesics, as-
tronomers decide to use the Robertson–Walker metricg to interpret their data. Accord-
ing to our analysis they can equally use any metric ˜g with any value of the parameter
s, because in all of these metrics the geodesics look the same:whatever choice ofs
in g̃ we make the Universe is always identified with the same manifold M, and the
geodesics, i.e. the trajectories of all particles and massive bodies, are the same for all
of these choices. But if we accept that we can use the metrics ˜g with s= 0 ands 6= 0
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on equal footing, we encounter the problem what is really theenergy content of the
Universe. In particular the celebrated notion of the dark energy becomes meaningless
in such case: the dark energy content is absent in the metric ˜g with s= 0 and present
in the metric ˜g with s 6= 0.

Acknowledgements.I wish to thank Vladimir Matveev for inspiration.
Note added in published version. After submission of this paper to the arXiv (it
appears as arXiv:1003.1503), I received a letter from C.M. Warnick, informing me
about his article with G.W. Gibbons (arXiv:1003.3845), written as a response to my
note. A reader interested in the physics of the problem discussed here should consult
their article, now published as [5], as well as a series of articles of G.S. Hall and D.P.
Lonie [6, 7, 9, 8].

References

[1] BRYANT R., DUNAJSKI M. AND EASTWOOD M. Metrisability of two-dimensional pro-
jective structures.J. Differential Geom. 83, 3 (2009), 465–499.

[2] CARTAN E. Sur les variétés a connexion projective.Bull. Soc. Math. France 52(1924),
205–241. Reprinted in: Oeuvres III.1, pp. 825–862.

[3] EASTWOOD M. G. Notes on projective differential geometry. InSymmetries and Overde-
termined Systems of Partial Differential Equations, IMA Volumes in Mathematics and its
Applications, 144. Springer-Verlag, 2007, pp. 41–60.

[4] EASTWOODM. G. AND MATVEEV V. Metric connections in projective differential geom-
etry. In Symmetries and Overdetermined Systems of Partial Differential Equations, IMA
Volumes in Mathematics and its Applications, 144. Springer-Verlag, 2007, pp. 339–350.

[5] GIBBONS G. W. AND WARNICK C. M. Dark energy and projective symmetry.Phys. Lett.
B 688, 4–5 (2010), 337–340.

[6] HALL G. S. AND LONIE D. P. The principle of equivalence and projective structurein
spacetimes.Classical Quantum Gravity 24, 14 (2007), 3617–3636.

[7] HALL G. S.AND LONIE D. P. The principle of equivalence and cosmological metrics. J.
Math. Phys. 49, 2 (2008), 022502.

[8] HALL G. S. AND LONIE D. P. Holonomy and projective equivalence in 4-dimensional
lorentz manifolds.SIGMA Symmetry Integrability Geom. Methods Appl. 5(2009), Paper
066.

[9] HALL G. S.AND LONIE D. P. Projective equivalence of einstein spaces in general rela-
tivity. Classical Quantum Gravity 26, 12 (2009), 125009.

[10] NEWMAN E. T. AND NUROWSKI P. Projective connections associated with second-order
odes. 2325–2335.

[11] NUROWSKI P. Projective vs metric structures.arXiv:1003.1469.



Is dark energy meaningless? 367

AMS Subject Classification: ?; ?

Pawel NUROWSKI,
Instytut Fizyki Teoretycznej, Uniwersytet Warszawski,
ul. Hoza 69, Warszawa, POLSKA
e-mail:nurowski@fuw.edu.pl

Lavoro pervenuto in redazione il 26.09.2010 e, in forma definitiva, il 11.11.2011


