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Abstract
We show that every second-order ODE defines a four-parameter family of
projective connections on its two-dimensional solution space. In a special case
of ODEs, for which a certain point transformation invariant vanishes, we find
that this family of connections always has a preferred representative. This
preferred representative turns out to be identical to the projective connection
described in Cartan’s classic paper (Cartan E 1924 Bull. Soc. Math. France 52
205–41, 1955 Oeuvres III 1 825–62).

PACS numbers: 02.30.Hq, 02.40.Dr, 02.40.Hw, 04.20.Cv

1. Introduction

In recent years there has been a return of interest in the two related classical issues associated
with differential equations: (1) the equivalence problem (under a variety of transformation
types) for the equations and (2) the natural geometric structures induced by the equations on
their solution spaces. The original studies began, among others, with the works of Lie [10]
and his student, Tresse [11, 12]. This was soon followed by Wünschmann’s contribution
[13] and reached its peak with the work of Cartan [2] and Chern [3]. Cartan devised an
extremely powerful but difficult scheme for the analysis of the equivalence problem under
the three classes of transformation: fibre preserving, point and contact. Though equivalence
relations were established for a variety of equations and transformation classes, the calculations
were extraordinarily complicated and long and, as a consequence, many problems were only
partially completed. (The modern advent of algebraic computers has allowed the completion
of many of these problems and opened the door to a variety of new problems [4, 5, 7, 8].) Early
on in these studies—then confined to general second- and third-order ODEs—it was realized
that the equations themselves defined certain geometric structures on their (finite-dimensional)
solution spaces. For example, Wünschmann discovered that a (large) class of third-order ODEs
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define a conformal (Lorentzian) metric on the three-dimensional solution space. This class
was defined by the vanishing of a certain function of the third-order equation. Later, in the
context of Cartan and Chern’s work, this function was understood as a (relative) invariant of
the equation under contact transformations and became known as the Wünschmann invariant.
(As an aside we mention that in the modern context of general relativity, this work was
generalized to pairs of second-order ODEs whose solution space is four dimensional. The
vanishing of a generalized Wünschmann invariant for these equations leads to a conformal
Lorentzian metric on the solution space. All four-dimensional Lorentzian metrics are
obtainable in this manner [4, 5].)

Cartan, following Lie and Tresse, using his scheme for the analysis of second-order ODEs
under point transformations realized [1] that a large class of second-order ODEs induced a
natural projective structure on their two-dimensional solution space. This class was defined
(analogously to the third-order ODE case) by the vanishing of a certain Wünschmann-like
function of the second-order equation.

In the present work we return to the problem of the geometry associated with any second-
order ODE. Without recourse to Cartan’s equivalence technique, we find that any second-order
ODE defines, via the torsion-free first Cartan structure equation, a four-parameter family of
projective connections on the solution space.

In the second section we review the general theory of normal projective connections on
n-manifolds from the point of view of Cartan connections. We also define projective structures
as equivalence classes of certain sets of 1-forms on these manifolds.

As an example of projective connections, in the third section, we consider the geometry
associated with a second-order ODE. We find a natural four-parameter family of projective
connections living on its two-dimensional space of solutions. In general, these connections
are quite complicated. They are parametrized by the solutions of a certain linear ODE
of fourth order, which is naturally associated with our ODE. We find that among all the
ODEs y ′′ = Q(x, y, y ′), there is a large class for which the associated fourth-order ODE is
homogeneous. This class of equations is characterized in terms of the vanishing of a certain
function constructed solely from Q and its derivatives, which is directly analogous to the
Wünschman function. It turns out that the trivial solution of the homogeneous fourth-order
ODE singles out a preferred connection from the four-parameter family. Then, this class of
second-order ODEs together with this preferred connection turns out to be identical to the
class that Cartan obtained from a study of the equivalence problem. In the last section we
discuss the relationship between our and Cartan’s method of obtaining this class.

The work described here is part of a larger project, namely the study of natural geometric
structures induced on the finite-dimensional solution spaces of both ODEs and certain
overdetermined PDEs. In an earlier work [6] we saw how all four-dimensional conformal
metrics and Cartan normal conformal connections were contained in the space of pairs of
PDEs satisfying generalized Wünschmann equations. (Similar results hold for all third-order
ODEs satisfying the Wünschmann equation.) In the present work we have extended these
results to unique Cartan normal projective connections associated with second-order ODEs
satisfying a Wünschmann-like equation.

2. Projective connection

2.1. Cartan connection

In this subsection we will first define a Cartan connection and then specialize it to a Cartan
projective connection (see [9] for more details).
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Consider a structure (P,H,M,G) such that

• (P,H,M) is the principal fibre bundle, over an n-dimensional manifold, with a structure
Lie group H;

• G is a Lie group, of dimension dim G = dim P, for which H is a closed subgroup.

Denote by B∗ the fundamental vector field associated with an element B of the Lie algebra H ′

of H. Let ω be a G′-valued 1-form on P such that

• ω(B∗) = B for each B ∈ H ′;
• R∗

bω = b−1ωb for each b ∈ H ;
• ω(X) = 0 if and only if the vector field X vanishes identically on P.

Then ω is called Cartan’s connection on (P,H,M,G).
The Cartan projective connection is a Cartan connection for which

G = SL(n + 1, R)/(centre),

H =
{(

A 0
AT (det A)−1

)
, A ∈ GL(n, R), A ∈ Rn

}/
(centre)

In the next two subsections, we present a convenient way of defining a projective connection
on a local trivialization U × H of the bundle P.

2.2. Normal projective connection on U ∈ M

Here, working on the base space M we define a normal projective connection on U ⊂ M .
Consider a coframe (ωi), i = 1, 2, . . . , n, on an open neighbourhood U of M. Suppose

that in addition you have n2, 1-forms ωi
j , i, j = 1, 2, . . . , n, on M such that

dωi + ωi
j ∧ ωj = 0, ∀ i = 1, 2, . . . , n. (1)

Then, the system of forms
(
ωi, ωi

j

)
defines a torsion-free connection on U.

Take n arbitrary 1-forms (ωi), i = 1, 2, . . . , n, on U. The forms
(
ωi, ωi

j , ωj

)
define the

n2 2-forms �i
j and n 2-forms �j on U by

�i
j = dωi

j + ωi
k ∧ ωk

j + ωi ∧ ωj + δi
jω

k ∧ ωk, (2)

�i = dωi + ωk ∧ ωk
j . (3)

Decompose �i
j onto the basis (ωi),

�i
j = 1

2�i
jklω

k ∧ ωl.

Find all (ωi) for which the so-called normal condition

�i
jil = 0, ∀ j, l = 1, 2, . . . , n, (4)

is satisfied. It turns out that if n � 2, the forms ωi are determined uniquely by equations (4).
Indeed, by using the Riemann 2-forms

Ri
j = 1

2Ri
jklω

k ∧ ωl = dωi
j + ωi

k ∧ ωk
j (5)

and the Ricci tensor

Rjl = Ri
jil (6)

of the connection ωi
j , one finds that

ωi =
[

1

1 − n
R(ij) − 1

1 + n
R[ij ]

]
ωj . (7)
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Having determined the forms ωi , collect the system of 1-forms
(
ωi, ωi

j , ωj

)
into a matrix

ωu =
(

ωi
k − 1

n+1ωl
lδ

i
k ωi

ωk − 1
n+1ωl

l

)
. (8)

Note that ωu is a 1-form on U which has values in the Lie algebra G′ = SL′(n + 1, R). It is
called a normal projective connection on U.

2.3. Normal projective connection on U × H

Earlier, we defined a Cartan projective connection on the principal H-bundle (P,M,H,G).
Here we show how the normal projective connection on U ⊂ M can be lifted to (P,M,H,G).

Choose a generic element of H in the form

b =
(

Ai
k 0

Ak a−1

)
, (9)

where
(
Ai

j

)
is a real-valued n × n matrix with nonvanishing determinant a = det

(
Ai

j

)
, and

(Ai) is a real row n-vector.
Define a G′-valued 1-form ω on U × H by

ω = b−1ωub + b−1 db. (10)

The 1-form ω defines a projective connection on U ×H . This projective connection on U ×H

is called the normal projective connection. The term normal refers to condition (4), which
this connection satisfies.

The explicit formulae for the normal projective connection (10) are written below:

ω =
(

ω′i
k − 1

n+1ω′l
lδ

i
k ω′i

ω′
k − 1

n+1ω
′l

l

)
, (11)

where

ω′i = a−1A−1i
jω

j , (12)

ω′i
j = A−1i

kω
k
lA

l
j + A−1i

kω
kAj + δi

jAlA
−1l

kω
k + A−1i

k dAk
j + δi

j a
−1 da, (13)

ω′
i = a

(
ωkA

k
i − AlA

−1l
jω

j
kA

k
i − AlA

−1l
jω

jAi + dAi − AlA
−1l

j dAj
i

)
, (14)

and we have used the fact that

da = aA−1l
k dAk

l. (15)

The curvature

� = dω + ω ∧ ω (16)

of ω has the form

� = b−1�ub, where �u = dωu + ωu ∧ ωu =
(

�i
j − 1

n+1δ
i
j�

l
l 0

�j − 1
n+1�l

l

)
.

(17)

It is worthwhile to note that if n � 3, then the vanishing of �i
j implies the vanishing of �i .

This follows from the Bianchi identity d�−�∧ω+ω∧� = 0. It is known that in dimension
n = 2, the forms �i

j are identically equal to zero. In this dimension, all the information about
the curvature of the normal projective connection is encoded in the forms �i .

Remark. To globalize the local trivialization construction of the normal projective connection
described above, one needs assumptions about the topology of M. In the local treatment we
use in this paper, these assumptions are not necessary.
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2.4. Projective structure on M

An alternative view of formulae (12)–(14) is to consider them as an equivalence class of
connections on U. This motivates the following definition.

A projective structure on an n-dimensional manifold M is an equivalence class
[(

ωi, ωi
j

)]
of sets of 1-forms

(
ωi, ωi

j

)
on M such that

• (ωi), i = 1, 2, . . . , n, is a coframe on M such that

dωi + ωi
j ∧ ωj = 0, ∀ i = 1, 2, . . . , n

• two sets
(
ωi, ωi

j

)
and

(
ω′i , ω′i

j

)
are in the same equivalence class iff there exist functions

Ai
j and Ai on M such that

ω′i = a−1A−1i
jω

j (18)

and

ω′i
j = A−1i

kω
k
lA

l
j + A−1i

kω
kAj + δi

jAlA
−1l

kω
k + A−1i

k dAk
j + δi

ja
−1 da, (19)

with a = det
(
Ai

j

) �= 0 at every point of M.

It turns out that all the torsion-free connections from the equivalence class of a given projective
structure have the same set of geodesics on M. To see this, consider a representative

(
ωi, ωi

j

)
of a projective structure on M. Let (ei) be the set of n-vector fields dual to the coframe (ωi),
i.e. ωi(ej ) = δi

j . Let γ (t) be a geodesic curve, for the connection 1-forms ωi
j = ωi

jkω
k.

This means that if V = d
dt

= V iei is a vector tangent to this curve, then

dV i

dt
+ ωi

jkV
jV k = fV i, (20)

with a certain function f on M. If
(
ω′i , ω′i

j

)
belongs to the same projective structure as(

ωi, ωi
j

)
, then equation (20) for V i and the relations between

(
ωi, ωi

j

)
and

(
ω′i , ω′i

j

)
imply

that in the coframe (ω′i), the V ′i component of the vector V = V ′ie′
i satisfies geodesic equation

dV ′i

dt
+ ω′i

jkV
′jV ′k = f ′V ′i , (21)

with merely new function f ′ = f + 2aAjV
(′j). Thus, the curve γ (t) is also a geodesic in

connection ω′i
j .

Note that if Ai
j = δi

j , then

ω′i = ωi (22)

and

ω′i
j = ωi

j + ωiAj + δi
jA, (23)

with A = Aiω
i . Thus, for a given projective structure

(
ωi, ωi

j

)
, fixing the coframe does

not fix the gauge in the choice of ω′i
j . There exists an entire class (23) of connections that,

together with the fixed coframe (ωi), represents the same projective structure.

2.5. Equivalence of projective structures

We say that two projective structures
(
ωi, ωi

j

)
and

(
ω̄i, ω̄i

j

)
on two respective n-dimensional

manifolds M and M̄ are (locally) equivalent iff there exists a (local) diffeomorphism
φ : M → M̄ and functions Ai

j and Aj on M such that

φ∗(ω̄i) = a−1A−1i
jω

j
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and

φ∗(ω̄)i j = A−1i
kω

k
lA

l
j + A−1i

kω
kAj + δi

jAlA
−1l

kω
k + A−1i

k dAk
j + δi

ja
−1 da,

with a = det
(
Ai

j

) �= 0.
If, given a projective structure

(
ωi, ωi

j

)
on M, we have a diffeomorphism φ : M → M

with Ai
j and Aj as above, such that

φ∗(ωi) = a−1A−1i
jω

j (24)

and

φ∗(ω)i j = A−1i
kω

k
lA

l
j + A−1i

kω
kAj + δi

jAlA
−1l

kω
k + A−1i

k dAk
j + δi

ja
−1 da, (25)

then we call φ a symmetry of
(
ωi, ωi

j

)
. Locally, a one-parameter group of symmetries

φt : M → M of
(
ωi, ωi

j

)
is expressible in terms of the corresponding vector field X, called

an infinitesimal symmetry. Taking the Lie derivative with respect to X of equations (24) and
(25), one obtains the following characterization of infinitesimal symmetries.

A vector field X is an infinitesimal symmetry of a projective structure
(
ωi, ωi

j

)
iff there

exist functions Bi
j and Bj on M such that

LXωi = − (
Bi

j + Bk
kδ

i
j

)
ωj, (26)

LXωi
j = ωi

jB
l
j − Bi

lω
l
j + ωiBj + δi

jBlω
l + dBi

j + δi
j dBk

k. (27)

It is easy to check that a Lie bracket [X1,X2] of two infinitesimal symmetries is an infinitesimal
symmetry, hence the infinitesimal symmetries generate a Lie algebra. This is the Lie algebra
of infinitesimal symmetries of the structure

(
ωi, ωi

j

)
.

3. Projective structures of second-order ODEs

3.1. Contact forms associated with a second-order ODE

We now show that a second-order ODE defines a projective structure on the space of its
solutions.

A second-order ODE

d2y

dx2
= Q

(
x, y,

dy

dx

)
(28)

for a function R 	 x → y = y(x) ∈ R can be alternatively written as a system of the two
first-order ODEs

dy

dx
= p,

dp

dx
= Q(x, y, p) (29)

for two functions R 	 x → y = y(x) ∈ R and R 	 x → p = p(x) ∈ R. This system defines
two (contact) 1-forms

ω1 = dy − p dx, ω2 = dp − Q dx, (30)

which live on a three-dimensional manifold J 1, the first jet space, parametrized by coordinates
(x, y, p). All the information about the ODE (28) is encoded in these two forms. For example,
any solution to (28) is a curve γ (x) = (x, y(x), p(x)) ⊂ J 1 on which forms (30) vanish.

Given an ODE (28), we look for a set
(
ω1

1, ω
1

2, ω
2

1, ω
2

2
)

of 1-forms on J 1 such that

dω1 + ω1
1 ∧ ω1 + ω1

2 ∧ ω2 = 0, dω2 + ω2
1 ∧ ω1 + ω2

2 ∧ ω2 = 0. (31)
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Introducing the third 1-form

ω3 = dx, (32)

which together with ω1 and ω2 constitutes a basis of 1-forms on J 1, we find that

dω1 = −ω2 ∧ ω3, dω2 = −(Qyω
1 + Qpω2) ∧ ω3, (33)

and that the general solution to ‘vanishing torsion’ equations (31) is

ω1
1 = ω1

11ω
1 + ω1

12ω
2, ω1

2 = ω1
12ω

1 + ω1
22ω

2 − ω3, (34)

ω2
1 = ω2

11ω
1 + ω2

12ω
2 − Qyω

3, ω2
2 = ω2

12ω
1 + ω2

22ω
2 − Qpω3, (35)

with some unspecified functions
(
ω1

11, ω
1

12, ω
1

22, ω
2

11, ω
2

12, ω
2

22
)

on J 1. Here, and in the
following, we denote the partial derivatives with respect to a variable, as a subscript on the
function whose partial derivative is evaluated, e.g. Qy := ∂Q

∂y
.

The annihilator of the contact forms ω1 and ω2 is spanned by the vector field

D = ∂x + p∂y + Q∂p, (36)

which is defined up to a multiplicative factor. Its integral curves, which coincide with the
solutions γ (x) of the original equation, are intrinsically defined. Also, the notion of surfaces
S, transversal to D is unambiguous.

Any choice of 1-forms
(
ω1

1, ω1
2, ω2

1, ω2
2
)

of the form given by equations (34)
and (35) on the jet space J 1 determines projective structures

[(
ωk; ωi

j

)
|S

]
on each two-

dimensional surface S transversal to D. These projective structures are defined on each S by
transformations (18) and (19) applied to the 1-forms

(
ωk; ωi

j

)
|S . They, in turn, were defined

as the restrictions of the 1-forms
(
ω1, ω2; ω1

1, ω
1

2, ω
2

1, ω
2

2
)

from J 1 to S. Given a particular
choice of functions ωi

jk in (34) and (35) and a pair of transversal to D surfaces S and S′, the
projective structures

[(
ωk; ωi

j

)
|S
]

and
[(

ωk; ωi
j

)
|S′

]
will be, in general, inequivalent. It is

therefore interesting to ask whether there exists a choice of forms (34) and (35) which, on all
transversal surfaces S, defines the same (modulo equivalence) projective structure. Locally,
this requirement is equivalent to the existence of a choice of forms (34) and (35) on J 1

such that the Lie derivative of the forms
(
ωi; ωk

j

)
along D is simply the infinitesimal version

of the transformations (24) and (25). Explicitly, we ask for the existence of ωi
jk of (34) and

(35) and the existence of functions Bi
j and Bk on J 1 such that

LDωi = − (
Bi

j + Bk
kδ

i
j

)
ωj, (37)

LDωi
j = ωi

jB
l
j − Bi

lω
l
j + ωiBj + δi

jBlω
l + dBi

j + δi
j dBk

k i, j = 1, 2. (38)

If we were able to find a solution ωi
jk to the above equations, it would generate the same

projective structure on all surfaces transversal to D. This structure would therefore descend to
the two-dimensional space of integral lines of D endowing it, or what is the same, endowing
the parameter space of solutions to the original ODE, with a projective structure.

To solve equations (37) and (38), we take the most general forms
(
ω1

1, ω
1

2, ω
2

1, ω
2

2
)

(from (34) and (35)) that are associated with the ODE. We then use the gauge freedom (22)
and (23) preserving

ω1 = dy − p dx, ω2 = dp − Q dx

to achieve

ω1
1 = 0
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everywhere on J 1. The forms
(
ω1, ω2; ω1

1, ω
1

2, ω
2

1, ω
2

2
)

with ω1
1 = 0, when restricted to

each S, will therefore represent the same projective structure on S as the original general forms
we started with. Thus, without loss of generality, we solve equations (37) and (38) for forms

ω1 = dy − p dx, ω2 = dp − Q dx (39)

and

ω1
1 = 0, ω1

2 = ω1
22ω

2 − ω3,
(40)

ω2
1 = ω2

11ω
1 + ω2

12ω
2 − Qyω

3, ω2
2 = ω2

12ω
1 + ω2

22ω
2 − Qpω3.

It is a matter of straightforward calculation to achieve the following proposition.

Proposition 1. The forms (39) and (40) satisfy equations (37) and (38) if and only if

ω2
22 = Dω1

22 + 2Qpω1
22,

ω2
12 = 1

4

[−D2ω1
22 − 3QpDω1

22 +
(
3Qy − 2Q2

p − 2DQp

)
ω1

22 − Qpp

]
(41)

ω2
11 = 1

6

[
D3ω1

22 + 3D2ω1
22 +

(
5DQp + 2Q2

p − 7Qy

)
Dω1

22

+ (2D2Qp − 3DQy + 4QpDQp − 8QpQy)ω
1

22 + DQpp − 4Qpy

]
and ω1

22 satisfies the differential equation

D4ω1
22 + a4D

3ω1
22 + a3D

2ω1
22 + a2Dω1

22 + a1ω
1

22 + a0 = 0 (42)

with coefficients a0, a1, a2, a3, a4 given by

a4 = 2Qp,

a3 = (
8DQp − Q2

p − 10Qy

)
,

a2 = (
7D2Qp − 10DQy + 3QpDQp − 2Q3

p − 10QpQy

)
,

(43)
a1 = (

2D3Qp − 3D2Qy + 4(DQp)2 + 2QpD2Qp − 5QpDQy

− 4Q2
pDQp − 14QyDQp + 2Q2

pQy + 9Q2
y

)
,

a0 = D2Qpp − 4DQpy − QpDQpp + 4QpQpy − 3QppQy + 6Qyy.

Thus, modulo equivalence, the only forms (30)–(35) that generate the same projective structure
on all surfaces transversal to D are given by (40) and (41) with the coefficient ω1

22 satisfying
differential equations (42) and (43). Now, recalling that the space of solutions of the second-
order ODE can be identified with the two-dimensional space of integral lines of D in J 1, we
obtain the following theorem.

Theorem 1. Every solution ω1
22 to the fourth-order differential equations (42) and (43)

defines a natural projective structure on the space of solutions J 1/D of the second-order ODE
y ′′ = Q(x, y, y ′). The structure is given by the projection from J 1 to J 1/D of forms

ω1 = dy − p dx, ω2 = dp − Q dx

with

ω1
1 = 0, ω1

2 = ω1
22ω

2 − ω3, ω3 = dx,

ω2
1 = 1

6

[
D3ω1

22 + 3D2ω1
22 +

(
5DQp + 2Q2

p − 7Qy

)
Dω1

22 + (2D2Qp − 3DQy

+ 4QpDQp − 8QpQy)ω
1

22 + DQpp − 4Qpy

]
ω1 + 1

4

[−D2ω1
22

− 3QpDω1
22 +

(
3Qy − 2Q2

p − 2DQp

)
ω1

22 − Qpp

]
ω2 − Qyω

3,

ω2
2 = 1

4

[−D2ω1
22 − 3QpDω1

22 +
(
3Qy − 2Q2

p − 2DQp

)
ω1

22 − Qpp

]
ω1

+
[
Dω1

22 + 2Qpω1
22

]
ω2 − Qpω3.
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Since equations (42) and (43) are of fourth order, they have four independent solutions.
Thus, all the corresponding projective structures on J 1/D should be treated on equal footing.
However, in the case of second-order ODEs satisfying some additional conditions, some of
these structures may be more distinguished. In particular, Lie [10] and Cartan [1] considered
second-order ODEs satisfying the additional condition

a0 = D2Qpp − 4DQpy − QpDQpp + 4QpQpy − 3QppQy + 6Qyy ≡ 0. (44)

For such ODEs, equations (42) and (43) are homogeneous and as such have a preferred
solution ω1

22 = 0. Thus, for this class of second-order ODEs, there exists a distinguished,
natural projective structure on J 1/D associated with the solution ω1

22 = 0 of (42) and (43).
Explicitly, for any second-order ODE satisfying a0 ≡ 0, this structure is given by

ω1 = dy − p dx, ω2 = dp − Q dx (45)

with

ω1
1 = 0, ω1

2 = −ω3, ω3 = dx, (46)

ω2
1 = 1

6 (DQpp − 4Qpy)ω
1 − 1

4Qppω2 − Qyω
3, (47)

ω2
2 = − 1

4Qppω1 − Qpω3. (48)

In general, any projective structure described by theorem 1 leads to a projective SL(3, R)

connection on an eight-dimensional bundle P → J 1/D. One of the features of the projective
structures, which via ω1

22 = 0 are associated with a0 ≡ 0, is that each of them leads to a normal
projective SL(3, R) connection on P. Using the local parameters (x, y, p, α, β, γ, ν, µ) for P
and equations (11) and (14), (45)–(48), we find that this SL(3, R) connection reads

ω =




1
3 (�2 − 2�1) −θ3 θ1

−�3
1
3 (�1 − 2�2) θ2

�5 −�4
1
3 (�1 + �2)


 , (49)

where (θ1, θ2, θ3,�1,�2,�3,�4,�5) are given by

θ1 = αω1, θ2 = β(ω2 + γω1), θ3 = α

β
(ω3 + νω1),

�1 = d log α − µθ1 +
ν

β
θ2 − βγ

α
θ3,

�2 = d log β − 1

4α
[6γ ν + 4νQp − Qpp + 2αµ]θ1 + 2

ν

β
θ2 +

β

α
[γ + Qp]θ3,

�3 = β

α
dγ − β

6α2
[DQpp − 6γ 2ν − 6γ νQp + 3γQpp − 4Qpy + 6νQy]θ1

− 1

4α
[2γ ν − Qpp + 2αµ]θ2 − β2

α2
[γ 2 + γQp − Qy]θ3,

�4 = 1

β
dν − 1

6αβ
[6γ ν2 + 6ν2Qp − 3νQpp + Qppp]θ1 +

ν2

β2
θ2

− 1

4α
[−2γ ν − 4νQp + Qpp + 2αµ]θ3,
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2�5 = dµ + µd log α − ν

α
dγ +

γ

α
dν − 1

24α2

[
12α2µ2 + 48νQpy − 48ν2Qy − 12νDQpp

+ 36γ 2ν2 + 48γ ν2Qp − 36γ νQpp + 12γQppp + 8DQppp + 8QpQppp

− 12Qppy − 3Q2
pp

]
θ1 +

1

6αβ
[6γ ν2 − 3νQpp + Qppp + 6ανµ]θ2

− β

6α2
[DQpp − 6γ 2ν − 12γ νQp + 3γQpp − 4Qpy + 12νQy + 6αγµ]θ3.

The curvature of this connection reads

� =




0 0 0

0 0 0
1

6α2β
b01 θ1 ∧ θ2 − 1

6αβ2 b0 θ1 ∧ θ2 0


 ,

where we have introduced

b0 = Qpppp and b01 = Db0 + (γ + 2Qp)b0.

The relatively simple form of this curvature agrees with the general theory of normal projective
connections for n = 2 (compare with the note at the end of section 2.3).

The following section is devoted to explaining the Lie/Cartan motivation for considering
the class of ODEs leading to the structure defined above.

3.2. Equivalence classes of second-order ODEs modulo point transformations

A point transformation of variables

(x, y) = (x(x̄, ȳ), y(x̄, ȳ)) (50)

applied to the second-order ODE

y ′′ = Q(x, y, y ′) (51)

changes it to the new form

ȳ′′ = Q̄(x̄, ȳ, ȳ ′). (52)

The function Q = Q(x, y, y ′) transforms in a rather complicated way into a new function
Q̄ = Q̄(x̄, ȳ, ȳ′). But, using appropriate derivatives of Q, one can construct functions which
have nice transformation properties under transformations (50). In particular, the relative
invariants of equation (51) are such functions which, under transformations (50), scale by
a factor. Their vanishing is the point invariant property of the equation. One such relative
invariant is

a0 = D2Qpp − 4DQpy − QpDQpp + 4QpQpy − 3QppQy + 6Qyy,

the same function that appears in equations (43). This fact was already known to Lie
[10]. Cartan [1] considered the problem of finding all point invariants of (51). He used
his equivalence method, which enabled him to determine another relative invariant

b0 = Qpppp.

Both a0 and b0 are of the same order and it follows from the Cartan analysis that equation (51)
has no more point invariants of order less than or equal to 4. Thus, according to Cartan, the
second-order ODEs modulo point transformations split into four major classes which are

(i) a0 = b0 = 0;
(ii) a0 = 0 and b0 �= 0;
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(iii) a0 �= 0 and b0 = 0;
(iv) a0 �= 0 and b0 �= 0.

Cases (i) and (ii) were analysed by Cartan completely. In particular, he showed that if a0 = 0,
then with each point equivalence class of second-order ODEs is associated a natural normal
projective connection, whose curvature provides all the point invariants of the class. This
connection equips the space of solutions of each of the equations from the equivalence class
with a projective structure. It follows that the projective structures originating in this way from
different equations from the same point equivalence class are equivalent. This distinguished
projective structure associated with the class of equation y ′′ = Q(x, y, y ′) coincides with the
structure (47) defined in the previous section.
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