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Elliptic fibrations associated with the Einstein space—times
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Given a conformally nonflat Einstein space—time we define a fibraticover it.

The fibers of this fibration are elliptic curvésvo-dimensional toyior their degen-

erate counterparts. Their topology depends on the algebraic type of the Weyl tensor
of the Einstein metric. The fibratiorr is a double branched cover of the bundte

of null direction over the space—time and is equipped with six linearly independent
one-forms which satisfy a certain relatively simple system of equations19@8
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|. DEFINITIONS

In Ref. 1 we defined a certain differential systefron an open sat) of R.° We showed that
a pair U,.2) naturally defines a four-dimensional conformally nonflat Lorentzian space—time
(.72,9) which satisfies the Einstein equatioRg=\g;; . In this paper we prove the converse
statement. In particular, we give a construction which associates a certain six-dimensional elliptic
fibration 2 with any conformally nonflat Lorentzian Einstein space—time. Moreover, we show
how  may be equipped with a unique differential system which has all the properties of the
systems on U.

We briefly recall the definitions of the geometrical objects we need in the following.ZAet
be a four-dimensional-oriented and time-oriented manifold equipped with a Lorentzian getric
signature(+,+,+,—). It is convenient to introduce a null framen(m,k,l) on. 7 with a coframe

=6, 62,6% 6% =(M,M,K,L) so that
9=0;;6'6/=MM—KL. )

[Such expressions a&6' mean the symmetrized tensor product, ed)p)=%(6'2 '+ 6/ ® 6').
Also, we will denote by roundrespectively, squayeébrackets the symmetrizatiomespectively,
antisymmetrizationof indices, e.g.a(ik)=%(aik'+ ), a[ik]=%(aik—aki), etc]

The Lorentz groug. consists of matrices} e GL(4,C) such that

g =g Nk,

T o T N S O O 2

We will denote the inverse of the Lorentz matix by \'; .

The connected component of the identity element aé the proper ortochroneous Lorentz
group, which we denote by, .

Giveng and #' the connection one-formis;; =gikl“"j are uniquely defined by

d0i=—FijD6’j, Fij+Fji:0' (3)
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The connection coefficients;; are determined by;; =I'jj 6% (we lower and raise indices by
means of the metric and its invejs&Jsing them we define the curvature two-foro; , the
Riemann tensoR';, the Ricci tensoR;;, and its scalaR by

f/:)klz%Rk|mJ0mD9]:dFkl+Fk]DrJ| f Rij:Rkikj y R:gIJRI] .
We also introduce the traceless Ricci tensor by
S;=Rj—i9;R.

Note that the vanishing d§; is equivalent to the Einstein equatioRg=\g;; for the metricg.
We define the Weyl tensdg';; by

Cijki =Rijui + 3R Gk + Rikdiyi + Rip9ug; »
and its spinorial coefficient¥ , by
Tg=T ;MOK +W5(LOK —MOM) + (¥, + SR)LOM
+ 1S, MK + 1S5 LOK + MOM) + 1S,,L OM,

opg=(—Vy— ER)MOK =W, (LOK —MOM) — W oL OM
—18,,MOK — 1S,,(LOK + MOM) — 1S,,L OM,

Y Ryg— F1p) =W MK + (¥, — 2R)(LOK — MOM ) + W, L OM
+ 1S5 MOK + 2(Syo+ Sa0) (LOK +MOM) + 1S,,L [IM.

II. THE BUNDLE OF NULL COFRAMES

Let .7(.#) denote the bundle of oriented and time oriented null coframes o¥erThis
means that7(.#) is the set of all equally oriented null coframés at all points of. 7. The
mappingm:.7(.#)— .7, which maps a coframé' atx .7 ontox, gives the canonical projec-
tion. A fiber 7~ (x) in .7(_#) consists of all the null coframes at poixtwhich have the same
orientation and time orientation. ¥ is a null coframe ake.#, then any other equivalently
oriented null coframe ax is given by ''=\";6!, where)'; is a certain element of, . This
defines an action dIT+ on.7(.#). Thus,7(.#) is a ten-dimensional principal fiber bundle with
Ll as its structural group.

It is well known that the bundle7(_#) is equipped with a natural four-covector-valued
one-forme', i=1, 2, 3, 4, the Cartan soldering form, which is defined as follows. Take any vector
v tangent to7(.#) at a pointc. Letc be in the fi.bera-rfl(x) over a poinix e .#. This means that
¢ may be identified with a certain null cofran®g at x.

Then, the formal definition of' readse'(v.) = 6(,v.). The first two components @ are
complex and mutually conjugated. The remaining two are real. Altogether, they constitute a
system of four well-defined linearly independent one-forms/@n#). In the following we will
denote them by

F=el=e?, T=T=e?, A=A=¢e" (4)

A theorem which we present below is a null coframe reformulation of the Elie Cartan theorem on
affine connections. .
Theorem 1: Let €=(F,F,T,A) be the soldering form o (.#). Then

(i) the system of equations
dé+wij[@=0, gkiwij-f—gjiwik:O (5)

for a matrix of complex-valued one—forméj (i,j=1,2,3,4)on.7(.#) has a unique solutign
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(i) w‘j uniquely defines six_complex-valued one-fo(rE,aE_,F,F,Q,(_l) by

0O-0 0 —E -T
| 0o 0-0 -E T
r -T Q+0 0

~E -E 0 -0-0

(iii) the forms(F,E,T,A,E,E,I‘,F,Q,ﬁ) are linearly independent at each point.gf(_7).

For completeness we sketch the proof.

First, we show that if there is a solution ¢6) then it is unique. To do this we assume the
existence of two solutionse'; anda';.

Subtractingd€' + @';0e’ =0 from de'+ w';Je' =0 we get

(wij—&)ij)DeJZO. (7)

Now, lete®, u=1, 2, 3, 4, 5, 6, be a system of one-forms such that the ten one-fa'nes’
constitute a basis of one-forms ofi(. 7). Let w';= w' "+ o' ,6* and &' ;= &' e+ &'; ,e* be
the corresponding decompositions of the solutions. TiTgreasily yieldsw';,=@';,, and wjjy;
= wj[jx1- The defining properties of the solutions give alsg;),=0=@j)x. Now, due to the
|dent|ty Aijk:Ai[jk]_Aj[ik]_Ak[ij]! which is true for anyAijk such thatA(ij)kZO, we getwijk
= jj . This shows that';=a';, hence the uniqueness.

We proceed to the construction of a solution.

Given a sufficiently small neighborhoad in . we identify 7~ (%) with XL, . Then,
the soldering form may be written as

e'=\gl. (8)
Takingde' and using Eq(3) one easily finds that
o'} =N K= N K 9)
is a solution to(5). Given this solution one defines the forfis I', () by
E=-o0", I'=-0%, Q=30+0’%). (10

This is in accordance witk6) due tow;;=0 and the reality properties af.

To prove the linear independence of the syste#i~T,A,E,E,I",I',Q2,Q) it is enough to
observe that the six one-formgn 1 \";, dAZ N5, dALAK,, dAZ K, dAE K, and dN3 NS,
constitute a basis of right invariant forms ar .

The theorem is proven.

lll. THE STRUCTURE EQUATIONS

Consider the ten well-defined formE,(E,T,A,E,E,Q,(_l,F,F) on.7(.#) given by (4) and
(10). The differentials_of the first four forms are given bi) and (6). In the basis
(F,F,T,AE,E,Q,Q,T' ") they assume the form

dF=(Q—Q)OF+EOT+TTA, (11)
dT=TOF+TOF—(Q+Q)0T, (12)
dA=EOF+EOF +(Q+Q)0A. (13)

The differentials of the other forms may be easily calculated using the local represef@ation
and the well-known structure equations
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do';= — ' T0";+ 3R m NG AN e TP (14)

These differentials are by far much more complicated than the differential, ofT, anddA. In
particular, the decompositions af, dT, anddA onto the basis of two-forms associated with
(F,F, T,AE,E,Q,0,T',T") have only constant coefficients. It turns out that in the different&ls

dQ, anddI’ coefficients which are functions appear. The zero sets of these functions have a
well-defined geometrical meaning and define certain subsetg(0f/). Now, the hope is that
when we restrict ourselves to such subsets then the differenti@s@f andI” will have a much
simpler form than their differentials on the whal&. 7). Our aim now is to study this possibility.

IV. EXPLICIT EXPRESSIONS FOR THE BASIC FORMS ON .7 (.#)

We concentrate on the analysis ®E= —dwla_.
Let us introduce the matrices;(w,z,y) and\'j(w’,z’,y") such that

lwlw~(1+yz) |wjw ™~ tyz lww Y(1+yz)z |w|w Iy
o weiyz wiw iy wiwl a2z iy
MWET| asyzy  widtyay WwlLeyE? fwlyf
Zjw|™* Zw| ™t |2]?|w| lw| ™t
A(w',z'y")
Wiw Y w1 W w1
w'w'|"Y(1+y'Z) w'|w'| "ty Z’ ww' "ty wiw! | T 1+y' )7
Tl Wlaryzy wlasyz) Wy Ry wljiy 'z
2|3 Tl | 2]

Then, it is well known that.!. can be represented by

LL=wuz, (15)

where
7={\'|(w,z,y) such that(w,zy) e C3w#0}, (16)
7' ={\'|(w’,z",y") such that(w’,z’,y’) e C3,w’#0}. (17

On the intersectiorrzN 74', the coordinatesw(,z,y) and ’,z’,y") shall be related by

w’ 1
W=-_2, Z=_7, y=-2z'(1+y'z'), (18
w 1
W’=—?, z’:E, y'=—2z(1+y2). (19

Thus, we can cover ang ™~ ()= (% LL) by the two charts?x 72 and @x 72'. Now, on @

consider the coframé' of (1). Inserting\';=\';(w,z,y) or \';(w’,z’,y’) to the formulag8), (9),

(14) and using the definitionél), (4), (10) we easily obtain the following two lemmas.
Lemma 1: OnoX 7 the forms E T, A, E, Q and I read

F:% [(1+YZ)(M+2K)+yzM+YyL], (20

T=|w|[|[1+yZ]?’K+y(1+yz)M+y(1+yz)M +yyL], (21
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1 _ —
A=W[L+ZZK+ZM+ZM], (22
1
E: V_V [dZ+F32+Z(F21+F43)+22F14], (23)
1dw 1
Q=- > W‘ydz_yrsz_ > (1+2y2)(T' 1+ 149 —2(1+y2)[y, (24)
I=wldy—y?dz—y T 3,—Y(1+y2)(T 43~ T1p) — (1+y2)T14]. (25

Lemma 2: OnoX 7/’ the forms E T, A, E, Q andI read

w' — _ _
F=|W—,|[(1+y’z’)(M +z'L)+y'Z’M+y’K], (26)
T=|W[[|1+Y'Z|2L+y (1+YZ)M+Y (1+y'Z )M +y'y'K], 27

1 o R
AZW[K-‘rZ'Z'L-i-Z'M-‘rZ'M], (28
1
E: VT [dZ' +F41+ Z’(F12+ F34)+Z,2F23], (29)
1 dW, ! ! ! 1 ! ! ! ! !

Q:_EW_y dz'—y I‘41_5 (1+2y'2") (T 15+ T3 =2 (1+Yy'2" )T 53, (30)
P=w'[dy' —y'?dz' —=y"?[ = y" (1+y'2")(Day=To) — (1+y'2')°T ). (3D

Note that this Lemma follows from the previous one by applying transformalbasM, KL,
12, and 3—4, where the last two transformations refer to the tetrad indices.
Now one can easily find the differential dE . L
Lemma 3: The decomposition of dE onto the bésis,T,A E,E,Q,Q,T",T") of one-forms on
() reads
dE=2Q0E+ ¢TOF+b(AOT+FOF)+ BFOA+ ¢ TOF+a(AOT—FOF) + «AOF,

where ¢,b, 8,1,a,a are well-defined functions on™ ().
The functions¢,b, 8,,a,a are given by

1 _ — —
= w2 D, b=W(3d7tyed), B=W(idzt+ydzty’d),

1 1 2,1 2 1 1
‘//:W\Pa a=w(z¢,+yy), a=—WA(5P, Y U+3yd,)— &R,

D = 3855~ 2855~ 2S5+ ZASyo+ Saa) + 227 Sppt 32°S11— 222 S~ 272814+ 52°2°S s,
and
V=U,-4V,z+6WV,22— 4V 23+ V7

on X 7z and by
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1 _ — _ — —
b= @ D=W Gty d). B=wiidrzty b7ty i),

1 ’ rel ’ 121 12 1,7 1
EDZW\P ,oa=W (g tY' ), a=—W NGty Yty ) - R,

D' =384y~ 2'S14~ 7' Sp4+ 27 (Siot Sa9) +52'%Syy
+ 3228y~ 722/ S13-7'%7 Sy3— 57'%7'*Sg3
and
‘I’I :\PO_4\I’12, + 6‘1’22,2_4\];,3ZI3+\II4Z,4

on X" .
The following three cases are of particular interest.

(@ The metricg of the four-manifold. /7 satisfies the Einstein equatioRg =\g;; and is not
conformally flat. This case is characterized dy=0 and¥ #0.

(b) The metricg is conformally flat but not Einstein. This case correspond¥ te0, ® 0.

(c) The metricg is of constant curvature. This means tHaE ®=0.

In the first two cases there is a canonical choice of certain six-dimensional subséts/.
This is defined by the demand that on such sets certain componed sifiould identically
vanish. This approach is impossible in césesince this implies an immediate reductiond to
the form

dE=2Q0E+ 5RADF. (32
V. DISTINGUISHED SUBSET OF .7Z(.#4)

From now on we consider caga). This is the most interesting generic Einstein case.
Imposing the restriction&) on dE we immediately see that

dE=2Q0E+ ¢ TOF +a(AOT—FOF) + e ATF
wherey,a,a are the same as in the Lemma 1. Since we are in the not conformally flaiebase
have 0. This makes possible the restriction to such a%&&r = 1(?) in which a identically
vanish. Thus we consider
W= \IVW >, (33
where
7 ={(x;W,z,y) € ((?X 7/) such that yy+ Fi4,=0},
W ={(x;w',2",y") e (X 7") such thatyy'+ 5, =0},
or (what is the same due to the nonvanishingvodndw’)
7 1={(x;w,z,y) e ("X 7) such that¥y+ ;¥ ,=0}, (34
7 ={(x;w',z',y") e (X 7") such that¥'y’+ ¥, =0}. (35
On 77" we have

dE=2Q0E+ ¢TOF + aACF.
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One can still simplify this relation by restricting oneself to a sub%@@tof 7" in which ¢=—1.
Then, 7, is a subset ofr (), which is given by

Po=P1V P2, (36)
where
Tor={(x;w,z,y) e (OX 7/) such thatWy+i¥,=0, ¥ +w?=0} (37
and
Too={(x;W',2',y") e (X 7') such thatW'y’+ ¥ =0, W' +w'2=0}. (39
It follows from the construction that of;Po we have
dE=2Q0E+FOT+aFDA.

VI. ELLIPTIC FIBRATION

We study the geometry and topology of the Q%t
The equations defining, may be written as

1w, 1V, -
y-‘zy, y “Tavw (39
V+w?=0, V' +w'?=0. (40)

We see that the first pair of equations uniquely subordinatesz andy’ to z'. The second pair
gives a relation betweem andz andw’ andz'. Thus, locally among the parametersw,z,y) in

X 7 [respectively, x;w',z",y") in X 7/'], only x andz (respectivelyx andz’) are free. This
shows that”, is six dimensional. Moreovery; is fibered over? with two-dimensional fibers.
These are locally parametrized byr z'. To discuss the topology of fibers one observes that the
relation betweenv andz (respectivelyw’ andz'’) is purely polynomial. Over every point & it

has the form

W2:_\1,44‘4\1,32_6\1,222"‘4\];'123_\1}024 (41)
or
W'2=—‘1’0-1—4‘1’12’—6‘P22’2+4\I’3Z'3—‘P4Z’4. (42)

Assume for a momer(g) thatw=0 andw’=0 are the allowed values of the parameters @nd
that equations

—W,+ 4V 72— 6,722+ 4V, 22—V 4=, (43
—\I’o+4\1’12’—6‘1’22’24-4‘1’32'3—\1’42’4:0 (44)

for zandz' have only distinct roots. Then, the relatiof#)—(42), as being fourth order in the
parameterg and z’, describe a two-dimensional toru&his is a well-known fact of classical
aIgeEraic geometry, see, e.g., Ref. 2. | am very grateful to Roger Penrose for clarifying this for
me).

Let us comment orfa) and(b).

(a) We know thatw andw’ cannot be zero by their definitions. So to have a torus fibration
over the Einstein space—time we need to acceptwhandw’ may vanish. A price paid for this
is that some of the formsH,F,T,A ,E,E,Q,Q,I',I") will be singular on the resulting fibration at
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these values oiv andw’. With these remarks, from now on, we accept thandw’ may vanish.
This enables us to introduce the fibratiohover .7 which, over the neighborhood' C.7 is
given by

P=PUP,, (45)

where
71=1(x;w,z,y) € (©XC3 such that¥y+1¥,=0, ¥+w2=0}, (46)
Fr={(x;w',2',y") e (X C3) such that‘lf’y’+%\lf;,=0, V' +w'2=0 47

and the transition functions betweew,g,y) and (’,z’,y’) coordinates are given byl 8).

(b) The discussion ifa) means that” is a torus fibration over? provided that Eqs(43) and
(44) have distinct roots. It is well known that the number of distinct root$4i8) and (44) is
directly related to the aIgebra[Cartan—Petrov—Penrd%‘él classification of space—times. Thus,
if the space—time is algebraically general in?, then7” is a torus fibration over?. In the
algebraically special cases the fibers8fare degenerate tori. These topologically are:

(I a torus with one vanishing cycle in the Cartan—Petrov—Penrose type Il,

(D) two spheres touching each other in two different points in the Cartan—Petrov—Penrose
type D,

(Il1) a sphere with one singular point in the Cartan—Petrov—Penrose type lll,

(N) two spheres touching each other in one point in the Cartan—Petrov—Penrose type N.

The pure situations considered so far may be a bit more complicated when the Cartan—
Petrov—Penrose type of the Einstein space —time varies from point to point. Imagine, for example,
that along a continuous path frorto x’ in @ the_Cartan—Petrov—Penrose type of the Einstein
space—time changes from | to Il. Then the fiberobverx’ is only a torus with one vanishing
cycle although the fiber over the starting pointvas a torus. It is clear that more complicated
situations may occur, and that the fibersxfover different points of 7 can have topologies I,
D, lll, and N. Fibrations of this type are widely used in algebraic geometry. They are called
elliptic, since their fibers can be any kitdven degeneratef an elliptic curve.

VIl. THE MAIN THEOREM

In Secs. IV-VI, for the clarity of presentation, we restricted ourselves to the neighborhood
of .. We ended up with an elliptic fibratiow’ over 2. This, however, can be easily prolonged
to an elliptic fibration over the wholeZ. To see this it is enough to observe that a fiber over any
point in @' is essentially defined by the Weyl tensor. Since the Weyl tensor is uniquely defined on
the whole 7 then we can use equations lik&l) to uniquely define the elliptic fibers over al”.

Summing up the information from Secs. IV-VI we have the following theorem.

Theorem 2: Given a four-dimensional conformally nonflat spatie .7 satisfying the
Einstein equations R=\g;; one naturally defines a fibratiol:>— .7 with the following prop-
erties.

(1) A fiberIT~1(x) over a point xs .7 is a (possibly degenerate) elliptic cune given by

C=r,U%,
Z1={(w,z) e C? such thatw?=—W,+4W 72— 6V ,22+ 4V, 2°— ¥ 7%},
7,={(W',2') e C? such thatw'?=—W,+4¥ 7z —6V,z'2+4V;7'3—V¥,z'4,

where the transition functions betweén,z) and (w’,z') coordinates are given by

(2) The degeneracy of a fiber depends on the algebraic type of the-gpaeametric and may
change from point to point.
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(3) There is a unique construction of a certain surféi?@ of dimension six immersed in the
bundle of null coframes7 (. 7). /’0 is fibered over 7 and»” may be viewed as an extension of
./b achieved by adding to each fiber @(fo at most four points.

(4) There are ten one-form$,F,T,A,E,E,Q,Q,I",I") on 2 with the following properties:

(a) Forms TA are real, all the other are complex valued.

(b) The forms are defined in two steps. First, by restricting the soldering form componhents e
and the Lewi-Civita connection components' from .7 (.#) to &, and second, by ex-
tending the restrictions to””.

() (F,F, T,A E,E) constitute the basis of one-forms on

(d) The forms satisfy the following equations on

dF=(Q-Q)0OF + EOT+TOA,

dT=TOF+TOF—(Q+Q)0T,

— — _ (49
dA=EOF+EAF+(Q+Q)TA,

dE=20Q0E+FOT+ «AF,
with a certain functiona on 7.

The explicit formulas for the forms o.f;bl (respectively, on7/>2) may be obtained from the
expressions of Lemma (espectively, Lemma)2oy inserting the relationg=—%¥,/(4V¥) and
w2+ W =0 [respectivelyy’ = -V /(4V') andw’?+ ¥’ =0].

VIIl. RELATION BETWEEN THE ELLIPTIC FIBRATION AND THE BUNDLE OF NULL
DIRECTIONS

Finally we note that the bundie’ constitutes a double branched cover of the Penrose bundle
2 of null directions over the space—time.
To see this consider the mémiven by

_ f
P13 (X;W,2,Y)—(X,2) e (OXC,

_ f
Pz (x;w',2' Yy ) —(X,2") e @XC.

Since on the intersectior; N 7% the coordinateg andz’ are related by’ = 1/z, then the two
copies ofC, which appear in the above relations may be considered as two coordinate(shgrts
around the North and the South pole, respectively the two-dimensional sphere. This sphere is
the sphere of null directions at a given point@fwhich can be seen as follows.

Consider directions of all the one-forrhg§z) =L +zzZK+zM+zM atx e ¢ for all the values
of the complex parameter These directions are in one to one correspondence with null directions
k(z)=k+z4—zm—zm via L(z)=—g(k(2)). These null directions do not form a sphere yet,
since the direction corresponding to the vedt® missing. But the missing direction is included
in the family of null directions corresponding to the directions of one-fokiiz')=K+2z'z'L
+2z'M+2z'M atx. Thus the space parametrized bgndz’ subject to the relatioa’ =1/z is in
one to one correspondence with the sphere of null directiors®tis proves the assertion that
is a cover of7.

The mapf is a double cover since i (or z') is not a root of(43) [respectively,(44)] then
f~1(2) is a two-point set. In at most four cases wheis a rootf 1(z) is a one-point set. This
proves thaf is a singular cover.

As we know the singular points are branch points, which proves the statement from the
beginning of this section.
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