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Abstract
We study the local geometry of 4-manifolds equipped with a para-Kähler-Einstein (pKE)
metric, a special type of split-signature pseudo-Riemannian metric, and their associated
twistor distribution, a rank 2 distribution on the 5-dimensional total space of the circle bun-
dle of self-dual null 2-planes. For pKE metrics with non-zero scalar curvature this twistor
distribution has exactly two integral leaves and is ‘maximally non-integrable’ on their com-
plement, a so-called (2,3,5)-distribution. Ourmain result establishes a simple correspondence
between the anti-self-dual Weyl tensor of a pKE metric with non-zero scalar curvature and
the Cartan quartic of the associated twistor distribution. This will be followed by a discus-
sion of this correspondence for general split-signature metrics which is shown to be much
more involved. We use Cartan’s method of equivalence to produce a large number of explicit
examples of pKE metrics with non-zero scalar curvature whose anti-self-dual Weyl tensor
have special real Petrov type. In the case of real Petrov type D, we obtain a complete local
classification. Combined with the main result, this produces twistor distributions whose Car-
tan quartic has the same algebraic type as the Petrov type of the constructed pKEmetrics. In a
similar manner, one can obtain twistor distributions with Cartan quartic of arbitrary algebraic
type. As a byproduct of our pKE examples we naturally obtain para-Sasaki-Einstein metrics
in five dimensions. Furthermore, we study various Cartan geometries naturally associated
to certain classes of pKE 4-dimensional metrics. We observe that in some geometrically
distinguished cases the corresponding Cartan connections satisfy the Yang-Mills equations.
We then provide explicit examples of such Yang-Mills Cartan connections.
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1 Introduction andmain results

The main purpose of this article is to give a detailed treatment of para-Kähler-Einstein
structures in dimension 4 and examine their relation tomaximally non-integrable distributions
of rank 2 in dimension 5, referred to as (2,3,5)-distributions.

Our initial motivation for this article is twofold. Firstly, it is an extension of the observation
made in [7] where, inspired by the rolling problem of Riemannian surfaces [6], a notion of
projective rolling was defined which gives rise to (2,3,5)-distributions. Consequently, it was
observed that the (2,3,5)-distributions whose algebra of infinitesimal symmetries is maximal
i.e. the split real form of g2, can be obtained from such construction with a direct link to the
homogeneous para-Kähler-Einstein metric on SL3(R)/GL2(R) referred to as the dancing
metric. We point out that para-Hermitian structures and their variations naturally appear in
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various geometric settings since they were first defined in [23]. The reader may consult [10]
for a survey.

Our second motivation comes from the twistorial construction of rank 2 distributions
from conformal structures of split signature in dimension four, referred to as twistor distri-
butions, described in [3]. In open subsets where the self-dual Weyl curvature is non-zero
such distributions, which are naturally induced on the S

1-bundle of self-dual null planes, are
(2,3,5). We will discuss that, in general, the fundamental invariant of twistor distributions,
referred to as the Cartan quartic, depend on the fourth jet of the components of the Weyl
curvature of the conformal structure. This poses a basic question: whether the Cartan quar-
tic of twistor distributions can have any root type? In this article we answer this question
affirmatively. As a by-product of our construction one naturally obtains explicit examples of
para-Sasaki-Einstein metrics.

Before proceeding further, a brief definition of the geometric structures appearing in
this article is in order. As will be defined in Sect. 2.1, an almost para-complex structure
on a manifold, M, is defined as an endomorphism K : TM → TM satisfying K 2 =
IdTM whose ±1-eigenspaces have rank 2. As a result, unlike almost-complex structures,
the eigenspaces of K split each tangent space of M into two transversal distributions. The
integrability of these distributions induces a para-complex structure on M which results in
two transversal foliations of M . Similarly, an almost-para-Hermitian, para-Hermitian and
para-Kähler structure can be defined in terms of K and a pseudo-Riemannian metric of split
signature satisfying certain compatibility condition, as explained in Sects. 2.2.1 and 2.3.1.

The first objective of this article, presented in Sect. 2, is to give a unifying treatment of
almost para-Hermitian and para-Kähler structures in dimension four via Cartan’s method of
equivalence and analyze the curvature decompositions in each case. To our knowledge such
presentation has been absent in the literature.

Ourmain topic of interest, treated inSect. 3, is para-Kähler-Einstein (pKE)metrics, defined
as para-Kähler structures for which themetric is Einstein i.e. its trace-free Ricci tensor is zero.
Because of our interest in non-integrable twistor distributions, we restrict our considerations
to only those pKE metrics with non-zero scalar curvature. In Sect. 3.1 it is shown that such
metrics define a Cartan geometry of type (SL3(R),GL2(R)). In Sect. 3.2 we investigate five
classes of pKE metrics for which the root type, or the Petrov type, of the anti-self-dual Weyl
tensor W eyl− (see Sect. 2.2.4), is non-generic and real. Let us mention briefly that by root
type, or the Petrov type, of W eyl− we refer to the multiplicity pattern of the roots of the
4th order polynomial obtained from the representation of W eyl− as a binary quartic at each
point. For these five classes of pKE metrics we carry out the Cartan reduction procedure
case by case. This enables us to find all homogeneous models of pKE metrics in dimension
4. Moreover, we find explicit examples of pKE metrics with non-zero scalar curvature in
every special real root type of W eyl−. In particular, Theorem 3.12 gives explicit examples
of pKE structures of Petrov type I I , Theorem 3.14 gives examples for Petrov type I I I , and
Theorem 3.16 gives examples of Petrov type N . The pKE structures of real Petrov type D
are described in Theorem 3.10. This Petrov type is particularly interesting, since we found all
possible such pKEmetrics with non-zero scalar curvature. Themethodwe have used to derive
these examples is known as Cartan’s reduction method which is followed by integrating the
reduced structure equations. Moreover, Cartan’s reduction method combined with Cartan-
Kähler analysis is used to obtain the local generality of pKE metrics for each Petrov type in
the real analytic case, as presented in Table 1.We point out that Sect. 3.2 serves as an example
of how effective Cartan’s method of equivalence is in studying geometric structures.

In Sect. 4 we discuss the relationship between pKE metrics and (2,3,5)-distributions.
More precisely, in Sect. 4.1 we briefly review the basic facts about (2,3,5)-distributions,
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including the Cartan connection, the Cartan quartic and associated conformal structure of
split signature. In Sect. 4.2.1, we recall the fact that for any pKE structure, andmore generally,
any indefinite conformal structure in dimension four, a rank 2 distribution, referred to as a
twistor distribution, is naturally induced on its 5-dimensional space of null self-dual planes,
N+, and that another rank 2 twistor distribution is induced on the space of null anti-self-dual
planes,N−; this was originally observed in [3]. Moreover, the distribution induced onN+ or
N− is a (2,3,5) distribution at a point if and only if the self-dual Weyl tensor, W eyl+, or the
anti-self-dual Weyl tensor, W eyl−, is non-zero at that point, respectively. After necessary
coframe adaptations, which are performed at the beginning of Sect. 4.2.1, we state our prime
result on the surprising proportionality of the two quartics, the Cartan quartic of the (2,3,5)
twistor distribution on N+, and the anti-self-dual Weyl quartic of the pKE metric, as in the
following theorem.

Theorem 4.9 Given a pKE metric for which the scalar curvature is non-zero, the Cartan
quartic for the non-integrable twistor distribution onN+ is a non-zero multiple of the quartic
representation of the anti-self-dual Weyl curvature W eyl−. In particular, the Cartan quartic
of the twistor distribution and the anti-self-dual Weyl curvature of the metric have the same
root type.

In Remark 4.10 we explain the natural identification that underlies this theorem. As a result
of Theorem 4.9 and our examples of pKE metrics of non-generic Petrov types in Sect. 3,
we obtain a large class of explicit examples of twistor distributions for each special real
algebraic type of the Cartan quartic. Additionally, one obtains that the associated (3, 2)
signature conformal structure on an open subset ofN+ has an Einstein representative whose
conformal holonomy is a subgroup of SL3(R) ⊂ G∗

2 ⊂ SO4,3; this was also observed in
[31]. The main purpose of Sect. 4.3 is to show why the coincidence of the root types of
the quartics, explained in Theorem 4.9, is remarkable. This is done by obtaining the Cartan
quartic for the twistor distribution on N−. It is shown that the coefficients of the Cartan
quartic on N− depend on the 4th jet of W eyl− and there is no obvious relation between the
algebraic types of these quartics.

Finally, we also mention that, starting in Sect. 3.1, a number of Cartan geometries are
introduced which are naturally associated with pKEmetrics in dimension 4. Since these Car-
tan geometries live on principal bundles over 4-dimensional manifolds with split-signature
conformal metrics, one can study the vacuum Yang-Mills equations for the corresponding
Cartan connections. As far as we know few papers are concerned with such studies. Here an
honorable exception is a paper by S. Merkulov [24], who established in 1984 that the vacuum
Yang-Mills equations for the Cartan normal conformal connection of a 4-dimensional confor-
mal structure (M, [g]), are equivalent to the vanishing of its Bach tensor. Also in this vein is
the work [25], where in particular, the vacuum Yang-Mills equations for Cartan connections
associated with 3-dimensional parabolic geometries of type (SL3(R),P12), and (SU2,1,P12)

were considered, in which P12 denotes the Borel subgroup. It turns out that Cartan geome-
tries of various type appear in the process of Cartan reduction performed on a given Cartan
geometry. It is also clear that reduction of a Cartan geometry results in a principal bundle
over the same base. Therefore, if the vacuum Yang-Mills equations can be defined for a
certain Cartan geometry, they can also be defined for all the Cartan geometries obtained from
the reduction procedure. We take this approach in Sect. 3.1 and in the subsequent sections,
where we reduce the initial (SL3(R),GL2(R))-type Cartan geometry to Cartan geometries
of various types depending on the Petrov types. In particular, we find in Proposition 3.3, as
a consequence of Theorem 3.2, that all pKE 4-dimensional structures for which the Einstein
constant is equal to -3 satisfy vacuum Yang-Mills equations for the sl3(R)-valued Cartan
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connection of the associated (SL3(R),GL2(R))-type Cartan geometry. Similarly, in Theo-
rem 3.12 we give examples of pKE metrics satisfying the vacuum Yang-Mills equations for
the Cartan connection B of a Cartan geometry of type (SO2,2,T2), which can be obtained
for pKE metrics of real special Petrov type.

The EDS calculations mentioned in the text are carried out using the Cartan package
in Maple written by Jeanne Clelland and an exterior differential package for Mathematica
written by Sotirios Bonanos.

Conventions

In this article we will be working in the real smooth category. Since our results are of local
nature, the manifolds can be taken to be the maximal open sets over which the assumptions
made in each statement is valid.

The manifold M is always 4 dimensional equipped with a metric g of split signature. The
1-forms θ1, θ2, θ3, θ4 represent a coframe on M with respect to which g = 2θ1θ3 + 2θ2θ4

where it is understood that the terms such as θ1θ3 represent symmetric tensor product of the
1-forms θ1 and θ3 i.e.

θaθb = 1
2 (θ

a ⊗ θb + θb ⊗ θa)

Given an n-dimensional manifold, N , equipped with a coframe {β1, . . . , βn}, the cor-
responding set of frame will be expressed as { ∂

∂β1 , . . . ,
∂

∂βn } i.e. ∂
∂βb ⌟ βa = δa

b. Given a
function F : N → R, the so-called coframe derivatives of F, denoted by Fi : N → R, are
defined as

Fi = ∂
∂βi ⌟ dF . (1.1)

When a set of 1-forms on N is introduced as I = {γ 1, . . . , γ k}, it represents the ideal
that is algebraically generated by the 1-forms γ 1, . . . , γ k ∈ T∗N , and is called a Pfaffian
system. A Pfaffian system is called integrable if it satisfies the Frobenius condition, dI ⊂ I ,
where d is the exterior derivative. The integral manifolds of an integrable Pfaffian system are
called its leaves. Locally, around a generic point x ∈ N , the leaves of an integrable Pfaffian
system induce a smooth foliation which enables one to consider the quotient space of its
leaves, referred to as the leaf space of I . Since our treatment is local, we can always work in
sufficiently small neighborhoods which allows one to define the leaf space of an integrable
Pfaffian system.

2 Almost para-Hermitian and para-Kähler structures

The goal of this section is to fix notation, give necessary definitions and recall some facts that
will be needed in subsequent sections. More precisely, in Sect. 2.1 we recall some basic facts
about pseudo-Riemannian metrics in dimension four. The notion of almost para-Hermitian
structure and the decomposition of its curvature into irreducible components with respect to
the action of its structure group is defined in Sect. 2.2. Furthermore, in Sect. 2.2 we define
the so-called Petrov type of the Weyl curvature. In Sect. 2.3 we define para-Kähler structures
in terms of additional integrability and compatibility conditions imposed on an almost para-
Hermitian structure. We derive their structure equations, curvature decomposition and give
a local coordinate expression in terms of a potential function. We end the section by giving
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examples of pKEstructures in termsof potential functionswhich, aswill be shown inSect. 3.2,
correspond to the only homogeneous models with non-zero scalar curvature.

2.1 Rudiments of indefinite pseudo-Riemannianmetrics in dimension 4

In this section we briefly recall the decomposition of the space of 2-forms into self-dual and
anti-self-dual 2-forms using the Hodge star operator. As a result, two 5-dimensional circle
bundles of self-dual null planes and anti-self-dual null planes is obtained for any indefinite
pseudo-Riemannianmetric in dimension four. Subsequently, we recall the structure equations
of split signature metrics and their curvature decomposition.

2.1.1 The hodge star operator

Fromnowon let (M, g) be a 4-dimensional real orientedmanifold equippedwith a split signa-
ture metric g. Locally, we can always find a real coframe (θ1, θ2, θ3, θ4) = (α1, α2, ᾱ1, ᾱ2)

in which the metric takes the form:

g = gabθ
aθb = 2θ1θ3 + 2θ2θ4 = 2α1ᾱ1 + 2α2ᾱ2. (2.1)

We denote by ( ∂
∂θ1

, ∂
∂θ2

, ∂
∂θ3

, ∂
∂θ4

) = ( ∂
∂α1 ,

∂
∂α2 ,

∂
∂ᾱ1 ,

∂
∂ᾱ2 ) the dual frame. The coframe

(θ1, θ2, θ3, θ4) is null i.e. the metric g has constant coefficients gab, with g13 = g31 =
g24 = g42 = 1 as the only non-vanishing ones, which implies nullity, g( ∂

∂θa , ∂
∂θb ) = 0 for

a = 1, . . . , 4.Note that in this paper the coframe/frameon M will be denoted by twonotations
(θ) or (α, ᾱ), and by ( ∂

∂θ
) or ( ∂

∂α
, ∂

∂ᾱ
), respectively. The reason for this redundancy will be

made clear in the next sections, when sometimes one, and sometimes the other notation will
be more convenient.

We assume that the coframe (α1, α2, ᾱ1, ᾱ2) is positively oriented, therefore, the volume
form volg on M can be expressed as

volg = α1 ∧ α2 ∧ ᾱ1 ∧ ᾱ2.

This enables one to define the Hodge star operator i.e. a linear map ∗ : �2T∗M → �2T∗M
such that

∗ω(X , Y )volg = ω ∧ X 
 ∧ Y 


here X 
 is a 1-form associated to a vector field X such that Y ⌟ X 
 = g(X , Y ) for all vector
fields Y on M .

It is easy to see that

∗2 = id�2T∗ M ,

and therefore the operator ∗ splits �2T∗M into the direct sum

�2T∗M = �2+ ⊕ �2−
of its eigenspaces �2±, corresponding to its respective ±1 eigenvalues. In what follows we
will frequently use the basis (σ 1±, σ 2±, σ 3±) of the ±1-eignespaces of ∗, expressed in terms of
the null coframe (α1, α2, ᾱ1, ᾱ2) as

σ 1+ = α1 ∧ α2, σ 2+ = ᾱ1 ∧ ᾱ2, σ 3+ = α1 ∧ ᾱ1 + α2 ∧ ᾱ2 ∈ �2+ (2.2a)

σ 1− = α1 ∧ ᾱ2, σ 2− = ᾱ1 ∧ α2, σ 3− = α1 ∧ ᾱ1 − α2 ∧ ᾱ2 ∈ �2− (2.2b)
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As a result, in terms of ( ∂
∂α1 ,

∂
∂α2 ,

∂
∂ᾱ1 ,

∂
∂ᾱ2 ), a basis for the self-dual and anti-self-dual

bivectors in �2TM = �2,+ ⊕ �2,− can be expressed as

σ+
1 = ∂

∂α1 ∧ ∂
∂α2 , σ+

2 = ∂
∂ᾱ1 ∧ ∂

∂ᾱ2 , σ+
3 = ∂

∂α1 ∧ ∂
∂ᾱ1 + ∂

∂α2 ∧ ∂
∂ᾱ2 ∈ �2,+,

σ−
1 = ∂

∂α1 ∧ ∂
∂ᾱ2 , σ−

2 = ∂
∂α2 ∧ ∂

∂ᾱ1 , σ−
3 = ∂

∂α1 ∧ ∂
∂ᾱ1 − ∂

∂α2 ∧ ∂
∂ᾱ2 ∈ �2,−.

At each point p of M the bivector ∂
∂α1 ∧ ∂

∂α2 defines a null plane N+ = Span{ ∂
∂α1 ,

∂
∂α2 }.

Recall that a plane N+ is null if g(X , X) = 0 for all X ∈ N+. At every point p ∈ M we then
have the space Np of all null planes at p.

Let us consider a pair (a, Np) where a ∈ SO2,2 and Np ∈ Np. The group SO2,2 acts
naturally on the space Np via:

(a, Np) → a · Np = {aX | X ∈ Np}.
This action decomposes Np into two orbits

Np = Np+ 	 Np−.

Each of these orbits is diffeomorphic to a circle Np± ∼= S
1. Take Np+ ∈ Np+ and assume

Np+ = Span{ ∂
∂α1 |p,

∂
∂α2 |p}. Note that its defining bivector ∂

∂α1 ∧ ∂
∂α2 |p is self-dual. Since

the action of SO2,2 does not change self-duality of null planes, the orbit Np+ is called the
space of self-dual null planes at p. Consequently the orbit Np− is comprised of null planes
defined by anti-self-dual bivectors and is therefore called the space of anti-self-dual null
planes at p.

More explicitly, at p ∈ M the set of self-dual and anti-self-dual null planes can be
parametrized, respectively, by λ,μ ∈ R ∪ {∞} in the following way

Np+ = Ker
{
θ1 + μθ4, θ2 − μθ3

}
, Np− = Ker

{
θ2 − λθ1, θ3 + λθ4

}
. (2.3)

This parametrization will be used in Sect. 4. The bundles N± := ⋃

p
Np± equipped with the

projections

ν+ : N+ → M, ν− : N− → M, (2.4)

where (ν±)−1(p) = Np± , at p ∈ M, are referred to by various names, including circle
twistor bundles ( [3]) or bundles of real α-planes and β-planes [2]. In what follows we will
frequently refer to the circle bundlesN+ andN− as the bundle of self-dual and anti-self-dual
null planes, respectively.

2.1.2 Structure equations

The null coframe (θ1, θ2, θ3, θ4) uniquely defines the Levi-Civita connection 1-forms �a
b

via the first structure equations:

dθa + �a
b ∧ θb = 0 (torsionfreeness),

gac�
c
b + gbc�

c
a = 0 (metricity).

As a result, the Riemann curvature of the metric g, given by the so2,2-valued 2-form
1
2 Ra

bcdθc ∧ θd , is defined via the second structure equations

d�a
b + �a

c ∧ �c
b = 1

2 Ra
bcdθc ∧ θd . (2.5)
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Via the action of SO2,2, the Riemann curvature decomposes into the components known as
the traceless Ricci tensor,Weyl curvature and the scalar curvature. The Ricci tensor is defined
as Rab = Rc

acb and the scalar curvature is R = Rabgab, where gabgbc = δa
c. The trace-free

part of the Ricci tensor is defined as
◦
Rab = Rab − 1

4 Rgab. Defining the Schouten tensor as

Pab = 1
2 Rab − 1

12 Rgab,

the Weyl tensor is expressed as

Ca
bcd = Ra

bcd + gadPcb − gacPdb + gbcPda − gbdPca . (2.6)

Solving the metricity condition for the first structure equations, it follows that the connec-
tion 1-forms �a

b can be expressed as

�a
b =

⎛

⎜⎜⎜
⎝

�1
1 �1

2 0 �1
4

�2
1 �2

2 −�1
4 0

0 −�4
1 −�1

1 −�2
1

�4
1 0 −�1

2 −�2
2

⎞

⎟⎟⎟
⎠

. (2.7)

Consequently, the torsion-free condition yields

dα1 = −�1
1 ∧ α1 − �1

2 ∧ α2 − �1
4 ∧ ᾱ2

dα2 = −�2
1 ∧ α1 − �2

2 ∧ α2 + �1
4 ∧ ᾱ1

dᾱ1 = �4
1 ∧ α2 + �1

1 ∧ ᾱ1 + �2
1 ∧ ᾱ2

dᾱ2 = −�4
1 ∧ α1 + �1

2 ∧ ᾱ1 + �2
2 ∧ ᾱ2.

(2.8)

Passing to the second structure equations, one notes that due to the symmetries of theRiemann
tensor, Rabcd = R[ab][cd] = Rcdab, setting Rab

cd = gaegbf Ref cd , one obtains a linear map
given by

Riemann : �2T∗M → �2T∗M, Riemann(θa ∧ θb) = 1
2 Rab

cdθc ∧ θd .

Since �2T∗M = �2+ ⊕ �2−, the matrix form of this map can be expressed as

Riemann =
⎛

⎜
⎝

W eyl+ + 1
12 R id�2+

◦
Ricci

◦
Ricci∗ W eyl− + 1

12 R id�2−

⎞

⎟
⎠ . (2.9)

here W eyl+ and W eyl− are traceless 3×3matrices, and
◦

Ricci∗ is a 3×3matrix related to the

3 × 3 matrix of trace-free Ricci tensor,
◦

Ricci, via
◦

Ricci∗ = (H
◦

Ricci H−1)T , where H =( 0 0 −1
0 2 0

−1 0 0

)
. The matrices H W eyl+, H W eyl− are symmetric and their components will be

denoted by (�0
′, �1

′, �2
′, �3

′, �4
′) and (�0, �1, �2, �3, �4) respectively. Moreover, let

us denote the the 9-components of
◦

Ricci by (P11, P12, P22, P14, P13−P24, P23, P33, P34, P44).
It follows that the scalar curvature can be written as R = 12(P13 + P24), as given in (2.21).
Since the Ricci tensor Rab and the Schouten tensor Pab are linearly related, we will be using
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the Schouten tensor in the sequel. As a result, the second structure Eqs. (2.5) read

1
2d(�

1
1 + �2

2) + �1
4 ∧ �4

1 = +P14σ 1− − P23σ 2− + 1
2 (P13 − P24)σ 3−

d�4
1 + �4

1 ∧ (�1
1 + �2

2) = −� ′
4σ

1+ − (� ′
2 + P13

+ P24)σ 2+ − � ′
3σ

3+ − P11σ 1− − P22σ 2− + P12σ 3−
d�1

4 + (�1
1 + �2

2) ∧ �1
4 = (� ′

2 + P13 + P24)σ 1+ + � ′
0σ

2+ + � ′
1σ

3+ + P44σ 1−
+ P33σ 2− + P34σ 3−,

(2.10)

with analogous equations for the ‘unprimed’ objects:

1
2 d(�

1
1 − �2

2) + �1
2 ∧ �2

1 = �1σ
1− + �3σ

2− − 1
2 (2�2 − P13 − P24)σ 3− + P12σ 1+

− P34σ 2+ + 1
2 (P13 − P24)σ 3+

d�2
1 + �2

1 ∧ (�1
1 − �2

2) = −�0σ
1− − (�2 + P13 + P24)σ 2− + �1σ

3− − P11σ 1+
− P44σ 2+ + P14σ 3+

d�1
2 + (�1

1 − �2
2) ∧ �1

2 = (�2 + P13 + P24)σ 1− + �4σ
2− − �3σ

3− + P22σ 1+
+ P33σ 2+ + P23σ 3+.

(2.11)

here we used the respective basis (σ 1±, σ 2±, σ 3±) of �2±, as defined in (2.2).

Remark 2.1 The usual way of employing the system of Eqs. (2.8), (2.10)–(2.11), is to think
about (θ1, θ2, θ3, θ4) as a given coframe on M , and to use the Eqs. (2.8), (2.10)–(2.11) to
uniquely determine the Levi-Civita connection forms �i

j , and consequently the curvature
Ra

bcd of g, in terms of this chosen coframe. Alternatively, in the language of G-structures,
one observes that θ i ’s are ambiguous up to an action of SO2,2 since they were chosen so
that (2.1) is satisfied. One says that SO2,2 is the structure group of the pseudo-Riemannian
structure. As a result, one can define a principal SO2,2-bundle π : F → M , as the bundle of
all null coframes with respect to which (2.1) holds. In this language the θ i ’s give rise to a
lifted null coframe at each point of F and the �i

j ’s mimic the Maurer-Cartan forms of so2,2;
they are uniquely defined on F as a result of the torsion-free condition. Moreover, these
1-forms, together with θ i s, form a basis of 1-forms at every point of F. Hence, one obtains
a unique coframe at each point of F, consisting of 1-forms (θ i , �i

j ), which is transformed
equivariantly in each fiber of F and satisfy the Eqs. (2.8), (2.10)–(2.11) everywhere on F.
We refer to [15,27] for an overview of this exterior differential system (EDS) viewpoint.

2.2 Almost para-Hermitianmetrics

In this section we define almost para-complex structures and almost para-Hermitian met-
rics. We obtain the structure equations and curvature decomposition. Using the curvature
decomposition, we recall the well-known Petrov classification of such structures.
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2.2.1 Definitions

An almost para-Hermitian structure (M, g, K ) on a 4-dimensional manifold M with ametric
g of signature (+,+,−,−) is defined in terms of an endomorphism

K : TM → TM,

such that

K 2 = idTM , (K paracomplex),

whose ±1-eigenvalues have rank 2 and, additionally, satisfies the compatibility condition

g(K X , K Y ) = −g(X , Y ), ∀X , Y ∈ TM, (K metric compatible).

An almost para-Hermitian structure (M, g, K ) distinguishes a pair of rank 2 distributionsH
and H̄ on M defined as the ±1-eigenspaces of K i.e.

H = (K + idTM )TM, and H̄ = (K − idTM )TM . (2.12)

It follows that

TM = H ⊕ H̄ .

MoreoverH and H̄ are null with respect to g and must belong to the same orbit in the space
N = N+ 	 N− of all null planes.

An almost para-Hermitian structure (M, g, K ) is called half -para-Hermitian if precisely
one of H or H̄ are integrable i.e. either [H ,H ] ⊂ H or [H̄ , H̄ ] ⊂ H̄ . If H and H̄
are both integrable i.e.

[H ,H ] ⊂ H , and [H̄ , H̄ ] ⊂ H̄ ,

then the almost-para-Hermitian structure (M, g, K ) is called para-Hermitian.
An almost para-Hermitian structure (M, g, K ) defines a para-Kähler 2-form

ρ(X , Y ) := g(K X , Y ). (2.13)

The fact that ρ is skew symmetric, ρ(X , Y ) = −ρ(Y , X), follows from the algebraic prop-
erties of K .

An almost para-Hermitian structure (M, g, K ) is called almost para-Kähler if and only
if the 2-form ρ is closed i.e.

dρ = 0.

An almost para-Hermitian structure (M, g, K ) is para-Kähler if it is para-Hermitian and
almost para-Kähler i.e. H and H̄ are integrable and ρ is closed.

2.2.2 Almost para-Hermitian structure in an adapted frame

A coframe (α1, α2, ᾱ1, ᾱ2) on a 4-dimensional manifold M is adapted to an almost para-
Hermitian structure (M, g, K ) if and only if

g = 2α1ᾱ1 + 2α2ᾱ2

K = α1 ⊗ ∂
∂α1 + α2 ⊗ ∂

∂α2 − ᾱ1 ⊗ ∂
∂ᾱ1 − ᾱ2 ⊗ ∂

∂ᾱ2 .
(2.14)
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It follows that in such adapted coframes

ρ = α1 ∧ ᾱ1 + α2 ∧ ᾱ2, (2.15)

At every point of a 4-dimensional almost para-Hermitianmanifold (M, g, K ) the stabilizer
H ⊂ GL4(R) of the pair (g, K ), i.e.

H = {U ∈ GL4(R) : g(U X , UY ) = g(X , Y ) & K (U X) = U K (X)},
satisfies

H ∼= GL2(R) ⊂ SO2,2.

Expressing H in the coframe (θ1, θ2, θ3, θ4) = (α1, α2, ᾱ1, ᾱ2) as in (2.14), provides the
4-dimensional reducible representation

T : H → GL4(R)

of H given by

T (U ) =
(

A 0
0 (AT )−1

)
with A =

(
a11 a12
a21 a22

)
∈ GL2(R). (2.16)

As a result the geometry arising from the pair (g, K ) reduces the structure group of M from
GL4(R) toGL2(R) via representation T . TheGL2(R) irreducible decomposition of R

4 as a
GL2(R)-module is R

4 = R
2 ⊕ (R2)∗. It reflects the splitting of TM , into TM = H ⊕ H̄ .

Proposition 2.2 Every almost-para-Hermitian structure (M, g, K ) on a 4-dimensional man-
ifold locally admits an adapted coframe. If (θa) = (α1, α2, ᾱ1, ᾱ2) is a coframe adapted to
(M, g, K ) then the most general adapted coframe is given by

θ̃a = T (U )a
bθ

b, (2.17)

where the 4 × 4 matrices T (U ) = (T (U )a
b) are as in (2.16).

2.2.3 GL2(R) invariant curvature decomposition

Any coframe adapted to (M, g, K ) is in particular a null coframe, as in (2.1). Thus to analyze
the properties of (M, g, K ) we can use the structure Eqs. (2.8), (2.10)–(2.11). The stabilizer
H ∼= GL2(R) of the pair (g, K ) is therefore the structure group of the almost para-Hermitian
structure (M, g, K ). It acts, via the representation T , on any adapted coframe (θa) as in
(2.17). The induced transformation of the Levi-Civita connection (2.7) and its curvature is
given by

θa → θ̃a = T (U )a
bθ

b, (2.18a)

�a
b → �̃a

b = T (U )a
c�

c
d T (U )−1d

b − dT (U )a
cT (U )−1c

b, (2.18b)

Ra
bcd → R̃a

bcd = T (U )a
e Re

f gh T (U )−1 f
bT (U )−1g

cT (U )−1h
d . (2.18c)

The transformations (2.18c) gives the action ofGL2(R) on the 20-dimensional vector space
of the curvature tensors Ra

bcd . Using this action one can decompose the curvature tensor
into its indecomposable components. First we define 10 vector spaces defined in terms of the
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curvature components (Pab, �μ,� ′
μ), a, b = 1, 2, 3, 4, μ = 0, 1, 2, 3, 4 as

Ric31 =
{
�AB s.t. �AB =

(
P11 P12
P12 P22

)}

Ric32 =
{
�̄AB s.t. �̄AB =

(
P33 P34
P34 P44

)}

Ric33 =
{

P A
B s.t. P A

B =
(
P13 − P24 2P23

2P14 −P13 + P24

)}

Scal1 ={P13 + P24}
W eyl51 = {WABC D = W(ABC D) s.tW0000 = �0, W0001 = �1,

W0011 = �2, W0111 = �3, W1111 = �4, }
W eyl11 = {� ′

0}, W eyl12 = {� ′
1}, W eyl13 = {� ′

2}, W eyl14 = {� ′
3},

W eyl15 = {� ′
4}.

(2.19)

here the (spinorial) indices A, B, C, D = 0, 1, and the equations WABC D = W(ABC D) mean
that WABC D is totally symmetric in indices A, B, C, D. The notation for the spaces Rici

j

and W eyli
j is such that the upper index indicates the dimension of each space, and the lower

index enumerates spaces of the same dimension. In particular the spaces Ric31 and Ric32 have
dimensions 3 as spaces of symmetric 2 × 2 matrices, Ric33 has dimension 3 as the space of
traceless 2 × 2 matrices, and W eyl51 has dimension 5 as the space of symmetric tensors of
degree 4 in dimension 2.

Proposition 2.3 The GL2(R) ⊂ SO2,2 invariant decomposition of the 20-dimensional cur-
vature space, Riemann20, of an almost para-Hermitian structure (M, g, K ) in dimension 4
is

Riemann20 = Ric31 ⊕ Ric32 ⊕ Ric33︸ ︷︷ ︸
traceless Ricci

⊕

Scal1︸ ︷︷ ︸
Ricci scalar

⊕

W eyl11 ⊕ W eyl12 ⊕ W eyl13 ⊕ W eyl14 ⊕ W eyl15︸ ︷︷ ︸
self-dual Weyl

⊕

W eyl51 .︸ ︷︷ ︸
anti-self-dual Weyl

(2.20)

Proof This decompositions can be obtained similar to the decomposition of Riemann20 into

W eyl±,
◦

Ricci and R via the SO2,2 invariant decomposition of �2T∗M . In this case one
decomposes �2T∗M using the GL2(R) invariant decomposition of the tangent space

TM = H ⊕ H̄ ,

which is possible for any almost para-Hermitian manifold (M, g, K ). The associated decom-
position of the cotangent bundle �1T∗M is given by

�1T∗M = �(1,0) ⊕ �(0,1),
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where

�(1,0) = { ω ∈ �1T∗M | X̄ ⌟ ω = 0, ∀X̄ ∈ H̄ }
�(0,1) = { ω̄ ∈ �1T∗M | X ⌟ ω̄ = 0, ∀X ∈ H }.

As a result, �2T∗M is decomposed into

�2T∗M = �(2,0) ⊕ �(1,1) ⊕ �(0,2).

It turns out that �(2,0) and �(0,2) are 1-dimensional, and �(1,1) has dimension 4. Choosing
an adapted coframe (α1, α2, ᾱ1, ᾱ2) we can write a basis for these spaces in terms of the
self-dual and anti-self-dual 2-forms, (σ 1±, σ 2±, σ 3±), in (2.2), as follows.

�(2,0) ∩ �2+ = Span{σ 1+} = �(2,0),

�(0,2) ∩ �2+ = Span{σ 2+} = �(0,2)

�(1,1) ∩ �2+ = Span{σ 3+},
�(1,1) ∩ �2− = Span{σ 1−, σ 2−, σ 3−} = �2−,

This gives a natural decomposition of �2+ into 1-dimensional GL2(R) invariant subspaces

�2+ = Span{σ 1+} ⊕ Span{σ 3+} ⊕ Span{σ 2+}.
Using this we can further decompose the map Riemann from (2.9) as

Riemann = 1
12 R id6×6 +

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

� ′
2 −2� ′

3 � ′
4 P22 2P12 P11

� ′
1 −2� ′

2 � ′
3 P23 P13 − P24 −P14

� ′
0 −2� ′

1 � ′
2 P33 −2P34 P44

P44 2P14 P11 �2 2�1 �0

P34 P13 − P24 −P12 −�3 −2�2 −�1

P33 −2P23 P22 �4 2�3 �2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.21)

Comparing this with the decomposition (2.9) one obtains

• W eyl+ gets decomposed into five 1-dimensional GL2(R) invariant subspaces denoted
by W eyl11 , . . . , W eyl15 which correspond to the components� ′

0, . . . , �
′
4 in (2.21) respec-

tively.

• ◦
Ricci is decomposed into three invariant subspaces, Ric31, Ric32, Ric33 which cor-
respond to the rows (P22, P12, P11), (P23, P13 − P24, P14), and (P33, P34, P44) in (2.21)
respectively.

• W eyl− remains indecomposable with its 5-dimensional representation W eyl51 whose
components are (�0, �1, �2, �3, �4).

• The Ricci scalar R = 12(P13 + P24) is proportional to the trace of Riemann and gives
the 1-dimensional invariant subspace Scal1.

As a result one obtains the decompositions (2.20). �	

It is straightforward to find the explicit action of theGL2(R) group on the indecomposable
components of the curvature in (2.19).
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Proposition 2.4 The curvature components Ric31, Ric32, Ric33 and W eyl51 are ‘tensorial’ with
respect to the action of GL2(R) i.e. for U ∈ GL2(R) ⊂ SO2,2 given by (2.16) if an adapted
coframe (θa) is transformed by

θa → θ̃a = T (U )a
bθ

b,

then the transformation law for the curvature components �AB, �̄AB and P A
B in (2.19) is

�AB → �̃AB = �C D AtC
A At D

B , (2.22a)

�̄AB → ˜̄�AB = �̄C D A−1C
A A−1D

B , (2.22b)

P A
B → P̃ A

B = AA
C PC

D A−1D
B , (2.22c)

WABC D → W̃ ABC D = WE FG H A−1E
A A−1F

B A−1G
C A−1H

D . (2.22d)

The curvature scalars � ′
0, � ′

1, � ′
2, � ′

3, � ′
4, P14 + P23, are weighted scalars and transform

to

� ′
0 → �̃ ′

0 = (det A)2 � ′
0, � ′

4 → �̃ ′
4 = (det A)−2 � ′

4,

� ′
1 → �̃ ′

1 = (det A) � ′
1, � ′

3 → �̃ ′
3 = (det A)−1 � ′

3,

� ′
2 → �̃ ′

2 = � ′
2, P13 + P24 → P̃13 + P̃24 = P13 + P24.

(2.23)

Corollary 2.5 Every almost para-Hermitian structure (M, g, K ) in dimension 4 possesses
two scalar invariants which are the scalar curvature of the metric g, given by R = 12(P12 +
P34), and � ′

2, arising from the self-dual Weyl tensor of the metric. Moreover the vanishing
of each of the GL2(R) densities, � ′

0, . . . , �
′
4, as well as each of the GL2(R) tensors, �AB,

�̄AB and P A
B , is an invariant property of almost para-Hermitian structures.

2.2.4 Cartan-Penrose-Petrov classification of the Weyl tensor

One of the basic pointwise invariants of 4-dimensional metrics of split signature is the so-
called Petrov type of its self-dual and anti-self-dual Weyl curvatures. To define it, note that
the transformation law (2.22d) shows the action of the structure group GL2(R) on the anti-
self-dual Weyl tensors, W eyl51 , as an 5-dimensional representation. This representation is
isomorphic with the standard representation of GL2(R) on Sym4(R2)∗ i.e. the degree 4
homogeneous polynomials in two variables. Using (2.19), the quartic polynomial is given
by

W (ξ) = WABC Dξ Aξ BξCξ D

= �4(ξ
1)4 + 4�3(ξ

1)3(ξ0) + 6�2(ξ
1)2(ξ0)2 + 4�1(ξ

1)(ξ0)3 + �0(ξ
0)4,

where ξ = (ξ0, ξ1). It turns out that ξ can serve as a homogeneous coordinate for the circle
bundle of anti-self-dual planes, N−. More precisely, using the Weyl curvature (2.6), define
Cabcd = gadCd

bcd , which can be used to define the multilinear map

W := Cabcd(θa ∧ θb) ◦ (θc ∧ θd) : Sym2(�2TM) → N∗+
∞

(M).

Restricting to anti-self-dual null planes,N− ⊂ �2TM , as in (2.3), one can define the quartic
polynomial

W (λ)= W( ∂
∂θ1

+ λ ∂
∂θ2

, ∂
∂θ4

− λ ∂
∂θ3

, ∂
∂θ1

+ λ ∂
∂θ2

, ∂
∂θ4

− λ ∂
∂θ3

)

= �4λ
4 + 4�3λ

3 + 6�2λ
2 + 4�1λ + �0

(2.24)
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where

�4 = C2323, �3 = C1323, �2 = −C1423, �1 = C2414, �0 = C1414,

which establishes the relation λ = ξ1

ξ0
between the parameters. The quartic (2.24) is a repre-

sentation of the anti-self-dual Weyl curvature of the metric g.

Similarly, restricting to self-dual null planes, N+ ⊂ �2TM , and using the affine
parametrization (2.3), one can define the quartic polynomial

W ′(μ) = W
(

∂
∂θ4

− μ ∂
∂θ1

, ∂
∂θ3

+ μ ∂
∂θ2

, ∂
∂θ4

− μ ∂
∂θ1

, ∂
∂θ3

+ μ ∂
∂θ2

)

= � ′
4μ

4 + 4� ′
3μ

3 + 6� ′
2μ

2 + 4� ′
1μ + � ′

0

(2.25)

where

� ′
4 = C1212, � ′

3 = C1213, � ′
2 = C1234, � ′

1 = C1334, � ′
0 = C3434,

The quartic W ′(μ) is a representation of the self-dual Weyl curvature of g whose coefficients
transform according to (2.23).

The Petrov type at each point is the root type of the quartics W (λ) and W ′(μ) at that point,
since multiplicity pattern of the roots is invariant under the induced action of the structure
group SO2,2. Note that since the coefficients of the quartics are real and transform under the
action of GL2(R), the root type is closed under complex conjugation. As a result, there are
10 root types for each of the quartics W (λ) and W ′(μ). Following the tradition in General
Relativity, where the metric has Lorentzian signature, root types are grouped into the six
Petrov types, denoted by G, I I , I I I , N , D and O . In the case of metrics of split signature,
due to different reality conditions, one obtains a finer classification of Petrov types given by

(1) Type Gr : 4 real simple roots.
(2) Type Gc: 2 real simple roots and 2 complex conjugate roots.
(3) Type Gcc: 2 pairs of complex conjugate roots.
(4) Type I I r : 1 double real root, 2 simple real roots.
(5) Type I I c: 1 double real root, 2 complex conjugate roots.
(6) Type I I I : 1 triple real root and 1 simple real root.
(7) Type Dr : 2 double real roots.
(8) Type Dc: 2 double complex conjugate roots.
(9) Type N : 1 quadruple real root.

(10) Type O: when all the coefficients of the quartic are zero.

The letter G stands for general type since, generically, the Petrov type of a quartic is G. If the
quartic is non-zero, then the 9 root types are listed in Fig. 1, which shows the self-conjugate
pattern of roots in each type. The horizontal line represents the real line and conjugation of
roots is given by reflection with respect to the horizontal line.

In what follows the root types Gr , I I r , I I I , Dr , N , O will be referred to as the special
real Petrov types. It is clear from our discussion that since the parameters λ and μ in the
quartics W (λ) and W ′(μ), parametrize N− and N+, respectively, a choice of real root for
these quartics determine a choice of an anti-self-dual and self-dual null plane. This enables
one to consider anti-self-dual or self-dual null planes that correspond to a real root of the
quartics W (λ) or W ′(μ).

123



Geometriae Dedicata

Fig. 1 Root types of a non-zero quartic with real coefficients

2.3 Para-Kähler (pK) metrics

In this section the para-Kähler condition is used to reduce the structure equations of an almost
para-Hermitian structure. After deriving their structure equations and curvature decomposi-
tion, we show that para-Kähler structures can be described in terms of a potential function,
using which we give two examples of para-Kähler-Einstein metrics. These two examples
turn out to be homogeneous as will be explained in Sect. 3.2.

2.3.1 PK structures in an adapted coframe.

Aspecial feature of every almost para-Hermitian geometry (M, g, K ) is that in addition to the
(weighted) tensorial invariants arising from the curvature of the Levi-Civita connection, it has
invariants of lower order referred to as the intrinsic torsion. These are defined in terms of the
(Grey-Harvella type) decomposition of the covariant derivative of the 2-form ρ (2.13) with
respect to GL2(R). Two of these (relative) invariants are of particular interest in our setting.
We will express them in terms of the Levi-Civita connection 1-forms �a

b. Using (2.18b),
one obtains that the transformation of the connection 1-forms �1

4 and �4
1 does not involve

the inhomogeneous terms d(T (U ))T (U )−1, which leads to the following proposition.

Proposition 2.6 Under the gauge transformation (2.18) of adapted coframes (θ1, θ2, θ3, θ4)

for an almost para-Hermitian structure, the connection 1-forms �1
4 and �4

1 transform as

�1
4 → �̃1

4 = (det A) �1
4, �4

1 → �̃4
1 = (det A)−1 �4

1

where A ∈ GL2(R). As a result, the vanishing of each of the connection 1-forms �1
4 and �4

1
is an invariant property of an almost para-Hermitian structure.

We have the following proposition.

Proposition 2.7 An almost para-Hermitian structure (M, g, K ) is para-Kähler if and only
if

�1
4 = 0 and �4

1 = 0,

in one (and therefore any) adapted coframe. As a result, the Levi-Civita connection form of
g is reduced to

�a
b =

(
� 0
0 −�T

)
, with � ∈ gl2(R) ⊗ �1T∗M ≡ End(R2) ⊗ �1T∗M,
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in any adapted coframe.

Proof By Frobenius theorem the integrability ofH and H̄ in an adapted coframe is equiv-
alent to dα1 ∧ α1 ∧ α2 = 0 = dα2 ∧ α1 ∧ α2 and dᾱ1 ∧ ᾱ1 ∧ ᾱ2 = 0 = dᾱ2 ∧ ᾱ1 ∧ ᾱ2

respectively. Using the first structure Eqs. (2.8), it follows that the simultaneous integrability
of H and H̄ implies

d�4
1 ∧ α1 ∧ ᾱ1 ∧ ᾱ2 = 0, d�4

1 ∧ α2 ∧ ᾱ1 ∧ ᾱ2 = 0,

d�1
4 ∧ ᾱ1 ∧ α1 ∧ α2 = 0, d�1

4 ∧ ᾱ2 ∧ α1 ∧ α2 = 0.
(2.26)

On the other hand, the almost Kähler condition dρ = 0, when written in an adapted coframe
reads

d
(
α1 ∧ α2 + ᾱ1 ∧ ᾱ2) = 0.

Using the first structure Eqs. (2.8) it follows that this condition is equivalent to

�1
4 ∧ ᾱ1 ∧ ᾱ2 + �4

1 ∧ α1 ∧ α2 = 0. (2.27)

It follows from (2.26) and (2.27) that �4
1 = 0 and �1

4 = 0, as claimed. �	

Proposition 2.7 leads to the following “para” analogue of the well-known fact that the holon-
omy of Riemannian 4-manifolds which are Kähler is a subgroup of U2.

Corollary 2.8 For any 4-dimensional para-Kähler structure (M, g, K ) the pseudo-Riemannian
holonomy of the metric g is reduced from SO2,2 toGL2(R) via the representation T in (2.17).
This holonomy reduction is equivalent to the property that K is parallel with respect to the
Levi-Civita connection ∇ of g.

Remark 2.9 The corollary above is a consequence of the so-called holonomy principle in
pseudo-Riemannian geometry which establishes a one to one correspondence between the
space of parallel sections of tensor bundles and the invariant vectors in Tx M under the action
of the holonomy group Holx at each point x ∈ M . We refer to [5] for further discussion of
the holonomy group of pseudo-Riemannian metrics of split signature.

Let us also point out that in the spirit of Remark 2.1, Proposition 2.7 implies that the bundle
of adapted null frames for para-Kähler structures is a principal GL2(R)-bundle F8 → M
obtained from reducing the SO2,2-bundle F → M, with the property that the reduced first
order structure equations given by (2.8), (2.10)–(2.11) have no intrinsic torsion.

2.3.2 Curvature of pK geometry and pK-Einstein (pKE) condition

In this section we discuss the curvature of para-Kähler structures.

Proposition 2.10 The curvature Riemann20 of every 4-dimensional para-Kähler structure
(M, g, K ) can be decomposed as

Riemann20 = Ric32 ⊕
(

Scal1 ∼= W eyl13

)
⊕ W eyl51 ,

which, compared to (2.19), means Ric31 = Ric33 = W eyl11 = W eyl12 = W eyl14 = W eyl15 =
0.
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More explicitly, the curvature operator Riemann in (2.21), expressed in term of the basis
of 2-forms (σ i±) in (2.2), is given by

Riemann = − � ′
2 id6×6 +

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

� ′
2 0 0 0

0 −2� ′
2 0 P23 P13 − P24 −P14

0 0 � ′
2 0

2P14 �2 2�1 �0

0 P13 − P24 0 −�3 −2�2 −�1

−2P23 �4 2�3 �2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Proof The proof follows from a simple substitution of �4
1 = 0 and �1

4 = 0 into the last
two of the second structure Eq. (2.10). �	

Remark 2.11 Note that the curvature conditions

P11 = P12 = P22 = P33 = P34 = P44 = � ′
0 = � ′

1 = � ′
3 = � ′

4 = � ′
2 + 1

12 R = 0,

implied by the para-Kähler condition �4
1 = �1

4 = 0, when inserted to the second structure
Eqs. (2.10)–(2.11), give that the entire curvature 1

2 Ra
bcdθc ∧ θd of the para-Kähler structure

is a gl2(R)-valued 2-form i.e. 1
2 Ra

bcdθc ∧ θd ∈ �(1,1).

Recall that a 4-dimensional pseudo-Riemannian manifold (M, g) where g has split sig-

nature is called Einstein if and only if its traceless Ricci curvature vanishes, i.e.
◦

Ricci = 0
in (2.9). Therefore, one obtains the following.

Corollary 2.12 The curvature of a 4-dimensional para-Kähler-Einstein structure decomposes
to

Riemann20 =
(

Scal1 ∼= W eyl13

)
⊕ W eyl51 .

When written in an adapted coframe it reads

Riemann =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0

0 −3� ′
2 0

0 0 0

0

0
�2 − � ′

2 2�1 �0

−�3 −2�2 − � ′
2 −�1

�4 2�3 �2 − � ′
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.28)

Remark 2.13 It follows from Sect. 2.3.2 that for para-Kähler-Einstein manifolds the two con-
stant curvature components are related by R = −12� ′

2. From now on, we restrict ourselves
to para-Kähler-Einstein 4-manifolds with non-vanishing W eyl+ i.e. we always assume

� ′
2 = const �= 0.

Moreover, following the discussion in Sect. 2.2.4 on the Petrov type of the anti-self-dualWeyl
curvature, W eyl− = W eyl51 , one obtains that the Petrov type of the quartic representation
of W eyl+, as the self-dual Weyl curvature of the metric g, is D if � ′

2 �= 0, and O if � ′
2 = 0.
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2.3.3 Para-Kähler structure in a coordinate system

One of the features of Kähler metrics is that they can be locally expressed in terms of a
function, called the Kähler potential. An analogous feature for the para-Kähler structures in
4 dimensions is described in the following two propositions.

Proposition 2.14 Let U be an open set of R
4, and let (a, b, x, y) be Cartesian coordinates

in U. Consider a real-valued sufficiently differentiable function V = V (a, b, x, y) on U such
that

det

(
Vax Vay

Vbx Vby

)
�= 0 in U.

Define

g = 2da (Vaxdx + Vaydy) + 2db (Vbxdx + Vbydy),

K = ∂a ⊗ da + ∂b ⊗ db − ∂x ⊗ dx − ∂y ⊗ dy,

ρ = da ∧ (Vaxdx + Vaydy) + db ∧ (Vbxdx + Vbydy).

Then the pair (g, K ) defines a para-Kähler structure on U with ρ(·, ·) = g(K (·), ·).
The para-Kähler structure (U, g, K ) is Einstein i.e. Ric(g) = �g, if and only if the

potential function V satisfies

det

(
Vax Vay

Vbx Vby

)
= c1c2 e

−�V (2.29)

for a real number � and real-valued functions c1 = c1(a, b), c2 = c2(x, y).

Proof In the adapted coframe

α1 = da, α2 = db

ᾱ1 = Vaxdx + Vaydy, ᾱ2 = Vbxdx + Vbydy,

the 1-forms �a
b, constituting the gl2(R) part of the Levi-Civita connection, read

�1
1 = Vaay Vbx − Vaax Vby

Vay Vbx − Vax Vby
α1 + Vaby Vbx − Vabx Vby

Vay Vbx − Vax Vby
α2

�1
2 = Vaby Vbx − Vabx Vby

Vay Vbx − Vax Vby
α1 + Vbby Vbx − Vbbx Vby

Vay Vbx − Vax Vby
α2

�2
1 = Vaay Vax − Vaax Vay

−Vay Vbx + Vax Vby
α1 + Vaby Vax − Vabx Vay

−Vay Vbx + Vax Vby
α2

�2
2 = Vaby Vax − Vabx Vay

−Vay Vbx + Vax Vby
α1 + Vbby Vax − Vbbx Vay

−Vay Vbx + Vax Vby
α2.

It is straightforward to check that dρ = 0, and �1
4 = �4

1 = 0, as it should be for the
Levi-Civita connection in an adapted coframe of a para-Kähler structure.

For the calculation of the Ricci tensor it is more convenient to work in the coordinate
frame (da, db, dx, dy) rather than in the adapted frame (α1, α2, ᾱ1, ᾱ2). Thus, we need to
display the Levi-Civita connection 1-forms in the coordinate frame as well. Let us use the
following notation for the coordinates

x A = (a, b), x Ȧ = (x, y), A = 1, 2, Ȧ = 1, 2.
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It follows that

�A
Ȧ = � Ȧ

A = 0,

and the connection 1-forms �A
B and � Ȧ

Ḃ are given by (A.1) in the Appendix.
Using the expressions for the Levi-Civita connection in (A.1) the curvature can be calcu-

lated easily and the Ricci tensor satisfies

RAB = RȦḂ = 0,

and

RAȦ = RȦA = − ∂2

∂x A∂x Ȧ

log
(
Vax Vby − Vay Vbx

)
.

Since in the (A, Ȧ) notation the metric g reads as

g =
∑

A, Ȧ=1,2

∂2V

∂x A∂x Ȧ

(
dx A ⊗ dx Ȧ + dx Ȧ ⊗ dx A

)
,

the Einstein equations are

− ∂2

∂x A∂x Ȧ

log
(
Vax Vby − Vay Vbx

) = �
∂2V

∂x A∂x Ȧ

,

which after integration give

Vax Vby − Vay Vbx = c1c2 e
−�V .

�	
There is a converse to this proposition:

Proposition 2.15 Every para-Kähler structure (M, g, K ) in dimension four is locally
expressible in terms of a para-Kähler potential function V as in Proposition 2.14.

Proof The integrability of the distributions H = Ker{α1, α2} and H̄ = Ker{ᾱ1, ᾱ2} in a
para-Kähler structure implies that in some neighbourhood U ⊂ M there exists a coordinate
system (a, b, x, y) such that

α1 = A1da + B1db, α2 = A2da + B2db
ᾱ1 = P1dx + Q1dy, ᾱ2 = P2dx + Q2dy,

for some functions Ai , Bi , Pi , Qi defined in U. Since the coframe (α1, α2, ᾱ1, ᾱ2) is defined
up to theGL2(R) action (2.17), we can use this transformation to bring the coframe into the
form

α1 = da, α2 = db
ᾱ1 = Pdx + Qdy, ᾱ2 = Rdx + Sdy,

with new functions P, Q, R, S on U such that P S − Q R �= 0. In this new adapted frame we
have dα1 = 0, dα2 = 0. Inserting this into (2.8) with �1

4 = �4
1 = 0, we get

�1
1 ∧ α1 + �1

2 ∧ α2 = 0 & �2
1 ∧ α1 + �2

2 ∧ α2 = 0,
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which implies

�1
1 = a1α

1 + a2α
2, �1

2 = a3α
1 + a4α

2

�2
1 = a5α

1 + a6α
2, �2

2 = a7α
1 + a8α

2,

for some unknown functions a1, a2, . . . , a8 on U. Inserting this back into the last two of the
structure Eq. (2.8) gives

0 = (Qx − Py)dx ∧ dy

+ (
Pb − a2P − a6R

)
db ∧ dx + (

Qb − a2Q − a6S
)
db ∧ dy

+ (
Pa − a1P − a5R

)
da ∧ dx + (

Qa − a1Q − a5S
)
da ∧ dy

0 =(Sx − Ry)dx ∧ dy

+ (
Rb − a8R − a4P

)
db ∧ dx + (

Sb − a8S − a4Q
)
db ∧ dy

+ (
Ra − a7R − a3P

)
da ∧ dx + (

Sa − a7S − a3Q
)
da ∧ dy.

This in particular means that

(Qx − Py) = 0 and (Sx − Ry) = 0.

As a result, locally, there exist functions U and W on U such that

Q = Uy, P = Ux , S = Wy, R = Wx .

Thus, one obtains

α1 = da, α2 = db
ᾱ1 = Uxdx + Uydy, ᾱ2 = Wxdx + Wydy.

Since the 2-form ρ is given by

ρ = α1 ∧ ᾱ1 + α2 ∧ ᾱ2,

the para-Kähler condition dρ = 0 implies

0 = dρ = (Wa − Ub)yda ∧ db ∧ dy + (Wa − Ub)xda ∧ db ∧ dx .

This means that Wa − Ub = f (a, b) for some function f of variables a, b only. But since
in the coframe (α1, α2, ᾱ1, ᾱ2) functions W and U appear only in terms of their x and y
derivatives, they can be chosen so that f (a, b) ≡ 0. Hence there exists a differentiable
function V = V (a, b, x, y) on U such that

W = Vb and U = Va .

Thus, the adapted coframe can be expressed as

α1 = da, α2 = db,

ᾱ1 = Vaxdx + Vaydy, ᾱ2 = Vbxdx + Vbydy.

Expressing g, K and ρ in terms of the adapted coframe as in (2.14)–(2.15) gives the Propo-
sition. �	
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2.3.4 Homogeneous models

Two particular solutions of the Einstein condition (2.29) are given by the potentials

(i) V1 = − 1
� ′
2
log(b + ax − y),

(ii) V2 = − 2
3� ′

2
log

(
(1 − 3

2�
′
2ax)(1 − 3

2�
′
2by)

)
,

where � ′
2 = const �= 0.

Both potentials are solutions of (2.29) with � = −3� ′
2 and c1c2 = 1

� ′
2
2 for V1, and

c1c2 = 1 for V2. Let the para-Kähler structure (gi , Ki , ρi ) correspond to Vi where i = 1, 2.
Then, in an open set of R

4 parametrized by (a, b, x, y) one finds

K1 = K2 = ∂a ⊗ da + ∂b ⊗ db − ∂x ⊗ dx − ∂y ⊗ dy.

Straightforward computation gives

g1 = 2da
(
(y−b)dx−xdy

)
+2db

(
adx−dy

)

� ′
2(b+ax−y)2

, ρ1 = da∧
(
(y−b)dx−xdy

)
+db∧

(
adx−dy

)

� ′
2(b+ax−y)2

and

g2 = 2dadx

(1− 3
2� ′

2ax)2
+ 2dbdy

(1− 3
2� ′

2bx)2
, ρ2 = da∧dx

(1− 3
2� ′

2ax)2
+ db∧dy

(1− 3
2� ′

2by)2
.

The potential V1 corresponds to the homogeneous para-Kähler-Einstein structure referred
to as the dancing metric in [7] which is the unique homogeneous model that is self-dual,
i.e. W eyl− = 0, and not anti-self-dual for which � ′

2 = 1. The potential V2 corresponds
to the only other homogeneous para-Kähler-Einstein structure. It has the property that the
Petrov type of W eyl− is D. A derivation of these potential functions is outlined in Sect. 3.2.2
and Sect. 3.2.6. Finding explicit examples of pKE structures in terms of potential functions
satisfying the PDE (2.29) is not an easy task. In the next section we use an alternative
technique to give more explicit examples of pKE structures.

3 Para-Kähler-Einstein (pKE) metrics in dimension 4

This section is the heart of the article, in which we describe pKE structures as Cartan geome-
tries, give an in-depth study when the Petrov type is real and special and provide explicit
examples. Tobemore specific, in Sect. 3.1 pKEstructures are interpreted asCartan geometries
of type (SL3(R),GL2(R)). If the Einstein constant is −3, then they satisfy the Yang-Mills
equations for the associated sl3(R)-valued Cartan connection. In Sect. 3.2 we focus on pKE
structures for which W eyl− has special real Petrov type and give examples of each type. In
particular, we find all homogeneous models, give a local normal form for all real Petrov type
D pKEmetrics and present examples of real Petrov type II that satisfy Yang-Mills equations.
Moreover, we use Cartan-Kähler machinery to find the local generality of all Petrov types
assuming analyticity.
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3.1 Cartan geometries of type (SL3(R),GL2(R))

In order to view pKE structures as a Cartan geometry, let us specialize the EDS (2.8), (2.10)–
(2.11) to the case of para-Kähler-Einstein metrics. We have

dα1 = −�1
1 ∧ α1 − �1

2 ∧ α2,

dα2 = −�2
1 ∧ α1 − �2

2 ∧ α2,

dᾱ1 = �1
1 ∧ ᾱ1 + �2

1 ∧ ᾱ2,

dᾱ2 = �1
2 ∧ ᾱ1 + �2

2 ∧ ᾱ2,

d�1
1 = −�1

2 ∧ �2
1 + (−2� ′

2 − �2)α
1 ∧ ᾱ1 + �1α

1 ∧ ᾱ2 − �3α
2 ∧ ᾱ1 + (�2 − � ′

2)α
2 ∧ ᾱ2

d�1
2 = −�1

1 ∧ �1
2 − �1

2 ∧ �2
2 − �3α

1 ∧ ᾱ1 + (�2 − � ′
2)α

1 ∧ ᾱ2 − �4α
2 ∧ ᾱ1 + �3α

2 ∧ ᾱ2

d�2
1 = �1

1 ∧ �2
1 + �2

1 ∧ �2
2 + �1α

1 ∧ ᾱ1 − �0α
1 ∧ ᾱ2 + (�2 − � ′

2)α
2 ∧ ᾱ1 − �1α

2 ∧ ᾱ2

d�2
2 = �1

2 ∧ �2
1 + (�2 − � ′

2)α
1 ∧ ᾱ1 − �1α

1 ∧ ᾱ2 + �3α
2 ∧ ᾱ1 + (−2� ′

2 − �2)α
2 ∧ ᾱ2

(3.1)

where we have used �1
4 = �4

1 = 0 from Proposition 2.7
As discussed in Remark 2.9 and 2.1 , the EDS (3.1) can be regarded as the structure equa-

tions for the coframe on the principal GL2(R)-bundle F8 → M which is the 8-dimensional
bundle of adapted null frames for para-Kähler-Einstein structures. In fact, one can show that
para-Kähler-Einstein structures correspond to Cartan geometries of type (SL3(R),GL2(R)).
First let us define a Cartan geometry [12,30].

Definition 3.1 ACartan geometry (G, S, ψ), of type (G, H) is a principal H -bundleG → S,

equipped with a g-valued 1-form A, which is a Cartan connection, i.e.,

(1) Au : TuG → g is linear isomorphism for all u ∈ G.

(2) A is H -equivariant, i.e., R∗
hA = Ad(h−1) ◦ A, where Rh denotes the right action by

h ∈ H .

(3) A(Xv) = v, for every fundamental vector field Xv of τ : G → S, v ∈ h.

The curvature of the Cartan connectionA is given by KA = dA+A∧ A ∈ �2(G, g) which
is horizontal and defines the curvature function κA : G → ∧2

(g/h)∗ ⊗ g.

Let us now consider the sl3(R)-valued 1-form

A :=
(

� − 1
3Tr(�) id2×2 α

ᾱ − 1
3Tr(�)

)

, (3.2)

where

� =
(

�1
1 �1

2

�2
1 �2

2

)
, α =

(
α1

α2

)
, ᾱ = (ᾱ1, ᾱ2), (3.3)

Using A, the structure Eq. (3.1) can be expressed as

KA = dA + A ∧ A, (3.4)
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where, using the 2-forms σ i+’s and σ i−’s in (2.2), one has

KA =
⎛

⎜
⎝

�1 1 + �2 − � ′
2−�0 −�1
0

0 0

⎞

⎟
⎠ σ 1− +

⎛

⎜
⎝

�3 �4

−1 − �2 + � ′
2 −�3

0

0 0

⎞

⎟
⎠ σ 2−

+
⎛

⎜
⎝

1
2 (1 − 2�2 − � ′

2) −�3

�1
1
2 (�

′
2 + 2�2 − 1)

0

0 0

⎞

⎟
⎠ σ 3−

+ 1
2 (1 − � ′

2)

(
id2×2 0

0 −2

)

σ 3+.

(3.5)

One can interpret the 1-form A as an sl3(R)-valued Cartan connection on the principal
GL2(R)-bundleF8 → M of null frames adapted to a pKE structure. As a result, one obtains
the following theorem.

Theorem 3.2 Every pKE 4-manifold defines a Cartan geometry of type (SL3(R),GL2(R))

for which the structure bundle

GL2(R) → F8 → M

is the bundle of adapted null frames. The curvature KA vanishes, i.e. the Cartan geometry is
flat, if and only if the Einstein constant is -3 and the anti-self-dual Weyl tensor vanishes, i.e.

� ′
2 = 1 and W eyl− = 0.

The flat model, i.e. KA = 0, is locally equivalent to the para-Kähler-Einstein structure
induced by the dancing metric discussed in Sect. 2.3.4.

Recall that the exterior derivative of (3.4) gives the Bianchi identity

DKA := dKA + A ∧ KA − KA ∧ A = 0. (3.6)

As a result of the theorem above one obtains the following.

Proposition 3.3 A 4-dimensional para-Kähler-Einstein structure satisfies the Cartan con-
nection Yang-Mills equations, D ∗ KA = 0, if and only if � ′

2 = 1.

Proof By (3.5) and the definition of self-dual and anti-self-dual null planes in (2.2), it follows
that

� ′
2 = 1 ⇐⇒ ∗KA = −KA.

Since the curvature KA of a Cartan connection is always horizontal (see Definition 3.1 and
(3.5)), one can apply the Hodge star to KA defined on F8. Applying the Bianchi identity
(3.6), one obtains D ∗ KA = −DKA = 0. Alternatively, by taking a section s : M → F8,

computing the curvature and applying the Hodge star one can verify the claim.
Conversely, it is a matter of straightforward computation to show that D ∗ KA = 0

combined with the Bianchi identities (3.6), or equivalently Eq. (A.2), and the EDS (3.1)
imply � ′

2 = 1. �	
Remark 3.4 Note that pKE structures can also be associated to Cartan geometries of type
(R4

� GL2(R),GL2(R)) whose flat model satisfies � ′
2 = 0 and W eyl− = 0. This point of

view is however not desirable for the purpose of this article, since we always assume� ′
2 �= 0.
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3.2 Cartan reduction: homogeneousmodels, examples and local generality

In this section we carry out the Cartan reduction procedure for pKE metrics whose anti-self-
dual Weyl curvature has non-generic real Petrov type. Our reduction will not be exhaustive
and will omit Petrov type G. We will describe the reduction procedure for Petrov type I I
and D in detail, give a complete local normal form for type D pKE metrics, and use the
same method to find examples of Petrov types I I I and N . The reduction allows us to find
all homogeneous models and use the Cartan-Kähler theory to find the local generality of all
Petrov types assuming analyticity.

3.2.1 Reduction for special real Petrov types

Recall from (2.24) the quartic

W (λ) = �4λ
4 + 4�3λ

3 + 6�2λ
2 + 4�1λ + �0 (3.7)

where λ is the affine parameter for the anti-self-dual null planes in (2.3) for a given choice
of adapted coframe. Taking a different choice of coframe, θ̃1, . . . , θ̃4, by the action of the
structure group, as in (2.17), one obtains a quartic whose coefficients,�̃0, . . . , �̃4, can be
expressed in terms of �i ’s and the elements a11, a12, a21, a22 of the matrix A ∈ GL2(R).

For instance, one obtains

�̃0 = 1
det(A)

(a4
21�4 − 4a3

21a22�3 + 6a2
21a2

22�2 − 4a21a3
22�1 + a4

22�0). (3.8)

Remark 3.5 Note that the infinitesimal form of the transformation law for �0 given in (3.8)
is represented by the Bianchi identity for �0 in (A.2b). For a discussion on obtaining the
group action from its infinitesimal see [15].

It is clear from (3.8) that if W (λ0) = 0 then with respect to the coframe obtained from the
action of (2.16) where a11 = a22 = 1, a12 = 0, and a21 = −λ0, the root λ0 would be
translated to zero, i.e. �̃0 = 0 in this choice of coframe.

If W eyl− has a repeated root then by our discussion above, there is a coframe adaptation
with respect to which the double root is translated to zero. If the root has multiplicity k ≤ 4,
in the newly adapted coframe we have

�0 = · · · = �k−1 = 0, and �k �= 0. (3.9)

Using the group action on�i ’s or, equivalently the Bianchi identities (A.2), it follows that the
bundle of adapted coframes that preserves the condition (3.9) gives rise to a 7-dimensional
principal bundle F7 → M . More precisely, the new adapted coframes were determined by
a choice of a21 in (2.16) as a result of which the structure group is reduced to H(1) ⊂ SO2,2
defined as

H(1) =
{

T (U ) =
(

A 0
0 −AT

) ∣∣∣ A =
(

a11 a12
0 a22

)
∈ GL2(R)

}
. (3.10)

Using the gauge transformations (2.18b) arising from the structure group H(1) for adapted
coframes with respect to which (3.9) holds one obtains that the transformation of the connec-
tion 1-form �2

1 does not involve the inhomogeneous terms d(T (U ))T (U )−1 and therefore
the following proposition holds.

Proposition 3.6 Given a pKE metric, if the anti-self-dual Weyl curvature has special real
Petrov type, i.e. it has a repeated root whose multiplicity is at least 2, then the bundle of
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adapted coframes which preserves the condition (3.9) is given by a principal H(1)-bundle
F7 → M . Adapted coframes (α, ᾱ) arising as sections of F7 satisfy (3.1) where

�2
1 = J1α

2 + J2ᾱ
1, (3.11)

for some functions J1 and J2 on M.

Proof The proof of the proposition simply follows from the Bianchi identity for �k−1 in
(A.2) by inserting (3.9), which results in (3.11). �	
Remark 3.7 As a result of the proof above, one can express the quantities J1 and J2 in (3.11)
in terms of �i j ’s in (A.2). For instance, for k = 2 in (3.9) one obtains

J1 = −1
3�2

�21, J2 = 1
3�2

�24.

where �24 and �21 are referred to as the coframe derivatives of �2. However, we will not
take this point of view in order to avoid fractional expressions.

A second coframe adaptation will result in the following proposition.

Proposition 3.8 Every 4-dimensional pKE structure whose anti-self-dual Weyl tensor is of
special real Petrov type defines a Cartan geometry of type (SO2,2,T2) where T2 ∼= S

1 × S
1

is the maximal torus in SO2,2. The structure equations are given by (3.1) where

�2
1 =J1α

2 + J2ᾱ
1,

�1
2 = − J3α

1 + J6α
2 + J5ᾱ

1 + J4ᾱ
2

(3.12)

for some functions (J1, J2, J3, J4, J5, J6) on M . The so2,2-valued Cartan connection can be
represented as

B =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1
2�

1
1

√
3
2 |� ′

2| α1
√

3
2 |� ′

2| ᾱ1 − 1
2�

1
1

0

0
1
2�

2
2

√
3
2 |� ′

2| α2
√

3
2 |� ′

2| ᾱ2 − 1
2�

2
2

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.13)

The flatness condition for the resulting Cartan geometry, KB = dB+B∧B = 0, is equivalent
to J1 = J2 = J3 = J4 = J5 = J6 = �4 = 0, and �2 = � ′

2 and implies that W eyl− has
Petrov type D.

Proof Assuming that the Petrov type is I I or D, the adaptation (3.9) reads

�0 = �1 = 0, and �2 �= 0. (3.14)

If the conditions (3.14) are to be preserved, by Proposition 3.6, one has (3.11) and, using the
Bianchi identities (A.2), one obtains the differential relations

dJ1 =J1�
1
1 − J21 α1 + J12α

2 + J13ᾱ
1 + J1 J2ᾱ

2,

dJ2 = − J2�
2
2 − J1 J2α

1 + (J13 + �2 − � ′
2)α

2 + J23ᾱ
1 + J22 ᾱ2,

d� ′
2 =0,

d�2 = − 3J1�2α
1 + (2J1�3 + �31)α

2 + (2J2�3 − �34)ᾱ
1 + 3J2�2ᾱ

2,

d�3 =3�2�
1
2 − �3(�

1
1 − �2

2) − �31α
1 − (J1�4 + �41)α

2 + (J2�4 − �44)ᾱ
1 − �34ᾱ

2,

d�4 =4�3�
1
2 − 2�4(�

1
1 − �2

2) + �41α
1 + �42α

2 + �43ᾱ
1 + �44ᾱ

2

(3.15)
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for some functions J12, J13, J23 on M . These relations are obtained by inserting (3.11) in
the structure Eq. (3.1) and requiring that the exterior derivative of the right hand side of the
equations are zero.

Let the quantities Ji , � j , �
′
2 and J̃i , �̃ j , �̃

′
2 be the quantities appearing in the structure

equations for two choices of such adapted coframe related via θ̃a = T (U )a
bθ

b. Using the
structure group H(1) as in (3.10) and its induced gauge transformation (2.18), one obtains

J̃1 = a−1
11 J1, J̃2 = a22 J2,

�̃ ′
2 = � ′

2, �̃2 = �2,

�̃3 = 1
a22

(−3a12�2 + a11�3), �̃4 = 1
a222

(6a2
12�2 − 4a11a12�3 + a2

11�4).

(3.16)

As was mentioned in Remark 3.5, the infinitesimal version of the transformations above are
given by the Bianchi identities (3.15).

Consequently, using the transformation law for �3 given in (3.16), we can further restrict
to the bundle of adapted coframes with respect to which

�0 = �1 = �3 = 0, �2 �= 0. (3.17)

This can be seen explicitly from (3.16) by setting

a12 = �3

3�2
a11.

As a result, when the Petrov type of W eyl− is I I or D, the bundle of adapted coframes
preserving (3.17) gives rise to a principal H(2)-bundle F6 → M where

H(2) :=
{

T (U ) =
(

A 0
0 −AT

) ∣∣∣ A =
(

a11 0
0 a22

)
∈ GL2(R)

}
. (3.18)

Since for such coframes the gauge transformations (2.18b) do not affect �1
2 and �2

1 by the
inhomogeneous term d(T (U ))T (U )−1, one obtains the expressions (3.12) for some functions
(J1, J2, J3, J4, J5, J6) satisfying the Bianchi identities (A.3).

It follows that the set of coframes adapted to the condition (3.17) gives a principal T2-
bundle which is equipped by the Cartan connection B. The flatness condition follows from
a straightforward computation.

For real Petrov types I I I and N one needs to find the appropriate reduction of the structure
bundle for pKE metrics and proceeds analogously to find the Cartan connection (3.13). If the
Petrov type of W eyl− is I I I , the desired principal T2-bundle is given by the set of adapted
null coframes with respect to which

�0 = �1 = �2 = �4 = 0, �3 �= 0.

If the Petrov type is N , by Proposition 3.6 one can consider the bundle of adapted coframes
with respect to which

�3 = �2 = �1 = �0 = 0, �4 �= 0.

For such adapted coframes the 1-forms �2
1 is reduced as in (3.11). Subsequently, one can

use identities (A.2) to obtain

d�43 = (
2�2

2 − 3�1
1

)
�43 − 5J2�4�

1
2 + (−3� ′

2�4 − �442
)
α1

+ �432α
2 + �433ᾱ

1 + �434ᾱ
2,
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where �43 is the coframe derivative of �4 with respect to ᾱ1. Therefore the principal T2-
bundle F6 → M is given by adapted null coframes with respect to which one additionally
has�43 = 0.After these reductions�1

2 and�2
1 can be expressed as (3.12) for some functions

J1, . . . , J6 on M . We will not express the Bianchi identities for Ji ’s when the Petrov type is
I I I or N . It is a matter of straightforward computation to show that KB = 0 for real Petrov
types I I I and N implies � ′

2 = 0 which is not being considered in this article.
�	

3.2.2 Petrov type D

PKE metrics of real Petrov type D are particularly interesting because we find an explicit
local normal form for them as shown below. Suppose that W eyl− has Petrov type D i.e. the
quartic (3.7) has two real roots with double multiplicity. Although Proposition 3.8 describes
such pKE metrics as a Cartan geometry of type (SO2,2,T2), here we carry out the reduction
procedure further and describe all such pKEmetrics in some normal coordinate system. First,
we have the following.

Proposition 3.9 Given a pKE metric whose anti-self-dual Weyl curvature has real Petrov type
D everywhere, the Cartan connection B on F6 → M satisfies the structure Eq. (3.1) where

�1
2 = −J3θ

1 + J4θ
4, �2

1 = J1θ
2 + J2θ

3. (3.19)

The EDS obtained from the reduced structure equations together with the differential relations
among the functions J1, . . . , J4, �2, �

′
2 given by

dJ1 = −J 2
1 θ1 + J1 J2θ

4 + �1
1 J1 + 2J1 J3θ

2 − J41θ
3

dJ2 = −�2
2 J2 − J1 J2θ

1 + (−J41 + �2 − � ′
2)θ

2 + 2J2 J4θ
3 + J 2

2 θ4

dJ3 = �2
2 J3 − 2J1 J3θ

1 + J 2
3 θ2 + J3 J4θ

3 + (−J41 + �2 − � ′
2)θ

4

dJ4 = J3 J4θ
2 + J 2

4 θ3 − �1
1 J4 + J41θ

1 + 2J2 J4θ
4

dJ41 = (−2J1 J41 − 2J1�
′
2 − J1�2 + 2J1 J2 J3)θ

1 + (2J3 J41 − 2J1 J3 J4)θ
2

+ (−2J2 J3 J4 + 2J4 J41 + 2J4�
′
2 + J4�2)θ

3 + (−2J1 J2 J4 + 2J2 J41)θ
4

d�2 = −3J1�2θ
1 + 3J2�2θ

4 + 3J3�2θ
2 + 3J4�2θ

3

d� ′
2 = 0

(3.20)

for some function J41 is closed under the exterior derivative operator d. As a result, the local
moduli space of type D pKE metrics is 5-dimensional.

Proof The differential identities (3.20) are obtained via straightforward computations
discussed previously. The fact that the space of such pKE metrics is 5-dimensional fol-
lows from the Frobenius theorem applied to the resulting closed EDS. More precisely,
define the 13-dimensional bundle E13 → F6 whose fibers are parametrized by J =
(J1, J2, J3, J4, J41, �2, �

′
2). Since the Pfaffian system (3.20) is integrable, its leaf space

is 7-dimensional parametrized by J . As the infinitesimal group actions in (3.20) suggests,
one obtains that the action of the structure groupH(2) transforms the quantities J2 and J4 by

J̃2 = a22 J2, J̃4 = a11 J4.

To find the local generality one considers generic pKE metrics of type D. As a result, it can
be assumed that J2, J4 �= 0, after restricting to sufficiently small neighborhoods. Hence,
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setting a11 = 1
J4

and a22 = 1
J2

, one can normalize J2 = J4 = 1 and obtain a canonical
coframe at each point of such pKE metrics. Consequently, the remaining 5 parameters of J
can be used to distinguish every generic type D pKE metric up to isomorphism. Therefore,
the local generality of type D pKE metrics depends on 5 constants. �	
It turns out that the pKE metrics of type D locally belong to one of four branches which can
be characterized according to the vanishing of the quantities J2 and J4. Each branch can be
locally expressed using normal coordinates given below.

Theorem 3.10 In sufficiently small open sets, every pKE metric

g = 2θ1θ3 + 2θ2θ4,

whose anti-self-dual Weyl curvature has real Petrov type D, belongs to one of the following
four branches. The first branch is characterized by the property that J2 and J4 are non-
vanishing and is comprised of 5-parameter family of pKE metrics for which a choice of
normalized coframe can be expressed as

θ1 = (y4)2
(
1 − y3

)
dy1 − y4dy2,

θ2 = (y4)2dy1 − θ1,

θ3 =
(

−� ′
2(y3)3 + k1(y3)2

y4
− k2 y3

(y4)2
− k3+ 1

2 k4
(y4)3

)
θ1 − dy3 − y3

y4
dy4

θ4 =
(
� ′

2(y3 − 1)3 − k1(y3−1)2

y4
+ k2(y3−1)

(y4)2
+ k3

(y4)3

)
θ2 + dy3 + y3−1

y4
dy4

(3.21)

for some constants k1, . . . , k4 and � ′
2. The second branch is characterized by the condition

that J4 = 0 and J2 non-vanishing and is comprised of a 3-parameter family of pKE metrics
for which a choice of coframe can be expressed as

θ1 = k2(y1)2y4dy3 + y1

y4
dy4 + dy1, θ2 = y1dy3 + 1

y4
dy2, θ3 = dy3

θ4 = − k1(y4)3+2k2 y4+2� ′
2

2y4
dy2 − k1(y4)3+2k2 y4+2� ′

2
2 y1dy3 + 1

y4
dy4

(3.22)

where k1, k2 and � ′
2 are constants. Similarly, the third branch is characterized by J2 = 0

and J4 non-vanishing, which is comprised of 3-parameter family of pKE metrics and can be
expressed as in (3.22) after switching θ1 ↔ θ2 and θ3 ↔ θ4.

Lastly, the fourth branch, characterized by J2 = J4 = 0, is comprised of the only
homogeneous pKE metrics of type D. They form a 1-parameter family parametrized by � ′

2,

for which a choice of coframe is given by

θ1 = dy1

1− 3
2� ′

2 y1y3
, θ2 = dy2

1− 3
2� ′

2 y2 y4
, θ3 = dy3

1− 3
2� ′

2 y1y3
, θ4 = dy4

1− 3
2� ′

2 y2 y4
,

(3.23)

Proof Let us first work in a neighborhood U in which J2, J4 are nowhere vanishing. Using
the action of a11 and a22, whose infinitesimal version is given in (3.20), there is a unique
coframe with respect to which J2 = J4 = 1 and therefore

�1
1 = J41θ

1 + J3θ
2 + θ3 + 2θ4, �2

2 = −J1θ
1 + (−J41 + �2 − � ′

2)θ
2 + 2θ3 + θ4.(3.24)

To find our normal coordinate system we make use of the orbits of the Killing vector fields of
these pKE metrics. Let v = vi ∂

∂θ i be a Killing vector field i.e. Lvθ
i = 0 where L denotes

the Lie derivative. It is straightforward to use the structure Eq. (3.1) and reductions (3.19)
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and (3.24) when J2 = J4 = 1 to obtain dvi for i = 1, . . . , 4. Subsequently, the identities
d2vi = 0 imply that the isometry group for such pKE metrics is two dimensional since

v = v1
(

∂
∂θ1

+ J1
∂

∂θ3

)
+ v2

(
∂

∂θ2
− J3

∂
∂θ4

)
,

where

dv1 = v1
(
J1θ

1 − θ3
) − (

2v1 + v2
) (

J3θ
2 + θ4

)
, dv2 = v1

(
θ1 + J1θ

3)

+v2
(
θ2 − J3θ

4) . (3.25)

Because of the relation d(v1+v2)

2(v1+v2)
= J1θ1 − J3θ2 − θ3 − θ4, we restrict ourselves to an open

set where d(v1 + v2) and v1 + v2 are non-zero. As a result, one can assume v1 + v2 > 0 and
define

y3 = v2

v1+v2
, y4 = √

v1 + v2.

From (3.25) it follows that

θ3 = J1θ1 − dy3 − y3

y4
dy4, θ4 = −J3θ2 + dy3 + y3−1

y4
dy4 (3.26)

Using the reduced 1-forms (3.24) and normalized values J2 = J4 = 1 in theBianchi identities
(3.20) together with the expressions (3.26), it follows that J1, J3, J41 and �2 are functions
of y3 and y4. For instance, one obtains d�2 = − 3�2

y4
dy4 which implies �2 = k4

(y4)3
for a

constant k4. Similarly, elementary calculations can be carried out to show

J1 = −� ′
2(y3)3 + k1

y4
(y3)2 − k2

(y4)2
y3 − 2k3+k4

2(y4)3
,

J3 = −� ′
2(y3)3 + (3� ′

2 + k1
y4

)(y3)2 − (3� ′
2+ 2k1

y4
+ k2

(y4)2
)y3 + � ′

2 + k1
y4

+ k2
(y4)2

− k3
(y4)3

,

J41 = 2� ′
2(y3)3 − (3� ′

2 + 2k1
y4

)(y3)2 + ( 2k1
y4

+ 2k2
(y4)2

)y3 − k2
(y4)2

+ 2k3+k4
(y4)3

,

(3.27)

for constants k1, k2, k3 and k4. To express θ1 and θ2 in a local normal form, one makes use
of the structure Eq. (3.1) and the reductions (3.19) and (3.24) when J2 = J4 = 1 to obtain

d(θ1 + θ2) = 2
y4
dy4 ∧ (θ1 + θ2).

By Darboux’ theorem, locally one obtains θ1 = (y4)2dy1 − θ2 for a local coordinate y1.
Lastly, the relation

dθ2 = 1
y4
dy4 ∧ θ2 + y4

(
y3dy4 + y4dy4

) ∧ dy1

implies that θ2 = (y4)2y3dy1+ y4dy2 for a local coordinate y2.This proves the local normal
form presented in (3.21). Furthermore, it is straightforward to verify that ∂

∂ y1
and ∂

∂ y2
are the

Killing vector fields for these pKE metrics.
For the second branch we restrict ourselves to open sets U ⊆ M in which J4 = 0 and J2

is nowhere vanishing. OverU one obtains J41 = J1 = 0.Using the relations (3.20), consider
the set of coframes with respect to which J2 = 1 and

�2
2 = (�2 − � ′

2)θ
2 + θ4. (3.28)

As described before, it is straightforward to express the Killing vector fields of such pKE
metrics which are of the form

v = v1 ∂
∂θ1

+ v2 ∂
∂θ2

+ v3 ∂
∂θ1

+ J3v2
∂

∂θ4
+ v5 ∂

∂�1
1

(3.29)
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and, as a result, have to satisfy the differential relations

dv1 = −v1�1
1 + (J3v

2 + v5)θ1 − v1 J3θ
2,

dv2 = −J3v
2θ2 − v1θ3 − v2θ4 + v3θ1,

dv3 = v3�1
1 − (J3v

2 + v5)θ3 − v3θ4,

dv5 = (J3 − 2� ′
2 − �2)(v

3θ1 − v1θ3) + v2(� ′
2 − �2)(J3θ

2 + θ4).

(3.30)

Using the structure Eq. (3.1) and the reduced 1-forms (3.19) and (3.28) when J4 = 0 and
J2 = 1, together with the Bianchi identities (3.20), it follows that

d(J3θ
2 + θ4) = 0 ⇒ θ4 = 1

y4
dy4 − J3θ2 (3.31)

for a local coordinate y4. It follows from (3.29) that the orbits of the isometry group for such
pKE metrics are level sets of y4. This implies that such pKE metrics have cohomogeneity
one. Using the Bianchi identities (3.20) and the reduction (3.28), one obtains that J3 and �2

are given by

�2 = k1(y4)3, J3 = 1
2k1(y4)3 + k2y4 + � ′

2.

It remains to express θ1, θ2, θ3 in a local normal form which will be done using (3.30).
Restricting to open sets where v3 �= 0, the relations (3.30) imply that

θ1 = v1

v3
θ3 + v2

v3 y4
dy4 + 1

v3
dv2

�1
1 = −(� ′

2 + (y4)3

2k1
+ k2y4)θ2 + v2( 12 k1(y4)3+k2 y+� ′

2)+v5

v3
θ3 + dy4

y4
+ dv3

v3

(3.32)

Using (3.31), (3.32) in (3.30), it is a matter of elementary calculation to show

v1 = k2 y4(v2)2

v3
, v5 = − k1(y4)3−2k2 y4+2� ′

2
2 v2.

Lastly, the reduced structure equations imply that

dθ2 = −θ3 ∧ ( dv2

v3
− v2dy4

v3 y4
) + θ2 ∧ dy4

y4
, dθ3 = −θ3 ∧ dv3

v3
.

Using Darboux’ theorem, one can find local coordinate system with respect to which

θ2 = dy2

y4
+ v2dy3, θ3 = v3dy3.

As a result, we have a local coordinate system (y1, . . . , y5), where y1 = v2 and y5 = v3

with respect to which we have expressed θ i ’s and �1
1. It is clear that v

3 acts by scaling on θ1

and θ3 and therefore, corresponds to the element a11 in the reduced structure group (3.18).
The coframe (3.22) is obtained by setting v3 = 1. Finally, note that in terms of the local
coordinates (y1, . . . , y4), the trajectories of the Killing vector fields are given by the level
sets of y2 and y3 and (y1)2−(y3)2.The third branch characterized by J2 = 0 and J4 nowhere
vanishing can be treated similarly.

Finally, when J2 = J4 = 0, straightforward computation shows that all Ji ’s vanish and
�2 = � ′

2. As a result, such metrics are homogeneous. The structure equations are given by

dθ1 = −�1
1 ∧ θ1, dθ3 = �1

1 ∧ θ3, d�1
1 = −3� ′

2θ
1 ∧ θ3, (3.33a)

dθ2 = −�2
2 ∧ θ2, dθ4 = �2

2 ∧ θ4, d�2
2 = −3� ′

2θ
2 ∧ θ4. (3.33b)
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Hence, it is sufficient to find a normal form for (3.33a). Using Darboux’s theorem, (3.33a)
imply that there are coordinates y1, y3, y5 with respect to which

θ1 = e−y5+F1dy1, θ3 = ey5−F1+F2dy3, �1
1 = dy5 − ∂(F1−F2)

∂ y1
dy1 − ∂ F1

∂ y3
dy3

for arbitrary functions F1 = F1(y1, y3) and F2 = F2(y1, y3) which satisfy

∂2

∂ y1∂ y3
F2 − 3� ′

2eF2 = 0. (3.34)

The equation above is known as Liouville’s equation [18] whose solutions can be expressed
as

F2(y1, y3) = ln

(
2p′q ′

−3� ′
2(p − q)2

)
(3.35)

for two arbitrary functions p = p(y1) and q = q(y3). Setting

p(y1) = 6� ′
2y1, q(y3) = 4

y3
, F1(y1, y3) = ln

(
1

1− 3
2� ′

2 y1y3

)
, y5 = 0

one obtains the expression (3.23) for θ1 and θ3. The expressions of θ2 and θ4 are obtained
similarly. �	

It is straightforward to use the coframe (3.23) in order to arrive at the potential function V2

in Sect. 2.3.4. Moreover, one can characterize the branchings in Theorem 3.10 in terms of
the vanishing of J1 and J3.

Remark 3.11 Theorem 3.10 is yet another instance of explicit local normal form for certain
classes of (pseudo-)Riemannian metrics whose Weyl curvature has algebraic type D, which
includes the Plebański-Demiański metrics [13,21,28] in the Lorentzian signature (see [17,22]
for a survey of all the results), and ambitoric metrics in Riemannian signature [1].

3.2.3 Petrov type II

Now we proceed to pKE metrics whose anti-self-dual Weyl curvature has Petrov type I I .

Theorem 3.12 Given a pKE metric of Petrov type I I , the SO2,2-valued Cartan connection
B on the principal bundle S

1 × S
1 → F6 → M, as defined in Proposition 3.8, satisfies the

Yang-Mills equations D ∗ KB = 0, where KB = dB + B ∧ B, if and only if

�2 = � ′
2, and J1 = J2 = J3 = J4 = 0. (3.36)

in (3.12). Examples of such pKE structure are given by g = 2θ1θ3 + 2θ2θ4 where

θ1 =dx − 3
2�

′
2

(
x2 + x f1(a) + f2(b)

)
da

θ2 =db

θ3 =da

θ4 =dy − 3
2�

′
2

(
y2 + y f3(b) + f4(a)

)
db

(3.37)

for some arbitrary functions f1, . . . , f4 where f ′
2, f ′

4 are nowhere vanishing.
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Proof Using the expressionof KB in (A.4), one immediately obtains (3.36) (seeRemark3.13).
One can integrate the structure equations for pKE metrics of Petrov type I I that are Yang-
Mills assuming some simplifying conditions. The integration procedure can be carried out
similarly to what was explained in Theorem 3.9 and will not be explained here. It turns out
that pKE metrics arising from the coframe (3.37) satisfy

�2 = � ′
2 = const, �0 = �1 = �3 = 0,

�4 = − 3
4

(
3

(
f3 f ′

2 + f1 f ′
4 + 2x f ′

4 + 2y f ′
2

)
� ′

2 − 2 f ′′
4 − 2 f ′′

2

)
� ′

2

J5 = − 3
2�

′
2 f ′

2, J6 = 3
2�

′
2 f ′

4

Note that if f ′
2 = f ′

4 = 0 one obtains homogeneous pKE metrics of type D.
The SO2,2-valued Cartan connection B, as defined in (3.13), has curvature

KB =

⎛

⎜⎜⎜⎜⎜
⎝

0 3
2

√
3
2 |� ′

2|3/2 f ′
2

0 0
0

0
0 0

− 3
2

√
3
2 |� ′

2|3/2 f ′
4 0

⎞

⎟⎟⎟⎟⎟
⎠

σ 2−,

which is anti-self-dual, and therefore satisfies the Yang-Mills equations D ∗ KB = 0. �	

Remark 3.13 Note that if the conditions (3.36) for J1, . . . , J6 in (3.12), which arise from
the Yang-Mills equation, are replaced by J5 = J6 = 0, then the W eyl− of the pKE metric
has type D as discussed in Theorem 3.9. Furthermore, as shown in Proposition 3.8, one can
always associate a Cartan geometry of type (SO2,2,T2), with a canonical Cartan connection,
to pKE metrics of any Petrov type by appropriately reducing the structure group. However,
except for type I I , it can be shown that the set of Yang-Mills solutions among other types is
empty.

3.2.4 Petrov type III

Assume that the quartic W (λ) in (3.7) has a repeated root of multiplicity three. As we did
in Sect. 3.2.2, by coframe adaptation one can translate the multiple root to zero, which is
equivalent to finding an adapted coframe with respect to which

�0 = �1 = �2 = 0, and �3 �= 0.

In this case Proposition 3.6 still remains valid and the following differential relations hold

d�3 = −�1
1�3 + �2

2�3 − 2J1�3θ
1 + (J1�4 + �41)θ

2 + (J2�4 − �44)θ
3 + 2J2�3θ

4

d�4 = −2�1
1�4 + 4�1

2�3 + 2�2
2�4 + �41θ

1 + �42θ
2 + �43θ

3 + �44θ
4

dJ2 = −J1 J2θ
1 + J 2

2 θ4 − �2
2 J2 + J22θ

2 + J23θ
3

(3.38)

for some functions J22, J23.
Using the action of a11 and a22, one can find the set of adapted coframes with respect

to which the quantities �3 and J2 are normalized to constants. The set of such adapted
coframes give rise to a line bundle F5 → M with the group parameter a12 in (3.10) as the
fiber coordinate.
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Proposition 3.14 Given a pKE metric whose anti-self-dual Weyl curvature has Petrov type
III and for which J2 �= 0, the bundle of adapted coframes preserving

�0 = �1 = �2 = 0, �3 = const �= 0, J2 = const �= 0

is a line bundle F5 → M, whose sections satisfy the structure Eq. (3.1) wherein

�2
1 = J1θ

2 + J2θ
3, �1

1 = −3J1θ
1 + J3θ

2 + J4θ
3 + 3J2θ

4,

�2
2 = −J1θ

1 + J5θ
3 + J6θ

2 + J2θ
4.

Examples of such pKE metrics for which J1 = 0, J6 = −� ′
2, J2 = �3 = 1 are given by

g = 2θ1θ3 + 2θ2θ4 where

θ1 = − 1
4

(
3e

1
2 y4

� ′
2 y1+y2e

1
2 y4

� ′
2+6� ′2

2 y1+2y2ey4−2e
1
2 y4 Wy3−� ′

2Wy3+ey4−Uy1+Uy1,y1

)
e−2y4 dy1

+ ey4dy2 + 1
2 e

− 3
2 y4

(
y2e

1
2 y4 − 2Wy3,y4

)
dy4

− 1
4

(
6� ′2

2 y1 y2e
1
2 y4−9y2ey4� ′

2 y1+ey4� ′
2(y2)2+9� ′

2 y1Wy3 e
1
2 y4−2Wy3� ′

2 y2e
1
2 y4−6� ′2

2 y1Wy3

+4y2ey4 Wy3−2W 2
y3
e
1
2 y4−Uy1 y2e

1
2 y4+Uy1,y1 y2e

1
2 y4+W 2

y3
� ′
2−2(y2)2e

3
2 y4−ey4 Wy3

−4Ue
1
2 y4+4Wy3,y3 e

1
2 y4+Uy1 Wy3−Wy3Uy1,y1+y2e

3
2 y4

)
e−2y4 dy3

θ2 = e− 1
2 y4dy1 + (

y2 − Wy3
)
e− 1

2 y4dy3

θ3 = ey4dy3

θ4 =
(
−� ′

2e
− 1

2 y4 − 1
)
dy1 + 1

2dy4

+
(
3
2 e

− 1
2 y4� ′2

2 y1 + 3
4 e

− 1
2 y4Wy3�

′
2 − 1

4 e
− 1

2 y4Uy1 + 1
4 e

− 1
2 y4Uy1 − 1

2 y2e
1
2 y4

+ 3
4�

′
2y1 − 3

4�
′
2y2 − 3

4 e
1
2 y4 + 1

2Wy3

)
dy3

where U = U (y1, y3), W = W (y3, y4) are arbitrary functions.

Proof We skip the proof due to its similarity to that of Theorems 3.9 and 3.12 . �	
Remark 3.15 We point out that by the action of the structure group, infinitesimally given in
(3.38), one can reduce the structure group to identity by translating �4 to zero and obtain
a unique choice of coframe at each point. However, to obtain examples above one does not
need to carry out full reduction. Some solutions satisfying these conditions where obtained
earlier by A. Chudecki in [11].

3.2.5 Petrov type N

Assume that the quartic W (λ) in (3.7) has a repeated root of multiplicity four. As we did
in Sect. 3.2.2, by coframe adaptation one can translate the multiple root to zero, which is
equivalent to finding an adapted coframe with respect to which

�0 = �1 = �2 = �3 = 0, and �4 �= 0.

In this case Proposition 3.6 still remains valid and the following differential relations hold

d�4 = −2�1
1�4 + 2�2

2�4 − J1�4θ
1 + �42θ

2 + �43θ
3 + J2�4θ

4

dJ2 = −J1 J2θ
1 + J22θ

2 + J23θ
3 + J 2

2 θ4 − �2
2 J2

(3.39)
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As a result, by normalizing �4 and J2 to non-zero constants we can reduce the parameters
a11 and a22 in the structure group (3.10) which reduces the bundle of adapted coframes to a
line bundle F5 → M with the element a12 in (3.10) as the fiber coordinate. It follows that

�1
1 = − 3

2 J1θ1 + J3θ2 + J4θ3 + 3
2 J2θ4, �2

2 = −J1θ1 + J5θ2 + J6θ3 + J2θ4.

(3.40)

for some functions J3, . . . , J6. It is straightforward to obtain

dJ4 ≡ − 5
2 J2�1

2 mod {θ1, θ2, θ3, θ4}.
Because the quantity J2 is normalized to a non-zero constant, the above differential relation
can be interpreted as the infinitesimal action of the 1-dimensional structure group on J4 (see
Remark 3.5). Hence, by choosing a12 appropriately, one can translate J4 to zero which would
reduce the structure group to identity. In other words there is a unique coframe at each point
with respect to which one has the relations Eqs. (3.11), (3.40) and

�1
2 = − 1

5

(
2J3 + 3J5 + 7

� ′
2

J2

)
θ1 + J7θ2 + J8θ3 + 3

5 J6θ4. (3.41)

for some functions J7 and J8 on M . As a result we obtain the following.

Theorem 3.16 Given a pKE metric whose anti-self-dual Weyl curvature has Petrov type N
and for which J2 �= 0, there is a unique adapted coframe that preserves

�0 = �1 = �2 = �3 = 0, �4 = const �= 0, J2 = const �= 0, J4 = 0

with respect to which the relations (3.11), (3.40) and (3.41) hold. A class of examples for
which J1 = J6 = J7 = 0, � ′

2 = −8J3 = 4J5, J2 = −4, and �3 = 1 is given by
g = 2θ1θ3 + 2θ2θ4 where

θ1 = 2e−3y4dy1 + (−16(y3)2 + F1(y2) + y3F2(y2)
)
dy2

θ2 = 8e−2y4 (
dy3 − y1dy2

)

θ3 = ey4dy2

θ4 = − 1
2dy4 − 1

2�
′
2e

−2y4
(
dy3 − y1dy2

)

where F1(y2) and F2(y2) are arbitrary functions.

Proof We skip the proof due to its similarity to that of Theorems 3.9 and 3.12 . �	

3.2.6 Petrov type O

The Petrov type O corresponds to pKEmetrics for which�0 = · · · = �4 = 0. Since the only
non-zero quantity in the structure Eq. (3.1) is the constant� ′

2, it follows that such metrics are
homogeneous and therefore no reduction of the structure bundle is possible. Nevertheless,
one can follow the procedure explained before and integrate the structure equations from
which the following choice of coframe is obtained

θ1 = dy1

� ′
2(y2+y1 y3−y4)

, θ2 = dy2

� ′
2(y2+y1y3−y4)

, θ3 = (y4−y2)dy3−y3dy4

� ′
2(y2+y1 y3−y4)

,

θ4 = y1dy3−dy4

� ′
2(y2+y1 y3−y4)

(3.42)

Using the coframe above one can recover the potential function V1 given in Sect. 2.3.4 for
the so-called dancing metric.
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3.2.7 Homogeneous models and local generality of various Petrov types

The structure equations of pKE metrics in dimension four and reduced structure equations
obtained for non-generic Petrov types enable one to use the Cartan-Kähler theory and obtain
the local generality of analytic pKE metrics of each Petrov type. We will not give the details
of how Cartan-Kähler theory is implemented and refer the reader to [8] for details.

Assuming analyticity for pKE metrics, the following table gives the local generality of
various Petrov types.

Table 1 Local generality of pKE metrics

Petrov type Local generality

G 2 functions of 3 variables

I I 4 functions of 2 variables

I I I 3 functions of 2 variables

N 2 functions of 2 variables

I I and Yang-Mills 2 functions of 2 variables

D 5 constants

O 1 constant

Furthermore, the reduced structure equations for each Petrov types allows one to look for
homogeneous models. Finding homogeneous models involves a straightforward inspection
of structure equations considering all possible normalizations which can be carried out algo-
rithmically. We will not present all the necessary computation here. It turns out that the only
homogeneous models of pKEmetrics satisfying� ′

2 �= 0 are the 1-parameter families of pKE
metrics of type D and O which correspond to the coframes (3.23) and (3.42). In particular,
there is no homogeneous pKE metric of type G, I I , I I I and N for which � ′

2 �= 0.

4 (2,3,5)-distributions arising from pKEmetrics

This section contains the highlight of the article. In Sect. 4.1 we give a brief review of the
geometry of (2,3,5)-distributions. In Sect. 4.2 we show that the naturally induced rank 2
twistor distribution on the space of self-dual null planes of any pKE metric is (2,3,5) in
an open subset if � ′

2 �= 0. Furthermore, the root type of the Cartan quartic of this twistor
distribution agrees with the root type of the quartic representation of W eyl−.This remarkable
and surprising coincidence is contrasted with the case of twistor distribution naturally arising
on the space of anti-self-dual null planes of pKE metrics satisfying W eyl− �= 0, which is
considered in Sect. 4.3. In the latter case, the coefficients of the Cartan quartic depend on the
fourth jet of the coefficients of W eyl− and there is no further simplification from the larger
context of twistor distributions arising from indefinite conformal structures in dimension four
satisfying W eyl− �= 0. In other words, a priori, no relation between the type of the Cartan
quartic and the Petrov type of W eyl− or W eyl+ can be made (see Remark 4.15). Moreover,
our construction in Sect. 4.2 gives rise to 5-dimensional para-Sasaki-Einstein structures and
conformal structures with SL3(R) holonomy, as studied in [31]. Consequently, our explicit
examples of pKE metrics of special real Petrov type in Sect. 3.2, provide examples of 5-
dimensional para-Sasaki-Einstein metrics.
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4.1 A primer on (2, 3, 5) distributions

In this section we recall the basic definitions and theorems about the local geometry of a
generic 2-plane field on a 5-dimensional manifold, Q, which involves a Cartan connection
and a naturally induced conformal structure of signature (3,2).

Given a 5-dimensional manifold, Q, with a rank 2 distribution D ⊂ TQ let ∂D denote
its first derived system defined as the distribution whose sections are given by �(D) +
[�(D), �(D)], where �(D) denotes the sheaf of sections of the distribution D . Moreover,
define ∂2D = ∂(∂D).

Definition 4.1 A rank 2 distribution in dimension 5,D ⊂ TQ, is called a (2,3,5)-distribution
if

rank(∂D) = 3, and rank(∂2D) = 5.

Locally, a generic rank 2 distribution is a (2,3,5)-distribution. Given a (2,3,5)-distribution,
locally, one can find a frame {v1, · · · , v5} for M such that

D = span{v4, v5}, ∂D = span{v3, v4, v5}, ∂2D = span{v1, · · · , v5}

where

v3 = −[v4, v5], v2 = −[v3, v4], v1 = −[v3, v5].

As a result, the corresponding coframe {η1, · · · , η5} satisfies

dη1 ≡ η3 ∧ η4 mod {η1, η2},
dη2 ≡ η3 ∧ η5 mod {η1, η2},
dη3 ≡ η4 ∧ η5 mod {η1, η2, η3}.

(4.1)

Cartan in his famous ’five-variables’ paper [9] solved the equivalence problem for (2,3,5)-
distributions and explicitly introduced the distribution Do whose algebra of infinitesimal
symmetries is given by the split real form of the exceptional Lie algebra g∗

2. Recall that the
noncompact exceptional simple Lie group of dimension 14,G∗

2 ⊂ SO4,3 acts transitively on
the projective quadricQ3,2 ⊂ P

6 defined by the (3,2)-signature diagonal matrix. LetP1 be the
parabolic subgroup ofG∗

2 that preserves a null line inQ3,2. Using his method of equivalence,
Cartan associated an {e}-structure on a 14-dimensional P1-principal bundle π : G → Q to
any (2,3,5)-distribution.

Using the appropriate transformationCartan’s original construction results in the following
theorem.
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Theorem 4.2 [ [9,26]] Any (2,3,5)-distribution, D ⊂ TQ, defines a Cartan geometry
(G, Q, ωG∗

2
) of type (G∗

2,P1). Expressing the g∗
2-valued Cartan connection as

ωG∗
2

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−ζ1 − ζ4 −ζ8 −ζ9 − 1√
3
ζ7

1
3ζ5

1
3ζ6 0

η1 ζ1 ζ2
1√
3
η4 − 1

3η
3 0 1

3ζ6

η2 ζ3 ζ4
1√
3
η5 0 − 1

3η
3 − 1

3ζ5

2√
3
η3 2√

3
ζ5

2√
3
ζ6 0 1√

3
η5 − 1√

3
η4 − 1√

3
ζ7

η4 ζ7 0 2√
3
ζ6 −ζ4 ζ2 ζ9

η5 0 ζ7 − 2√
3
ζ5 ζ3 −ζ1 −ζ8

0 η5 −η4 2√
3
η3 −η2 η1 ζ1 + ζ4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.2)

the distribution D is the projection of Ker{η1, η2, η3} from G to Q.

Remark 4.3 Cartan realized that the curvature KωG∗
2

= dωG∗
2
+ωG∗

2
∧ ωG∗

2
can be interpreted

as a ternary quartic form W ∈ Sym4(∂D)∗ and expressed as

W =
4∑

i=0

(
i
4

)
ai (η

4)4−i (η5)i +
3∑

i=0

(
i
3

)
bi (η

4)3−i (η5)iη3

+
2∑

i=0

(
i
2

)
ci (η

4)2−i (η5)i (η3)2 +
1∑

i=0

di (η
4)1−i (η5)i (η3)3 + e(η3)4

(4.3)

where the coefficients a0, · · · , e are components of the curvature KωG∗
2
(see [26]). Moreover,

the fundamental curvature tensor is a binary quartic form C ∈ Sym4(D∗), referred to as the
Cartan quartic, given by the first 5 terms in (4.3). If C is identically zero it follows that
KωG∗

2
= 0 i.e. the (2,3,5)-distribution is flat. It is convenient to express the Cartan quartic in

1-variable z as follows

C(z) := C
(

∂
∂η4

+ z ∂

∂η5
, ∂

∂η4
+ z ∂

∂η5
, ∂

∂η4
+ z ∂

∂η5
, ∂

∂η4
+ z ∂

∂η5

)

= a0 + 4a1z + 6a2z2 + 4a3z3 + a4z4.
(4.4)

UsingCartan’s result and the embeddingG∗
2 ↪→ SO4,3, the followingnon-trivial linkbetween

(2,3,5)-distributions and conformal structures of signature (3, 2) can be obtained.

Theorem 4.4 ([26]) Any (2,3,5)-distribution D ⊂ TQ defines a conformal structure [h̃] of
signature (3,2) on Q, which can be expressed as h̃ = s∗h for any section s : Q → G, where

h = η1η5 − η2η4 + 2
3 η3η3 ∈ Sym2(T∗Q). (4.5)

The conformal holonomy of this conformal structure takes value in G∗
2 and its Weyl curvature

can be expressed in terms of KωG∗
2
.

Remark 4.5 Using Theorem 4.4, we give another interpretation of the Cartan quartic (4.4)
which will be important for analyzing non-integrable twistor distributions. At each point
q ∈ Q, consider the S

1-family of planes

Zq := Ker
{
η2 − zη1, η5 − zη4, η3

}
⊂ Tq Q, (4.6)
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where z ∈ R∪{∞}. Such planes are null with respect to the conformal structure [h], defined
in (4.5), and intersect the distribution Dq along the lines 〈 ∂

∂η4
+ z ∂

∂η5
〉. The bundle

γ : Z → Q, (4.7)

where γ −1(q) = Zq , is the circle bundle of such null planes. Denote the components of the
Weyl curvature for the conformal structure [h] by W i

jkl where 1 ≤ i, j, k, l ≤ 5. Following
our discussion in Sect. 2.2.4, let Wi jkl = him W m

jkl and define the multilinear map

W̃ := Wi jkl(η
i ∧ η j ) ◦ (ηk ∧ ηl) ∈ Sym2(�2TQ) → C∞(Q).

Restricting to Z, one obtains the quartic polynomial

C(z) = W̃
(

∂
∂η4

+ z ∂

∂η5
, ∂

∂η1
+ z ∂

∂η2
, ∂

∂η4
+ z ∂

∂η5
, ∂

∂η1
+ z ∂

∂η2

)

= a4z4 + 4a3z3 + 6a2z2 + 4a1z + a0,

where

a4 = W5225, a3 = W4225, a2 = W4125, a1 = W4124, a0 = W4114.

Let us point out that the circle bundle Z is not preserved by the action of the full structure
group for the geometry of (2,3,5)-distributions. In order to remedy this issue and define Z
one can make a choice of splitting for ∂D given by ∂D = D ⊕〈�〉. Such splitting will reduce
the structure group and allows one to define Z invariantly. We will see in the next section
that twistor distributions arising from pKEmetrics are naturally equipped with such splitting
therefore enable one to define Z.

Remark 4.6 Using Theorem 4.4, the rank 2 distribution D = Ker{η1, η2, η3} is null with
respect to the conformal structure [h̃]. In fact, it has been shown [20] that D induces a
parallel spin tractor. Conversely, it has been shown that conformal structures of signature (3,2)
which are equipped with a parallel spin-tractor arise from the construction of Theorem 4.4.
The existence of such parallel objects implies that the conformal holonomy of the conformal
structure is a subgroup ofG∗

2 (see [19,20] formore details.) This is an instance of an extension
of the holonomy principle in pseudo-Riemannian geometry, as explained in Remark 2.9, to
the context of Cartan geometries (see [12].)

As was mentioned in Remark 2.1, in order to find the Cartan connection (4.2), one can
either work with a lifted coframe defined on the bundle G or start with a choice of coframe
on the manifold Q and impose the structure equations to find the Cartan connection in terms
of the coframe, which, if needed, can consequently be equivariantly lifted to G. In this article
we will follow the latter approach, as we did for the pKE structures.

4.2 Null self-dual planes and a remarkable coincidence

In this section we show the main result of this article by finding the Cartan connection of the
twistor distribution on the space of self-dual null planes and showing that the root type of its
Cartan quartic is the same as the root type of W eyl−. Furthermore, as a by-product of our
construction, one obtains para-Sasaki-Einstein metrics in dimension five and 5-dimensional
conformal structures with SL3(R)-holonomy.
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4.2.1 Twistor distribution onN+

It was observed in [3] that for a 4-dimensional conformal structure of split signature the
circle bundles of self-dual and anti-self-dual null planes, N+ and N−, are each equipped
with a naturally defined rank 2 distribution which is referred to as the twistor distribution.
The twistor distribution on N+ and N− is (2,3,5) in an open set U ⊂ M if the self-dual and
anti-self-dual Weyl curvature of the conformal structure is nowhere vanishing in U .

Given a pKE structure, in order to define the twistor distribution on N+ we make use of
the parametrization (2.3), where μ ∈ R∪{∞}. As a result, onN+ one obtains the 0-adapted
coframe

η10 = θ1 + μθ4, η20 = θ2 − μθ3, η30 = dμ, η40 = θ4, η50 = θ3,

where the subscript 0 refers to the adaptation with respect to which the 2-distribution will be
defined.

A coframe (η1, . . . , η5) defines a (2,3,5) distribution D = Ker{η1, η2, η3} if
dη1 ≡ η3 ∧ η4, mod {η1, η2}, (4.8a)

dη2 ≡ η3 ∧ η5, mod {η1, η2}, (4.8b)

dη3 ≡ η4 ∧ η5, mod {η1, η2, η3}. (4.8c)

To define the twistor distribution on N we further adapt the coframe {η10, . . . , η50} so that it
satisfies (4.8). Using the structure Eq. (3.1), one obtains

dη10 ≡ (η30 + μ�2
2 + μ�1

1) ∧ η40, and dη20 ≡ −(η30 + μ�1
1 + μ�2

2) ∧ η50,

modulo {η10, η20}. In order to obtain the relations (4.8a), (4.8b) define the 1-adapted coframe
as

η11 = θ1 + μθ4, η21 = θ2 − μθ3, η31 = dμ + μ�1
1 + μ�2

2, η41 = θ4, η51 = −θ3

(4.9)

Using (3.1), the 1-adapted coframe satisfies

dη11 ≡ η31 ∧ η41, mod {η11, η21},
dη21 ≡ η31 ∧ η51, mod {η11, η21},
dη31 ≡ −6μ2 � ′

2 η41 ∧ η51, mod {η11, η21, η31}.
(4.10)

Using the fact that � ′
2 �= 0 and d� ′

2 = 0, the 2-adapted coframe defined by

η12 = −1
6μ2 � ′

2

(
θ1 + μθ4

)
, η22 = −1

6μ2 � ′
2

(
θ2 − μθ3

)
,

η32 = −1
6μ� ′

2

(
dμ
μ

+ �1
1 + �2

2

)
, η42 = θ4, η52 = −θ3

(4.11)

satisfies (4.8), therefore, defines a (2,3,5)-distribution,

D := Ker{η12, η22, η32}, (4.12)

onN+ for μ ∈ R
∗. It is straightforward to show that D is invariant under the induced action

of the structure group GL2(R). We have the following theorem.
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Theorem 4.7 The S
1-bundle of self-dual null planes of a pKE metric, N+, is naturally

equipped with a rank 2 distribution D . If the scalar curvature of the pKE metric is non-
zero, the twistor distribution D is (2,3,5) on the open subset N∗+ = N+\{H , H̄ } where
{H , H̄ } ⊂ N+ are the ±1-eigenspaces of the para-complex structure K , as defined in
(2.12). In terms of the affine parameter μ in (2.3), the open subsetN∗+ corresponds to μ ∈ R

∗,
and the conformal structure of signature (3, 2) associated to the twistor distribution, as in
Theorem 4.4, is given by [h] where

h = 1
6μ2� ′

2
(θ1θ3 + θ2θ4) + 1

54μ2(� ′
2)

2 (
dμ
μ

+ �1
1 + �2

2)
2. (4.13)

Proof Using the coframe (4.9), the relations (4.10) imply that the 2-planefieldKer{η11, η21, η31}
is integrable on the hypersurfaces corresponding to μ = 0 and μ = ∞, which by (2.3) are
given by Ker{α1, α2} and Ker{ᾱ1, ᾱ2} i.e. 2-plane fields H and H̄ . For μ > 0 and μ < 0
the twistor distribution is (2,3,5) by (4.12). Consequently, using the adapted coframe (4.11),
the metric (4.5) gives (4.13). �	

Remark 4.8 The simple expression (4.13) for the metric h is the key to what follows in
Theorem 4.9. For general twistor distributions the expression for h involves the second jet of
the self-dual Weyl curvature of g, whose components are denoted by � ′

i ’s. However, in pKE
metrics the only non-zero component of W eyl+ is the constant � ′

2. This point is explained
further in Sect. 4.3, in particular Remark 4.15.

Using the theorem above, one obtains the following theorem which is the main result of this
section.

Theorem 4.9 Given a pKE metric with non-zero scalar curvature, the Cartan quartic C(z)
for the twistor distribution D ⊂ TN+ on N∗+ = N+\{H , H̄ } is a non-zero multiple of
the quartic representation of the anti-self-dual Weyl curvature W (z). More explicitly, one
obtains

C(z) = −6μ2� ′
2

(
�0 + 4�1z + 6�2z2 + 4�3z3 + �4z4

) = −6μ2� ′
2W (z).

In particular, the root types of the Cartan quartic and the anti-self-dual Weyl curvature
coincide.

Remark 4.10 We point out that there is an underlying bundle map behind Theorem 4.9 which
allows one to express C(z) as a non-zero multiple of W (z). As discussed in Sect. 2.2.4, W (z)
is defined on N− and, by Remark 4.5, C(z) is defined on Z. However, using the twistorial
nature ofD one can naturally identifyN− andZ in the following way. First note that given a
pKE structure, the derived system ∂D := Ker{η12, η22} is equipped with a splittingD ⊕〈 ∂

∂η32
〉

which is invariant under the induced action ofGL2(R). Therefore, by Remark 4.5, the circle
bundle Z, as defined in (4.7), is well-defined on N∗+. Consequently, via the bundle map
ν+ : N∗+ → M, it is elementary to check that dν+(Zq) = Np−, where p = ν+(q), for all
q ∈ Z, using definitions (2.3) and (4.6). Therefore, the property of W (z) and C(z) being
proportional everywhere is well-defined.

Proof of Theorem 4.9 Having the twistor distributionD defined by (4.12) onN∗+, it is straight-
forward to find the explicit Cartan connection (4.2) forD starting with the 2-adapted coframe
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(4.11). Consequently, one obtains that the Cartan connection (4.2) for D is given by

η1 = −1
6μ2 � ′

2

(
θ1 + μθ4

)
, η2 = −1

6μ2 � ′
2

(
θ2 − μθ3

)
,

η3 = −1
6μ2 � ′

2

(
dμ + μ�1

1 + μ�2
2

)
, η4 = θ4, η5 = −θ3,

ζ1 = 1
3 (2�

1
1 − �2

2 + 2dμ
μ

), ζ2 = �1
2, ζ3 = �2

1,

ζ4 = 1
3 (2�

2
2 − �1

1 + 2dμ
μ

), ζ5 = −3μ� ′
2θ

3, ζ6 = −3μ� ′
2θ

4,

ζ7 = 0, ζ8 = 6μ2(� ′
2)

2θ3, ζ9 = 6μ2(� ′
2)

2θ4.

(4.14)

Using the Cartan connection, one computes the curvature

KG∗
2

= dωG∗
2
+ ωG∗

2
∧ ωG∗

2
.

Therefore, the coefficients a0, . . . , a4 of the Cartan quartic (4.4) are found to be

ai = −6μ2� ′
2�i , i = 0, . . . , 4. (4.15)

By the formulas for C(z) and W (z), as given in (4.15) and (3.7), it follows that

C(z) = −6μ2� ′
2W (z).

�	
Remark 4.11 As was mentioned in the introduction, it was not known whether (2,3,5) dis-
tributions that arise as a twistor distribution of split signature metrics can have any fixed
(Petrov) root type. Theorem 4.9 shows that any root type can be achieved via pKE metrics
with non-zero scalar curvature for which W eyl− has the same root type.Moreover, our exam-
ples in Sect. 3.2 provide explicit metrics whose twistor distributions have Cartan quartics of
real root type I I , I I I , N , D and O.

4.2.2 An invariant description

To have an invariant understanding of N∗+ = N+\{H , H̄ }, we define another space
equipped with a rank 2 distribution which will be shown to be isomorphic to the twistor
distribution on N∗+. Consider the principal GL2(R)-bundle F8 of adapted null coframes
for pKE metrics, equipped with the Cartan connection A, as in (3.2). Using the structure
Eq. (3.1), one can define the 5-dimensional leaf space, Q, of the Pfaffian system

I = {θ1, θ2, θ3, θ4, �1
1 + �2

2}.
Note that by the structure Eq. (3.1) the Pfaffian system I is integrable and its 5-dimensional
leaf spaceQ is the quotient of F8 by the orbits of SL2(R) ⊂ GL2(R), which would give an
R

∗-bundle over M . As a result, Q is a cone. Similar to our previous discussion, if � ′
2 �= 0,

after necessary adaptation, one obtains the following coframe on Q
η1 = −1

6� ′
2

(
θ1 + θ4

)
, η2 = −1

6� ′
2

(
θ2 − θ3

)
,

η3 = −1
6� ′

2

(
�1

1 + �2
2

)
, η4 = θ4, η5 = −θ3,

(4.16)

which defines a rank 2 distribution D̃ ⊂ TQ, by D̃ = Ker{η1, η2, η3}. The distribution D̃ is
invariant under the induced action of the structure group GL2(R).
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The Cartan connection for the D̃ is obtainable from (4.14) by setting μ = 1. In the
language of parabolic geometries [12], this is the explicit form of the extension functor from
a pKE structure to the corresponding (2,3,5)-distribution.

To relate our discussion to N∗+ = N+\{H , H̄ }, note that the structure group of a pKE
metric can be decomposed as

GL2(R) = SL2(R) × R
∗.

The R
∗-action transforms the pKE coframe in the following way

θ1 → sθ1, θ2 → sθ2, θ3 → 1
s θ3, θ1 → 1

s θ4,

by setting a11 = a22 = s and a12 = a21 = 0 in the structure group (2.16). This action results
in the following change of coframe (4.11) on N∗+

η12 = −1
6μ2 � ′

2

(
sθ1 + μ

s θ4
)
, η22 = −1

6μ2 � ′
2

(
sθ2 − μ

s θ3
)
,

η32 = −1
6μ� ′

2

(
dμ
μ

− ds
s + �1

1 + �2
2

)
, η42 = 1

s θ4, η52 = − 1
s θ3.

(4.17)

Using the expressions (4.17) one finds the bundle isomorphism τ : N∗+ → Q in terms of the
fiber coordinates s and μ, given by τ(μ) = 1

s2
for s > 0 and τ(μ) = − 1

s2
for s < 0, via

which D̃ = τ∗D . This gives the equivalence of the (2,3,5) distributions induced on N∗+ and
Q

4.2.3 Para-Sasaki-Einstein structures and SL3(R) holonomy

To state the last result of this sectionwegive the following definition of a para-Sasaki-Einstein
structure.

Definition 4.12 A para-Sasaki-Einstein structure onQ is (φ, ξ, β, h), where φ : TQ → TQ
is an endomorphism, ξ is a vector field, β is a 1-form, and h is a split signature metric. The
quadruple (φ, ξ, β, h) satisfies

φ2 = Id − β ⊗ ξ, β(ξ) = 1, φ(ξ) = 0, β ◦ φ = 0, h(ξ, .) = β. (4.18)

Additionally, the ±1-eigenspaces of φ define rank 2 integrable sub-distributions of Ker(β),

the metric h is Einstein, and the compatibility conditions

h(φX , φY ) = −h(X , Y ) + β(X)β(Y ),

dβ(X , Y ) = h(φX , Y ) ∀X , Y ∈ TQ (4.19)

hold.

We have the following proposition.

Proposition 4.13 The cone Q is equipped with a para-Sasaki-Einstein structure arising from
the para-Kähler-Einstein structure on M .

Proof Using the coframe (4.16), the claimed para-Sasakian structure on Q is given by

φ = η1 ⊗ ∂
∂η1

+ η2 ⊗ ∂
∂η2

− η4 ⊗ ∂
∂η4

− η5 ⊗ ∂

∂η5

ξ =
√

3
2

∂
∂η3

β =
√

2
3η

3

h = η1η5 − η2η4 + 2
3 (η

3)2
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The Levi-Civita connection of h with respect to the coframe (4.16) is

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

−�2
2 − 4� ′

2η
3 �1

2 2� ′
2η

1 + 2
3η

4 − 1
3η

3 0

�2
1 �2

2 + 2� ′
2η

3 2� ′
2η

2 + 2
3η

5 0 − 1
3η

3

3
2�

′
2η

5 − 3
2�

′
2η

4 0 3
2�

′
2η

2 + 1
2η

5 − 3
2�

′
2η

1 − 1
2η

4

0 0 −2� ′
2η

4 −2� ′
2η

3 − �2
2 �1

2

0 0 −2� ′
2η

5 �2
1 4� ′

2η
3 + �2

2

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

(4.20)

which is so3,2-valued with respect to the matrix representation of the metric h

⎛

⎜⎜⎜⎜
⎝

0 0 0 0 1
0 0 0 −1 0
0 0 4

3 0 0
0 −1 0 0 0
1 0 0 0 0

⎞

⎟⎟⎟⎟
⎠

.

It follows that the metric h on Q is Einstein whose Einstein constant is −24(� ′
2)

2. �	

Remark 4.14 The proposition above is an analogue of the well-known construction of
Sasakian structures from Kähler metrics [16]. Moreover, by the same analogy, following
[16], it can be checked that using the potential function of a para-Kähler-Einstein metric and
the coordinate s on the cone, as introduced in Sect. 4.2.2, one obtains a potential function for
the resulting para-Sasaki-Einstein metric on Q.

Finally one can directly verify thewell-known relation between the existence of anEinstein
representative in the conformal structure [h] of the metric (4.13) defined by the (2,3,5)
distribution, and the holonomy reduction of the Cartan conformal connection. This relation
goes back to works of many people, including [29] (see Section 5.2 in [12] for an overview.)
One can check that the Cartan connection (4.2) given by (4.14) takes value in sl3(R) ⊂
g2 ⊂ so4,3 for any non-zero value of � ′

2. This implies that the conformal holonomy of the
conformal structure [h] is reduced and the conformal class [h] must contain at least one
Einstein metric. We refer the reader to [31] for a more detailed study of conformally Einstein
structures arising from (2,3,5) distributions and their corresponding conformal holonomy
reductions.

4.3 Null anti-self-dual planes

The purpose of this short section is to justify the remarkable nature of Theorem 4.9 by
examining the twistor distribution induced on the S

1-bundle of anti-self-dual null planes of
a pKE metric, N−. Following the description in Sect. 4.2.2, one can identify N− as the leaf
space of the Pfaffian system

Iasd = {θ1, θ2, θ3, θ4, �1
2}.

Consequently, if W eyl− �= 0, one can follow the discussion in Sect. 4.2.1 to find an adapted
coframe. An adapted coframe for the twistor distribution satisfying (4.8) on the open set of
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N− where �4 �= 0 is given by

η1 = 1
�4

(α1 + ᾱ2) η2 = 1
�4

ᾱ2, η3 = 1
�4

�1
2,

η4 = ᾱ1 − α2 − 30�3�
2
4+3�4�422−�4�433−5�2

42+4�2
43

30�2
4

α1

− 15�3�
2
4−3�4�432−3�4�433−5�42�43+5�2

43
15�2

4
ᾱ2 + �42+�43

3�2
4

�1
2

η5 = ᾱ1 − 3�4�422−5�2
42

30�3
4

α1 − �42
3�2

4
�1
2

− 30�3�
2
4−6�4�432−3�4�433+10�43�42+5�2

43
30�3

4
ᾱ2.

Note that if W eyl− �= 0, one can always find a coframe with respect to which �4 �= 0.
Consequently, the expressions for the coefficients of the Cartan quartic, a0, . . . , a4, are

found to be very complicated and depend on the 4th jet of �i ’s. For instance, in the coframe
introduced above, one obtains

a0 = −10�3
4�42222 − 70�2

4�42�4222 − 49�2
4�

2
422 + 280�4�

2
42�422 − 175�4

42

100�4
4

.

(4.21)

The equation arising from the vanishing of a0 is referred to as Noth’s equation and its general
solution can be presented by a certain family of rational sextics [4,14].

We could not identify any relation between the root types of W eyl± and the root type of
the Cartan quartic of the twistor distribution onN−, with the exception of the homogeneous
pKE metrics of Petrov type Dr where they coincide.

Remark 4.15 Following our approach in this section, one can find the Cartan quartic for the
twistor distribution on N− and N+ for any conformal structure of split signature provided
that W eyl− �= 0 and W eyl+ �= 0, respectively. The computations are extremely tedious.
Restricting toN−, if W eyl− �= 0, one obtains that the expression for the metric h, as defined
in (4.5), involves the second jets of W eyl−. Furthermore, in an appropriate coframe, ai ’s can
be expressed in terms of the fourth jets of W eyl− and zeroth jets of W eyl+ at each point. For
instance, consider conformal structures [g], where g = 2θ1θ3 + 2θ2θ4, with W eyl− �= 0
and denote the components of W eyl− and W eyl+ by �i ’s and � ′

i ’s respectively, as we did
in Sect. 2.1.2. Then on the open subset of N− where �4 �= 0, there is an adapted coframe
for the twistor distribution with respect to which

a0 = −� ′
0 − 10�3

4�42222 − 70�2
4�42�4222 − 49�2

4�
2
422 + 280�4�

2
42�422 − 175�4

42

100�4
4

.

Comparing the expression above to 4.21, it is clear that the case of twistor distribution
induced onN− for pKE metrics is nearly as complicated as in the case of general conformal
structures. As a result, one cannot expect any relation between the root types of W eyl± for
a conformal structure and the Cartan quartic of the twistor distribution on N±.
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Appendix

The connection 1-form referred to in Sect. 2.3.3 are given by

�a
a = Vaay Vbx − Vaax Vby

Vay Vbx − Vax Vby
da + Vaby Vbx − Vabx Vby

Vay Vbx − Vax Vby
db

�a
b = Vaby Vbx − Vabx Vby

Vay Vbx − Vax Vby
da + Vbby Vbx − Vbbx Vby

Vay Vbx − Vax Vby
db

�b
a = Vaay Vax − Vaax Vay

−Vay Vbx + Vax Vby
da + Vaby Vax − Vabx Vay

−Vay Vbx + Vax Vby
db

�b
b = Vaby Vax − Vabx Vay

−Vay Vbx + Vax Vby
da + Vbby Vax − Vbbx Vay

−Vay Vbx + Vax Vby
db

�x
x = Vbxx Vay − Vaxx Vby

Vay Vbx − Vax Vby
dx + Vbxy Vay − Vaxy Vby

Vay Vbx − Vax Vby
dy

�x
y = Vbxy Vay − Vaxy Vby

Vay Vbx − Vax Vby
dx + Vbyy Vay − Vaxy Vby

Vay Vbx − Vax Vby
dy

�y
x = Vbxx Vax − Vaxx Vbx

−Vay Vbx + Vax Vby
dx + Vbxy Vax − Vaxy Vbx

−Vay Vbx + Vax Vby
dy

�y
y = Vbxy Vax − Vaxy Vbx

−Vay Vbx + Vax Vby
dx + Vbyy Vax − Vayy Vbx

−Vay Vbx + Vax Vby
dy. (A.1)

If (M, g, K ) is a para-Kähler-Einstein structure written in a null adapted frame satisfying
(3.1) then the derivatives of the non-vanishing curvature coefficients are given by

d� ′
2 = 0, (A.2a)

d�0 = 2�0(�
1
1 − �2

2) + 4�1�
2
1 + �01α

1 + �11α
2 − �14ᾱ

1 + �04ᾱ
2, (A.2b)

d�1 = �1(�
1
1 − �2

2) + �0�
1
2 + 3�2�

2
1 + �11α

1 + �21α
2 − �24ᾱ

1 + �14ᾱ
2,

(A.2c)

d�2 = 2�1�
1
2 + 2�3�

2
1 + �21α

1 + �31α
2 − �34ᾱ

1 + �24ᾱ
2, (A.2d)

d�3 = −�3(�
1
1 − �2

2) + 3�2�
1
2 + �4�

2
1 + �31α

1 + �41α
2 − �44ᾱ

1 + �34ᾱ
2,

(A.2e)

d�4 = −2�4(�
1
1 − �2

2) + 4�3�
2
1 + �41α

1 + �42α
2 + �43ᾱ

1 + �44ᾱ
2, (A.2f)

for some functions �ia on M which represent the coframe derivatives of �i ’s.
The differential relations among the quantities appearing in proof of the Proposition 3.8

for Petrov type I I is as follows.

dJ1 = J1�
1
1 − J 2

1 α1 + J12α
2 + J13ᾱ

1 + J1 J2ᾱ
2,
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dJ2 = −J2�
2
2 − J1 J2α

1 + (J13 + �2 − � ′
2)α

2 + J23ᾱ
1 + J 2

2 ᾱ2,

dJ3 = J3�
2
2 + J31α

1 + J32α
2 + J33ᾱ

1 + J34ᾱ
2,

dJ4 = −J4�
1
1 − (J34 − �2 + � ′

2)α
1 + J42α

2 + (J 2
4 − J2 J5 + J54)ᾱ

1 + J44ᾱ
2,

dJ5 = −2J5�
1
1 + J5�

2
2 − (J33 − J3 J4 + J2 J6)α

1 + J52α
2 + J53ᾱ

1 + J54ᾱ
2,

dJ6 = −J6�
1
1 + 2J6�

2
2 − (J32 − J 2

3 + J1 J6)α
1 + J62α

2

+(J52 − J3 J5 + J4 J6 + �4)ᾱ
1 + (J42 + J1 J5 − J3 J4)ᾱ

2,

d� ′
2 = 0,

d�2 = −3J1�2α
1 + 3J3�2α

2 + 3J4�2ᾱ
1 + 3J2�2ᾱ

2,

d�4 = −2�4�
1
1 + 2�4�

2
2 − (3J6�2 + J1�4)α

1 + �42α
2

+�43ᾱ
1 + (3J5ψ2 + J2�4)ᾱ

2. (A.3)

The curvature 2-form for the Cartan connection B in (3.13) is given by

K B =

⎛

⎜⎜⎜⎜⎜
⎝

1
2 (J2 J6 − J1 J5) −

√
3
2 |� ′

2 | J5
0 1

2 (J1 J5 − J2 J6)
0

0
1
2 (J1 J5 − J2 J6) 0

−
√

3
2 |� ′

2 | J6
1
2 (J2 J6 − J1 J5)

⎞

⎟⎟⎟⎟⎟
⎠

σ 2−

+

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1
4 (J2 J3 − J1 J4 − 2�2 + 2� ′

2) −
√

3
8 |� ′

2 | J4

−
√

3
8 |� ′

2 | J1
1
4 (J1 J4 − J2 J3 + 2�2 − 2� ′

2)
0

0
1
4 (J1 J4 − J2 J3 + 2�2 − 2� ′

2)

√
3
8 |� ′

2 | J2

−
√

3
8 |� ′

2 | J3
1
4 (J2 J3 − J1 J4 − 2�2 + 2� ′

2)

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

σ 3−

+

⎛

⎜⎜⎜⎜⎜
⎝

1
2 J1 J3

√
3
2 |� ′

2 | J3
0 − 1

2 J1 J3
0

0
− 1

2 J1 J3
√

3
2 |� ′

2 | J1
0 1

2 J1 J2

⎞

⎟⎟⎟⎟⎟
⎠

σ 1+ +

⎛

⎜⎜⎜⎜⎜
⎝

1
2 J2 J4 0√
3
2 |� ′

2 | J2 − 1
2 J2 J4

0

0
− 1

2 J2 J4 0

−
√

3
2 |� ′

2 | J4
1
2 J2 J4

⎞

⎟⎟⎟⎟⎟
⎠

σ 2+

+

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1
4 (J2 J3 + J1 J4)

√
3
8 |� ′

2 | J4√
3
8 |� ′

2 | J1 − 1
4 (J2 J3 + J1 J4)

0

0
− 1

4 (J2 J3 + J1 J4)
√

3
8 |� ′

2 | J2

−
√

3
8 |� ′

2 | J3
1
4 (J2 J3 + J1 J4)

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

σ 3+ .

(A.4)
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metric. J. Geom. Phys. 126, 93–100 (2018)
5. Bergery, L.B., Ikemakhen, A.: Sur l’holonomie des variétés pseudo-riemanniennes de signature (n, n).

Bull. Soc. Math. France 125(1), 93–114 (1997)
6. Bryant, R.L., Hsu, L.: Rigidity of integral curves of rank 2 distributions. Invent. Math. 114(2), 435–461

(1993)
7. Bor, G., Lamoneda, L.H., Nurowski, P.: The dancing metric, G2-symmetry and projective rolling. Trans.

Am. Math. Soc. 370(6), 4433–4481 (2018)
8. Bryant, R.L.: Notes on exterior differential systems. arXiv preprint arXiv:1405.3116 (2014)
9. Cartan, E.: Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre.

Ann. Sci. École Norm. Sup. 3(27), 109–192 (1910)

123

http://arxiv.org/abs/1405.3116


Geometriae Dedicata

10. Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on paracomplex geometry. Rocky Mt. J. Math. 26(1),
83–115 (1996)

11. Chudecki, A.: On some examples of para-Hermite and para-Kähler Einstein spaces with� �= 0. J. Geom.
Phys. 112, 175–196 (2017)
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