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Given a conformally nonflat Einstein space–time we define a fibrationP̃ over it.
The fibers of this fibration are elliptic curves~two-dimensional tori! or their degen-
erate counterparts. Their topology depends on the algebraic type of the Weyl tensor
of the Einstein metric. The fibrationP̃ is a double branched cover of the bundleP

of null direction over the space–time and is equipped with six linearly independent
one-forms which satisfy a certain relatively simple system of equations. ©1998
American Institute of Physics.@S0022-2488~98!01210-9#

I. DEFINITIONS

In Ref. 1 we defined a certain differential systemI on an open setU of R.6 We showed that
a pair (U,I ) naturally defines a four-dimensional conformally nonflat Lorentzian space–
(M,g) which satisfies the Einstein equationsRi j 5lgi j . In this paper we prove the convers
statement. In particular, we give a construction which associates a certain six-dimensional
fibration P̃ with any conformally nonflat Lorentzian Einstein space–time. Moreover, we s
how P̃ may be equipped with a unique differential system which has all the properties o
systemI on U.

We briefly recall the definitions of the geometrical objects we need in the following. LeM

be a four-dimensional-oriented and time-oriented manifold equipped with a Lorentzian metrig of
signature~1,1,1,2!. It is convenient to introduce a null frame (m,m̄,k,l ) on M with a coframe
u i5(u1,u2,u3,u4)5(M ,M̄ ,K,L) so that

g5gi j u
iu j5MM̄2KL. ~1!

@Such expressions asu iu j mean the symmetrized tensor product, e.g.,u iu j5 1
2(u

i
^ u j1u j

^ u i).
Also, we will denote by round~respectively, square! brackets the symmetrization~respectively,
antisymmetrization! of indices, e.g.,a( ik)5

1
2(aik1aki), a@ ik#5

1
2(aik2aki), etc.#

The Lorentz groupL consists of matricesl j
i PGL (4,C) such that

gjl 5gikl i
jl

k
l ,

l2
25l1

1, l2
15l1

2, l2
35l1

3, l2
45l1

4, ~2!

l3
25l3

1, l3
35l3

3, l3
45l3

4, l4
25l4

1, l4
35l4

3, l4
45l4

4.

We will denote the inverse of the Lorentz matrixl i
j by l̃i

j .
The connected component of the identity element ofL is the proper ortochroneous Loren

group, which we denote byL1
↑ .

Given g andu i the connection one-formsG i j 5gikGk
j are uniquely defined by

du i52G i
j∧u j , G i j 1G j i 50. ~3!

a!Permanent address: Instytut Fizyki Teoretycznej, Wydział Fizyki, Uniwersytet Warszawski, ul. Hoz˙a 69, Warszawa,
Poland. Electronic mail: nurowski@fuw.edu.pl
54810022-2488/98/39(10)/5481/10/$15.00 © 1998 American Institute of Physics
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The connection coefficientsG i jk are determined byG i j 5G i jkuk ~we lower and raise indices b
means of the metric and its inverse!. Using them we define the curvature two-formsRk

i , the
Riemann tensorRi

jkl , the Ricci tensorRi j , and its scalarR by

Rk
i5

1
2R

k
im ju

m∧u j5dGk
i1Gk

j∧G j
i , Ri j 5Rk

ik j , R5gi j Ri j .

We also introduce the traceless Ricci tensor by

Si j 5Ri j 2
1
4gi j R.

Note that the vanishing ofSi j is equivalent to the Einstein equationsRi j 5lgi j for the metricg.
We define the Weyl tensorCi

jkl by

Ci jkl 5Ri jkl 1
1
3Rgi [kgl ] j1Rj [kgl ] i1Ri [ lgk] j ,

and its spinorial coefficientsCm by

R235C4M̄∧K1C3~L∧K2M∧M̄ !1~C21 1
12R!L∧M

1 1
2S33M∧K1 1

2S32~L∧K1M∧M̄ !1 1
2S22L∧M̄ ,

R145~2C22 1
12R!M̄∧K2C1~L∧K2M∧M̄ !2C0L∧M

2 1
2S11M∧K2 1

2S41~L∧K1M∧M̄ !2 1
2S44L∧M̄ ,

1
2~R432R12!5C3M̄∧K1~C22 1

24R!~L∧K2M∧M̄ !1C1L∧M

1 1
2S31M∧K1 1

4~S121S34!~L∧K1M∧M̄ !1 1
2S42L∧M̄ .

II. THE BUNDLE OF NULL COFRAMES

Let F ~M! denote the bundle of oriented and time oriented null coframes overM. This
means thatF ~M! is the set of all equally oriented null coframesu i at all points ofM. The
mappingp:F (M)→M, which maps a coframeu i at xPM ontox, gives the canonical projec
tion. A fiber p21(x) in F ~M! consists of all the null coframes at pointx which have the same
orientation and time orientation. Ifu j is a null coframe atxPM, then any other equivalently
oriented null coframe atx is given byu8 i5l i

ju
j , wherel i

j is a certain element ofL1
↑ . This

defines an action ofL1
↑ on F ~M!. Thus,F ~M! is a ten-dimensional principal fiber bundle wit

L1
↑ as its structural group.

It is well known that the bundleF ~M! is equipped with a natural four-covector-value
one-formei , i 51, 2, 3, 4, the Cartan soldering form, which is defined as follows. Take any ve
vc tangent toF ~M! at a pointc. Let c be in the fiberp21(x) over a pointxPM. This means that
c may be identified with a certain null coframeuc

i at x.
Then, the formal definition ofei reads:ei(vc)5uc

i (p* vc). The first two components ofei are
complex and mutually conjugated. The remaining two are real. Altogether, they constit
system of four well-defined linearly independent one-forms onF ~M!. In the following we will
denote them by

F5e15e2, T5T̄5e3, L5L̄5e4. ~4!

A theorem which we present below is a null coframe reformulation of the Elie Cartan theore
affine connections.

Theorem 1: Let ei5(F,F̄,T,L) be the soldering form onF ~M!. Then

(i) the system of equations
dei1vi

j∧ej50, gkiv
i
j1gji v

i
k50 ~5!

for a matrix of complex-valued one-formsv i
j ( i , j 51,2,3,4)on F ~M! has a unique solution,
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(ii) v i
j uniquely defines six complex-valued one-forms(E,Ē,G,Ḡ,V,V̄) by

vi
j5SV̄2V 0 2E 2Ḡ

0 V2V̄ 2Ē 2G

2G 2Ḡ V1V̄ 0

2Ē 2E 0 2V2V̄

D , ~6!

(iii) the forms (F,F̄,T,L,E,Ē,G,Ḡ,V,V̄) are linearly independent at each point ofF ~M!.

For completeness we sketch the proof.
First, we show that if there is a solution to~5! then it is unique. To do this we assume t

existence of two solutions—v i
j and v̂ i

j .
Subtractingdei1v̂ i

j∧ej50 from dei1v i
j∧ej50 we get

~v i
j2v̂ i

j !∧ej50. ~7!

Now, let em, m51, 2, 3, 4, 5, 6, be a system of one-forms such that the ten one-forms (ei ,em)
constitute a basis of one-forms onF ~M!. Let v i

j5v i
jkek1v i

j mem andv̂ i
j5v̂ i

jkek1v̂ i
j mem be

the corresponding decompositions of the solutions. Then~7! easily yieldsv i
j m5v̂ i

j m andv i @ jk#

5v̂ i @ jk# . The defining properties of the solutions give alsov ( i j )k505v̂ ( i j )k . Now, due to the
identity Ai jk5Ai @ jk#2Aj @ ik#2Ak@ i j # , which is true for anyAi jk such thatA( i j )k50, we getv i jk

5v̂ i jk . This shows thatv i
j5v̂ i

j , hence the uniqueness.
We proceed to the construction of a solution.
Given a sufficiently small neighborhoodO in M we identify p21(O ) with O 3L1

↑ . Then,
the soldering form may be written as

ei5l i
ju

j . ~8!

Taking dei and using Eq.~3! one easily finds that

v i
j5l i

kG
k
ml̃j

m2dl i
kl̃

k
j ~9!

is a solution to~5!. Given this solution one defines the forms~E, G, V! by

E52v1
3 , G52v2

4 , V5 1
2~v2

21v3
3!. ~10!

This is in accordance with~6! due tov ( i j )50 and the reality properties ofei .
To prove the linear independence of the system (F,F̄,T,L,E,Ē,G,Ḡ,V,V̄) it is enough to

observe that the six one-formsdl1
kl̃

k
3 , dl2

kl̃
k
3 , dl1

kl̃
k
4 , dl2

kl̃
k
4 , dl1

kl̃
k
1 , and dl3

kl̃
k
3

constitute a basis of right invariant forms onL1
↑ .

The theorem is proven.

III. THE STRUCTURE EQUATIONS

Consider the ten well-defined forms (F,F̄,T,L,E,Ē,V,V̄,G,Ḡ) on F ~M! given by ~4! and
~10!. The differentials of the first four forms are given by~5! and ~6!. In the basis
(F,F̄,T,L,E,Ē,V,V̄,G,Ḡ) they assume the form

dF5~V2V̄!∧F1E∧T1Ḡ∧L, ~11!

dT5G∧F1Ḡ∧F̄2~V1V̄!∧T, ~12!

dL5Ē∧F1E∧F̄1~V1V̄!∧L. ~13!

The differentials of the other forms may be easily calculated using the local representati~9!
and the well-known structure equations
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dv i
j52v i

k∧vk
j1

1
2R

k
smnl

i
kl̃

s
j l̃l

ml̃n
pel∧ep. ~14!

These differentials are by far much more complicated than the differentials ofdF, dT, anddL. In
particular, the decompositions ofdF, dT, and dL onto the basis of two-forms associated wi
(F,F̄,T,L,E,Ē,V,V̄,G,Ḡ) have only constant coefficients. It turns out that in the differentialsdE,
dV, and dG coefficients which are functions appear. The zero sets of these functions h
well-defined geometrical meaning and define certain subsets ofF ~M!. Now, the hope is that
when we restrict ourselves to such subsets then the differentials ofE, V, andG will have a much
simpler form than their differentials on the wholeF ~M!. Our aim now is to study this possibility

IV. EXPLICIT EXPRESSIONS FOR THE BASIC FORMS ON F „M…

We concentrate on the analysis ofdE52dv1
3.

Let us introduce the matricesl i
j (w,z,y) andl i

j (w8,z8,y8) such that

l i
j~w,z,y!5S uwuw21~11 ȳz̄! uwuw21ȳz uwuw21~11 ȳz̄!z uwuw21ȳ

wuwu21yz̄ wuwu21~11yz! wuwu21~11yz!z̄ wuwu21y

uwu~11 ȳz̄!y uwu~11yz!ȳ uwuu11 ȳz̄u2 uwuuyu2

z̄uwu21 zuwu21 uzu2uwu21 uwu21

D ,

l i
j~w8,z8,y8!

5S uw8uw821ȳ8z8 uw8uw821~11 ȳ8z̄8! uw8uw821ȳ8 uw8uw821~11 ȳ8z̄8!z8

w8uw8u21~11y8z8! w8uw8u21y8z̄8 w8uw8u21y8 w8uw8u21~11y8z8!z̄8

uw8u~11y8z8!ȳ8 uw8u~11 ȳ8z̄8! uw8uuy8u2 y8uw8uu11 ȳ8z̄8u2

z8uw8u21 z̄8uw8u21 uw8u21 uz8u2uw8u21

D .

Then, it is well known thatL1
↑ can be represented by

L1
↑ 5UøU8, ~15!

where

U5$l i
j~w,z,y! such that ~w,z,y!PC3,wÞ0%, ~16!

U85$l i
j~w8,z8,y8! such that ~w8,z8,y8!PC3,w8Þ0%. ~17!

On the intersectionUùU8, the coordinates (w,z,y) and (w8,z8,y8) shall be related by

w52
w8

z82 , z5
1

z8
, y52z8~11y8z8!, ~18!

w852
w

z2 , z85
1

z
, y852z~11yz!. ~19!

Thus, we can cover anyp21(O )>(O 3L1
↑ ) by the two chartsO 3U and O 3U8. Now, on O

consider the coframeu i of ~1!. Insertingl i
j5l i

j (w,z,y) or l i
j (w8,z8,y8) to the formulas~8!, ~9!,

~14! and using the definitions~1!, ~4!, ~10! we easily obtain the following two lemmas.
Lemma 1: OnO 3U the forms F, T, L, E, V and G read

F5
uwu
w

@~11 ȳz̄!~M1zK!1 ȳzM̄1 ȳL#, ~20!

T5uwu@ u11 ȳz̄u2K1y~11 ȳz̄!M1 ȳ~11yz!M̄1yȳL#, ~21!
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L5
1

uwu @L1zz̄K1zM̄1 z̄M #, ~22!

E5
1

w
@dz1G321z~G211G43!1z2G14#, ~23!

V52
1

2

dw

w
2ydz2yG322

1

2
~112yz!~G211G43!2z~11yz!G14, ~24!

G5w@dy2y2dz2y2G322y~11yz!~G432G12!2~11yz!2G14#. ~25!

Lemma 2: OnO 3U8 the forms F, T, L, E, V and G read

F5
uw8u
w8

@~11 ȳ8z̄8!~M̄1z8L !1 ȳ8z8M1 ȳ8K#, ~26!

T5uw8u@ u11 ȳ8z̄8u2L1y8~11 ȳ8z̄8!M̄1 ȳ8~11y8z8!M1y8ȳ8K#, ~27!

L5
1

uw8u
@K1z8z̄8L1z8M1 z̄8M̄ #, ~28!

E5
1

w8
@dz81G411z8~G121G34!1z82G23#, ~29!

V52
1

2

dw8

w8
2y8dz82y8G412

1

2
~112y8z8!~G121G34!2z8~11y8z8!G23, ~30!

G5w8@dy82y82dz82y82G412y8~11y8z8!~G342G21!2~11y8z8!2G23#. ~31!

Note that this Lemma follows from the previous one by applying transformationsM↔M̄ , K↔L,
1↔2, and 3↔4, where the last two transformations refer to the tetrad indices.

Now one can easily find the differential ofdE.
Lemma 3: The decomposition of dE onto the basis(F,F̄,T,L,E,Ē,V,V̄,G,Ḡ) of one-forms on

p21(O ) reads

dE52V∧E1fT∧F1b~L∧T1F∧F̄ !1bF∧L1cT∧F̄1a~L∧T2F∧F̄ !1aL∧F,

wheref,b,b,c,a,a are well-defined functions onp21(O ).
The functionsf,b,b,c,a,a are given by

f5
1

uwu2
F, b5w̄~ 1

2f z̄1 ȳf!, b5w̄2~ 1
2f z̄z̄1 ȳf z̄1 ȳ2f!,

c5
1

w2 C, a5w~ 1
4cz1yc!, a52w2~ 1

12czz1y2c1 1
2ycz!2 1

12R,

F5 1
2S332 z̄S232zS131zz̄~S121S34!1 1

2z̄
2S221

1
2z

2S112 z̄2zS242z2z̄S141
1
2z

2z̄2S44,

and

C5C424C3z16C2z224C1z31C0z4

on O 3U and by
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f5
1

uw8u2
F8, b5w̄8~ 1

2f z̄81 ȳ8f!, b5w̄82~ 1
2f z̄8z̄81 ȳ8f z̄81 ȳ82f!,

c5
1

w82 C8, a5w8~ 1
4cz81y8c!, a52w82~ 1

12cz8z81y82c1 1
2y8cz8!2 1

12R,

F85 1
2S442 z̄8S142z8S241z8z̄8~S121S34!1 1

2z̄82S11

1 1
2 z82S222 z̄82z8S132z82z̄8S232

1
2z̄82z̄82S33

and

C85C024C1z816C2z8224C3z831C4z84

on O 3U8.
The following three cases are of particular interest.

~a! The metricg of the four-manifoldM satisfies the Einstein equationsRi j 5lgi j and is not
conformally flat. This case is characterized byF[0 andCÓ0.

~b! The metricg is conformally flat but not Einstein. This case corresponds toC[0, FÓ0.
~c! The metricg is of constant curvature. This means thatC[F[0.

In the first two cases there is a canonical choice of certain six-dimensional subsets inF ~M!.
This is defined by the demand that on such sets certain components ofdE should identically
vanish. This approach is impossible in case~c! since this implies an immediate reduction ofdE to
the form

dE52V∧E1 1
12RL∧F. ~32!

V. DISTINGUISHED SUBSET OF F „M…

From now on we consider case~a!. This is the most interesting generic Einstein case.
Imposing the restrictions~a! on dE we immediately see that

dE52V∧E1cT∧F̄1a~L∧T2F∧F̄ !1aL∧F,

wherec,a,a are the same as in the Lemma 1. Since we are in the not conformally flat case~a! we
havecÞ0. This makes possible the restriction to such a setW ,p21(O ) in which a identically
vanish. Thus we consider

W 5W 1øW 2 , ~33!

where

W 15$~x;w,z,y!P~O 3U! such thatcy1 1
4cz50%,

W 25$~x;w8,z8,y8!P~O 3U8! such thatcy81 1
4cz850%,

or ~what is the same due to the nonvanishing ofw andw8)

W 15$~x;w,z,y!P~O 3U! such thatCy1 1
4Cz50%, ~34!

W 25$~x;w8,z8,y8!P~O 3U8! such thatC8y81 1
4Cz8

8 50%. ~35!

On W we have

dE52V∧E1cT∧F̄1aL∧F.
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One can still simplify this relation by restricting oneself to a subsetP̃ 0 of W in which c521.
Then,P̃ 0 is a subset ofp21(O ), which is given by

P̃ 05P̃ 01øP̃ 02, ~36!

where

P̃ 015$~x;w,z,y!P~O 3U! such thatCy1 1
4Cz50, C1w250% ~37!

and

P̃ 025$~x;w8,z8,y8!P~O 3U8! such thatC8y81 1
4Cz8

8 50, C81w8250%. ~38!

It follows from the construction that onP̃ 0 we have

dE52V∧E1F̄∧T1aF∧L.

VI. ELLIPTIC FIBRATION

We study the geometry and topology of the setP̃ 0 .
The equations definingP̃ 0 may be written as

y52
1

4

Cz

C
, y852

1

4

Cz8
8

C8
, ~39!

C1w250, C81w8250. ~40!

We see that the first pair of equations uniquely subordinatesy to z andy8 to z8. The second pair
gives a relation betweenw andz andw8 andz8. Thus, locally among the parameters (x;w,z,y) in
O 3U @respectively, (x;w8,z8,y8) in O 3U8], only x andz ~respectively,x andz8) are free. This
shows thatP̃ 0 is six dimensional. Moreover,P̃ 0 is fibered overO with two-dimensional fibers.
These are locally parametrized byz or z8. To discuss the topology of fibers one observes that
relation betweenw andz ~respectively,w8 andz8) is purely polynomial. Over every point ofO it
has the form

w252C414C3z26C2z214C1z32C0z4 ~41!

or

w8252C014C1z826C2z8214C3z832C4z84. ~42!

Assume for a moment~a! that w50 andw850 are the allowed values of the parameters and~b!
that equations

2C414C3z26C2z214C1z32C0z450, ~43!

2C014C1z826C2z8214C3z832C4z8450 ~44!

for z andz8 have only distinct roots. Then, the relations~41!–~42!, as being fourth order in the
parametersz and z8, describe a two-dimensional torus.~This is a well-known fact of classica
algebraic geometry, see, e.g., Ref. 2. I am very grateful to Roger Penrose for clarifying th
me!.3

Let us comment on~a! and ~b!.
~a! We know thatw andw8 cannot be zero by their definitions. So to have a torus fibra

over the Einstein space–time we need to accept thatw andw8 may vanish. A price paid for this
is that some of the forms (F,F̄,T,L,E,Ē,V,V̄,G,Ḡ) will be singular on the resulting fibration a
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these values ofw andw8. With these remarks, from now on, we accept thatw andw8 may vanish.
This enables us to introduce the fibrationP̃ over M which, over the neighborhoodO ,M is
given by

P̃ 5P̃ 1øP̃ 2 , ~45!

where

P̃ 15$~x;w,z,y!P~O 3C3! such thatCy1 1
4Cz50, C1w250%, ~46!

P̃ 25H ~x;w8,z8,y8!P~O 3C3! such thatC8y81
1

4
Cz8

8 50, C81w8250J ~47!

and the transition functions between (w,z,y) and (w8,z8,y8) coordinates are given by~18!.
~b! The discussion in~a! means thatP̃ is a torus fibration overO provided that Eqs.~43! and

~44! have distinct roots. It is well known that the number of distinct roots in~43! and ~44! is
directly related to the algebraic~Cartan–Petrov–Penrose4–6! classification of space–times. Thu
if the space–timeM is algebraically general inO , then P̃ is a torus fibration overO . In the
algebraically special cases the fibers ofP̃ are degenerate tori. These topologically are:

~II ! a torus with one vanishing cycle in the Cartan–Petrov–Penrose type II,
~D! two spheres touching each other in two different points in the Cartan–Petrov–Pe

type D,
~III ! a sphere with one singular point in the Cartan–Petrov–Penrose type III,
~N! two spheres touching each other in one point in the Cartan–Petrov–Penrose type
The pure situations considered so far may be a bit more complicated when the Ca

Petrov–Penrose type of the Einstein space–time varies from point to point. Imagine, for exa
that along a continuous path fromx to x8 in O the Cartan–Petrov–Penrose type of the Einst
space–time changes from I to II. Then the fiber ofP̃ over x8 is only a torus with one vanishing
cycle although the fiber over the starting pointx was a torus. It is clear that more complicate
situations may occur, and that the fibers ofP̃ over different points ofM can have topologies II,
D, III, and N. Fibrations of this type are widely used in algebraic geometry. They are c
elliptic, since their fibers can be any kind~even degenerate! of an elliptic curve.

VII. THE MAIN THEOREM

In Secs. IV–VI, for the clarity of presentation, we restricted ourselves to the neighborhoO

of M. We ended up with an elliptic fibrationP̃ over O . This, however, can be easily prolonge
to an elliptic fibration over the wholeM. To see this it is enough to observe that a fiber over a
point in O is essentially defined by the Weyl tensor. Since the Weyl tensor is uniquely define
the wholeM then we can use equations like~41! to uniquely define the elliptic fibers over allM.

Summing up the information from Secs. IV–VI we have the following theorem.
Theorem 2: Given a four-dimensional conformally nonflat space–time M satisfying the

Einstein equations Ri j 5lgi j one naturally defines a fibrationP:P̃→M with the following prop-
erties.

(1) A fiberP21(x) over a point xPM is a (possibly degenerate) elliptic curveC given by

C 5C 1øC 2 ,

C 15$~w,z!PC2 such thatw252C414C3z26C2z214C1z32C0z4%,

C 25$~w8,z8!PC2 such thatw8252C014C1z826C2z8214C3z832C4z84%,

where the transition functions between(w,z) and (w8,z8) coordinates are given by

w52
w8

z82 , z5
1

z8
.

(2) The degeneracy of a fiber depends on the algebraic type of the space–time metric and may
change from point to point.
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(3) There is a unique construction of a certain surfaceP̃ 0 of dimension six immersed in th
bundle of null coframesF ~M!. P̃ 0 is fibered overM and P̃ may be viewed as an extension
P̃ 0 achieved by adding to each fiber ofP̃ 0 at most four points.

(4) There are ten one-forms(F,F̄,T,L,E,Ē,V,V̄,G,Ḡ) on P̃ with the following properties:

(a) Forms T,L are real, all the other are complex valued.
(b) The forms are defined in two steps. First, by restricting the soldering form componei

and the Levi–Civita connection componentsv j
i from F ~M! to P̃ 0 and second, by ex

tending the restrictions toP̃ .
(c) (F,F̄,T,L,E,Ē) constitute the basis of one-forms onP̃ .
(d) The forms satisfy the following equations onP̃ :

dF5~V2V̄!∧F1E∧T1Ḡ∧L,

dT5G∧F1Ḡ∧F̄2~V1V̄!∧T,
~48!

dL5Ē∧F1ELF̄1~V1V̄!∧L,

dE52V∧E1F̄∧T1aL∧F,

with a certain functiona on P̃ .

The explicit formulas for the forms onP̃ 1 ~respectively, onP̃ 2) may be obtained from the
expressions of Lemma 1~respectively, Lemma 2! by inserting the relationsy52Cz /(4C) and
w21C50 @respectively,y852Cz8

8 /(4C8) andw821C850].

VIII. RELATION BETWEEN THE ELLIPTIC FIBRATION AND THE BUNDLE OF NULL
DIRECTIONS

Finally we note that the bundleP̃ constitutes a double branched cover of the Penrose bu
P of null directions over the space–time.
To see this consider the mapf given by

P̃ 1{~x;w,z,y!→
f

~x,z!PO 3C,

P̃ 2{~x;w8,z8,y8!→
f

~x,z8!PO 3C.

Since on the intersectionP̃ 1ùP̃ 2 the coordinatesz andz8 are related byz851/z, then the two
copies ofC, which appear in the above relations may be considered as two coordinate char~say
around the North and the South pole, respectively! on the two-dimensional sphere. This sphere
the sphere of null directions at a given point ofO which can be seen as follows.

Consider directions of all the one-formsL(z)5L1zz̄K1zM̄1 z̄M at xPO for all the values
of the complex parameterz. These directions are in one to one correspondence with null direc
k(z)5k1zz̄l 2zm2 z̄m̄ via L(z)52g(k(z)). These null directions do not form a sphere y
since the direction corresponding to the vectorl is missing. But the missing direction is include
in the family of null directions corresponding to the directions of one-formsK(z8)5K1z8z̄8L
1z8M̄1 z̄8M at x. Thus the space parametrized byz andz8 subject to the relationz851/z is in
one to one correspondence with the sphere of null directions atx. This proves the assertion thatf
is a cover ofP .

The mapf is a double cover since ifz ~or z8) is not a root of~43! @respectively,~44!# then
f 21(z) is a two-point set. In at most four cases whenz is a root f 21(z) is a one-point set. This
proves thatf is a singular cover.

As we know the singular points are branch points, which proves the statement from
beginning of this section.
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