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Abstract

The properties of generalized p-forms, first introduced by Sparling, are
discussed and developed.  Generalized Cartan structure equations for
generalized affine connections are introduced. A new representation of
Einstein’s equations, using generalized forms, is given.

PACS numbers: 0240, 0430, 1110, 1115

In this letter a development of a generalized exterior algebra and calculus of p-forms will be
presented. This type of extension of the ordinary calculus and algebra of differential forms
was first introduced by Sparling in order to associate an abstract twistor structure with any
real analytic Einstein space-time [1-4]. However it is clear that it is a tool which can be
employed in more general physical and geometrical contexts. Here the aim is to show how
such a formalism can be further developed by constructing generalized affine connections, and
by providing a simple formulation of Einstein’s vacuum equations.

A generalized p-form, 5, is defined to be an ordered pair of ordinary p- and p + 1-forms,
that is

1
A=, 'a)e AP x AP, (1

where A? denotes the module of p-forms on a differentiable manifold M of dimension n. By
defining a minus one-form to be an ordered pair

a= (0, )

where gt is a function on M, the range of p can be taken to be —1 < p < n. The manifold
and forms may be real or complex but here n is taken to be the real dimension of M. The
module of generalized p-forms will be denoted by Ag; and the formal sum 37, A will
be denoted by Ag. The letters over the forms indicate the degrees of the forms. Whenever
these degrees are obvious they will be omitted. In the following, bold Latin letters will be
used for generalized forms and normal Greek letters for ordinary forms. A generalized form

given by a pair (&, 0) will be identified with the ordinary p-form & . Hence, for example, a
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function on M will be identified with the generalized O-form (8{, 0) while the pair (0, (?z) defines
a generalized minus one-form.

p p p+l q q g+l ) .
Ifa = (¢, o) and b = (B, B), then the (left) generalized exterior product,
A AL x AL — AP™M, and the (left) generalized exterior derivative, d: AL — Agﬂ, are
defined to be:

q q+1 q
AAb=@G ABGAB +(=1)a AB) 3)
and
da=@&+nre e a’ah, @)

where k is a constant which, in the following, is assumed to be non-zero. It should be noted
that it follows that

2 AD =(0.0) )

These exterior products and derivatives of generalized forms can easily be shown
to satisfy the standard rules of exterior algebra and calculus. This exterior product is
associative and distributive. If a and b are generalized p-forms and g-forms respectively,
then a Ab = (—1)77b A a. The exterior derivative is an anti-derivation from p-forms to
(p + 1)-forms, that is d(a A b) = da A b+ (—1)?a A db. Furthermore, d> = 0.

In Sparling’s original use of minus one-forms his approach was to add to ordinary forms
a form of degree minus one, ¢ say, which satisfied all the basic standard rules of exterior
algebra and calculus, together with the condition that d ¢ was constant. The rules for exterior
multiplication and exterior differentiation presented above, follow when the generalized p-

1 1

form 5 = (gt, poJ; ), is identified with & + p& A ¢, with d¢ = k, and then such expressions
are added, multiplied and differentiated by using the ordinary rules of exterior algebra and
calculus?.

1
The following generalized Poincaré lemma holds. Leth = (5, & ) be aclosed generalized
J4
p-form, so thatd a = 0. Then,

~1 ~1
(a) d a =0ifandonlyif a = (0,0),
(b) in any simply connected neighbourhood of any point of M,

0 0 0
1.d 3 = 0 if and only if there exist ordinary O-forms 8 such thatg = (B,k7'd B) or

0 -1 -1 0
a=d b, where b = (0, k" B).
p—1
2.d 5 =0, 1 < p < n, if and only if there exist ordinary (p — 1)- and p-forms B and
p P p—1 14 P P p—1 p—1 p—1 p
Bsuchthata=(d B +(—1)’k B,d B).Hencea=d b, where b= (8, p).

Next consider Lie groups and Lie algebras and let G = GI(n) or one of its sub-groups. In
the present context it is natural to associate with G the semi-direct product of G and the Lie
algebra of G (viewed as an additive abelian group). Define the (associated) Lie group G by

G={ala=qa(l, A)}, (6)
a(l, A) = (o, 0) A (1, A) = (o, A),
3 Similarly rules for right exterior multiplication and right exterior derivatives can be obtained by identifying a

. p popHl . p p+l . , .. . .
generalized p-form a = (a, « ) with @ + ¢ A o . The resulting right algebra is isomorphic to the left exterior
algebra and the isomorphism can be used to identify the calculi. It is the left exterior algebra and the associated
exterior calculus which is always used in this article.
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where a is a generalized O-form, « belongs to the Lie group G (GL(n) or a subgroup), with
identity 1, and A is an ordinary 1-form with values in the Lie algebra of G. The product of
two elements of G, a = «(1, A) and b = B(1, B) is given by the above rules for left exterior
multiplication, and is ab = «B(1, B + B~ AB). The inverse of aisa™! = o~ !(1, —a¢Aa™")
and the identity is (1, 0), where O is the zero 1-form. Right fundamental 1-forms r are formally
defined to be forms of the type

dana!=da Ao —kada™", a[dA+kA A Ala™)), (7)
and satisfy the Maurer—Cartan equation
dr—rAr=0. ®)

Similarly left fundamental 1-forms I are formally defined by
a'Ada= (¢ 'de —kA,dA—kAANA+a 'da AA+AAa da).  (9)
When £ is non-zero 1 can be neatly written in the form

1= (h, =k~ '[dA+ 21 A L)),

A =oa 'da — kA, (10)
and | satisfies the Maurer—Cartan equation
dl+1A1=0. (11

Next, in order to construct generalized Cartan structure equations for generalized
connection and curvature forms on M, a generalized moving co-frame of I1-forms,
e’ = (0%, —©“), and a generalized Lie algebra valued 1-form I'j = (v}, —£27) are introduced.
When the aim is to identify the latter as a generalized affine connection the Lie algebra
corresponding to the generalized structure group, G, is gl(n) or a sub-algebra. The lower
case Latin indices range and sum over 1 to n. It will be convenient to use covariant
exterior derivatives and the generalized covariant exterior derivative is denoted by D. The
first generalized Cartan structure equation is given by

T = De’ = de” — e’ AT, (12)
The generalized torsion, the 2-form T, is in fact given by
T¢ = (d8” — 6° A wf — k@, —DO + 6" A QY),
where
DO = dO” + O A wf. (13)

Here D denotes an ordinary covariant exterior derivative. The second generalized Cartan
structure equation is given by

Fj =dI'j +T¢ AT}, (14)
where Fj is the generalized curvature of I';. A short computation shows that

Fj = (dwj + o A wp — kQp, —DQp),
where

DQj = dQy + Q) A wl — Q8 A wj. (15)

When 6 is a co-frame on M, and w{ are connection 1-forms with torsion k® and curvature

kS2;, the ordinary Cartan structure equations

do* — 6% A wf = kO“,

doy + 0! N ), =k}, (16)
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and the ordinary Bianchi identities

DO = 0" A Q4

DY =0, (17)
are equivalent to the two equations for generalized forms:

De’ =0, (18)

F; =0. (19)

Hence the ordinary Cartan structure equations for an affine connection are satisfied if and
only if equations (17) and (18) are satisfied, that is the generalized affine connection is ‘flat’
and hence

e’ = (b~ Hddx’,
Iy = (b~ Hid(b)j, (20)

where x’ are generalized O-forms and b = B2(8;, Bf) is a generalized O-form with values
in the Lie group G. Here g; has values in GL(n) (or the appropriate sub-group) and B has
values in the corresponding Lie algebra.

Generalized gauge transformations are determined by generalized 0-forms on M with
values in the Lie group G. The gauge transformations determined by an element of G,
a; = a’(5;, Aj), are given, for the generalized forms, by

e’ — (a")e,

Y — (a ")daj + (@ "HeTrSay,

De’ — (a_l)ZDe}’,

F; — (a ")!Fjaj (1)
These are equivalent to the following transformations of the ordinary forms

0" — (™56,

of — (@ dag + (@ ) wa) — kAL = of — kAS,

0% — (a O —alAS (@™ A b7,

QY — (@ Q5 — D,y AY +kAY A A, (22)

where D, denotes the covariant exterior derivative with respect to
d

o = (@ )daj + (@ Hlwiey.
These formulae show how the affine structure is encoded and the formalism provides a
unifying framework for different affine connections. A simple application is provided by the

following result.

Proposition 1. Let a metric on M have line element
ds® = n0° ® 6°, (23)

where 1,p=1pa are the components of the metric with respect to the co-frame 0%, are constant.
Let o}, = w} 0° be a general connection with torsion ®¢ = %@ZCGZ’ ANBC, 0 = -0,
and let Agy = Aupc0€. Then, if in the above generalized gauge transformations o = &,
and if Awpy = k™ '©wp), the transformed ordinary connection is metric. If, in addition,
Arar) = {1/2[Ocap — Obea — Oupel + k’lw(ac)h — k’lw(bc)a}ec, the transformed ordinary
connection is also torsion free, and hence is the Levi-Civita connection of the metric.
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It is also straightforward to define generalized connections on principal and associated bundles.
Rather than pursue that line in detail here, an illustration will be given in which generalized
forms are used to provide a simple formulation of the (possibly complex) Einstein vacuum
field equations in four dimensions. Here it will be assumed that k is not only non-zero but also
not equal to one. Upper case Latin indices sum and range over 0-1 and are two-component
spinor indices, [5]. Any 4-metric on a four dimensional manifold M can be written, locally, in
the form

ds2=aA®,3A+ﬂA®otA, (24)
where, @ and B* are spinor-valued 1-forms on M. Define the two generalized spinor valued
1-forms

rt = (@t —k7 ),

st = (B ko), (25)
and the generalized sl(2,C)-valued connection 1-form

'3 = (05, —Qp).

(26)
where

Q4 = dop + 0d A 0§, 27
and a)g‘ is an ordinary sl(2,C)-valued connection 1-form. The sl(2,C)-valued curvature 2-form
of '} is given by

Fi =dly +TE ATS = ([1 — k124, 0). (28)
Then it can be seen directly, or from [6], (see also [7]), that the metric is Ricci flat if and only if
the generalized spinor valued 1-forms r* and s* have vanishing generalized exterior covariant
derivatives, and the symmetric part of their generalized exterior product is an ordinary 2-form.
That is, the metric is Ricci flat if and only if ¥ A s are ordinary 2-forms and

Drt =dr* —r® ATZ =0,

Ds? =ds? —s® ATH =0. (29)
Here D is the generalized covariant exterior derivative determined by I'4. These conditions
encode the Ricci flatness of the metric and ensure that wj is the anti-self dual part of the Levi-
Civita spin connection. Imposition of the usual reality conditions leads to the real Einstein
equations. (Equations (29) are formally similar to the first order equations used by Plebanski
[8], in his analysis of half-flat geometries.)

In conclusion it should be noted that the concept of a generalized p-form discussed above
is a special case of a broader generalization in which generalized p-forms are represented
by n + 1-tuples of ordinary forms. Using the type of notation introduced by Sparling and

mentioned above, on an n dimensional manifold assume that » minus one-forms ¢, exist and
satisfy the conditions,

Sl /\5‘2.../\§n;£0,
dga = ka,
k,constants,a =1...n. (30)

Now define a generalized p-form to be

p+141 na1ay...ap—p

14 P
a=a+a& Agy+... ASay N Say - N Sa,_, a3n
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. . . k@G k[al...ak,l,]
or, including zeros, the equivalent (n+1) tuple. Here o =« ,k = pton, are

ordinary k-forms (all sub-scripted indices ranging and summing over 1 to n). The rules for
exterior multiplication and exterior derivative can be computed immediately from the last two
equations. Extensions to include super-symmetry and the infinite dimensional case appear to
pose no major formal problems. Further developments, both real and complex, of the above
formalism, including the definitions of Lie derivatives, other generalized connection and metric
geometries, generalized Hodge duality, co-differentials or adjoints, inner products, Laplacians,
co-homology, and physical applications, will be presented elsewhere.
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