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Abstract. We show that every Sasakian manifold in dimensions 2k + 1 is locally generated by
a free real function of 2k variables. This function is a Sasakian analogue of the Kähler potential
for the Kähler geometry. It is also shown that every locally Sasakian–Einstein manifold in 2k + 1
dimensions is generated by a locally Kähler–Einstein manifold in dimension 2k.

PACS numbers: 0240

1. Introduction

The Sasakian structure, which is defined on an odd dimensional manifold is, in a sense, the
closest possible analogue of the Kähler geometry of even dimension. It was introduced by
Sasaki [12] in 1960, who considered it as a special kind of contact geometry. Sasakian structure
consists, in particular, of the contact 1-form η and the Riemannian metric g. The differential of
η defines a 2-form, which constitutes an analogue of the fundamental form of Kähler geometry.

Sasakian geometry was primarily studied as a substructure within the category of contact
structures. A review of this approach can be found in [1, 14]. In this Letter we exploit the
analogy between Sasakian and Kähler geometry. We show that the well known fact that a
Kähler geometry can be locally generated by a Kähler potential has its Sasakian counterpart.
This result may be of some use in constructing a vast family of examples of Sasakian and
Sasakian–Einstein structures.

The Sasakian and Sasakian–Einstein structures appear in physics in the context of the
string theory. It turns out that a metric cone (C(S) = R+ × S, ḡ = dr2 + r2g) over a
Sasakian–Einstein manifold (S, g) is Kähler and Ricci flat, i.e. it constitutes a Calabi–Yau
manifold. Moreover, the Sasakian–Einstein manifolds in dimensions 2k + 1 and Sasakian
manifolds with three Sasakian structures in dimension 4k + 3 are related to the Maldacena
conjecture [3, 4, 6, 13]. It turns out that they are one of very few structures which can serve
as a compact factor S in the (anti-de Sitter) ×S background for classical field theories which,
via the Maldacena conjecture, correspond to the large N limit of certain quantum conformal
field theories.

A formal definition of a Sasakian manifold is as follows.

Definition 1
Let S be a (2k + 1)-dimensional manifold equipped with a structure (φ, ξ, η, g) such that:
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(i) φ is a (1,1) tensor field,
(ii) ξ is a vector field,

(iii) η is a field of a 1-form,
(iv) g is a Riemannian metric.

Assume, in addition, that for any vector fieldsX and Y on S, (φ, ξ, η, g) satisfy the following
algebraic conditions:

(1) φ2X = −X + η(X)ξ ,
(2) η(ξ) = 1,
(3) g(φX, φY ) = g(X, Y )− η(X)η(Y ),
(4) g(ξ,X) = η(X),

and the following differential conditions:

(5) Nφ + dη ⊗ ξ = 0, where Nφ(X, Y ) = [φX, φY ] + φ2[X, Y ] − φ[φX, Y ] − φ[X,φY ] is
the Nijenhuis tensor for φ,

(6) dη(X, Y ) = g(φX, Y ).

Then S is called a Sasakian manifold.

Example 1
A standard example of a Sasakian manifold is the odd dimensional sphere

S2k+1 = { Ck+1 � (z1, . . . , zk+1) : |z1|2 + . . . + |zk+1|2 = 1 } ⊂ Ck+1,

viewed as a submanifold of Ck+1. Let J be the standard complex structure on Ck+1, g̃ the
standard flat metric on Ck+1 ≡ R2k+2, and n be the unit normal to the sphere. The vector
field ξ on S2k+1 is defined by ξ = −Jn. If X is a tangent vector to the sphere then JX
uniquely decomposes onto the part parallel to n and the part tangent to the sphere. Denote this
decomposition by JX = η(X)n + φX. This defines the 1-form η and the tensor field φ on
S2k+1. Denoting the restriction of g̃ to S2k+1 by g we obtain (φ, ξ, η, g) structure on S2k+1. It
is a matter of checking that this structure equips S2k+1 with a structure of a Sasakian–Einstein
manifold. This construction is, in a certain sense, a Sasakian counterpart of the Fubini–Study
Kähler structure on CP k .

Notation
We adapt the following notation: K,l denotes the partial derivative of a function K with
respect to the coordinate zl . The complex conjugate of an indexed quantity, e.g. of aij , is

usually denoted by a bar over it, i.e. aij . Our notation is: aij = āī
j̄
. The symmetrized tensor

products of 1-forms η and λ is denoted by ηλ = 1
2 (η ⊗ λ + λ⊗ η).

The main result
The purpose of this letter is to prove the following theorem, which locally characterizes all
Sasakian and Sasakian–Einstein manifolds.

Theorem
Let U be an open set of Ck × R and let (z1, z2, . . . , zk, x) be Cartesian coordinates in U .
Consider:

a vector field ξ = ∂x
a real-valued function K on U such that ξ(K) = 0
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an 1-form

η = dx + i
k∑

m=1

(K,mdzm)− i

k∑
m̄=1

(K,m̄dz̄m̄)

a bilinear form

g = η2 + 2
k∑

m,k̄=1

K,mk̄dz
mdz̄k̄

a tensor field

φ = −i
k∑

m=1

[(∂m − iK,m∂x)⊗ dzm] + i
k∑

m̄=1

[(∂m̄ + iK,m̄∂x)⊗ dz̄m̄].

(I) If the function K is chosen in such a way that the bilinear form g has the positive
definite signature, then U equipped with the structure (φ, ξ, η, g) is a Sasakian manifold.
Moreover, every Sasakian manifold can locally be generated by such a function K .

(II) The above Sasakian structure satisfies Einstein equationRic(g) = λg if and only ifλ = 2k
and the function K satisfies

−[log det(K,ij̄ )],mn̄ = 2(k + 1)K,mn̄ .

2. Almost contact versus Sasakian manifolds

Definition 2
Consider a (2k + 1)-dimensional manifold S equipped with a structure consisting of a (1,1)
tensor field φ, a vector field ξ and a field of an 1-form η. Assume, in addition, that for every
vector field X on S the triple (ξ, η, φ) satisfies the following algebraic conditions:

(1) φ2X = −X + η(X)ξ ,
(2) η(ξ) = 1.

Then S is called an almost contact manifold. If, in addition, an almost contact manifold
(S, (ξ, η, φ)) is equipped with a Riemannian metric g such that for every vector fields X and
Y on S we have

(3) g(φX, φY ) = g(X, Y )− η(X)η(Y ),
(4) g(ξ,X) = η(X),

then the almost contact manifold is called an almost contact metric manifold. Note that every
Sasakian manifold is an almost contact metric manifold.

Let TCS be the complexification of the tangent bundle of an almost contact manifold S. The
almost contact structure (ξ, η, φ) on S defines the decomposition

TCS = C ⊗ ξ ⊕N ⊕ N̄,

where C ⊗ ξ , N and N̄ are eigenspaces of φ with eigenvalues 0, −i and i, respectively.
We say that a vector subbundleZ of TCS is involutive if and only if [�(Z), �(Z)] ⊂ �(Z),

where �(Z) denotes the set of all sections of Z.

Lemma
For an almost contact structure the condition Nφ + dη ⊗ ξ = 0 is satisfied if and only if the
bundle N is involutive, [�(N), �(N)] ⊂ �(N), and [ξ, �(N)] ⊂ �(N).
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Proof
LetX, Y ∈ �(N). Making use of the eigenvalue property of φ and of property (1) of definition
2, we get the following expressions for the Nijenhuis tensor of φ:

Nφ(X, Y ) = −2[X, Y ] + 2iφ([X, Y ]) + η([X, Y ])ξ,

Nφ(X, Ȳ ) = η([X, Ȳ ])ξ,

Nφ(X, ξ) = −[X, ξ ] + iφ([X, ξ ]) + η([X, ξ ])ξ.

Observe that the last component of the above formulae is the action of −dη ⊗ ξ on (X, Y ),
(X, Ȳ ) and (X, ξ), respectively. Therefore Nφ + dη ⊗ ξ = 0 if and only if

φ([X, Y ]) = −i[X, Y ]

and

φ([X, ξ ]) = −i[X, ξ ].

This finishes the proof.

Corollary
For an almost contact structure satisfying Nφ + dη ⊗ ξ = 0 (in particular for a Sasakian
structure) the bundle C ⊗ ξ ⊕N is involutive.

3. Sasakian geometry in a null frame

Let (S, (ξ, η, φ, g)) be a Sasakian manifold of dimension 2k + 1. The algebraic conditions
(1)–(4) of definition 1 imply an existence of a local basis (ξ,mi, m̄ī), i, ī = 1, 2, . . . , k, of
complex-valued vector fields on S, with a cobasis (η, µi, µ̄ī ), such that

g = η2 + 2
k∑

l=l̄,l=1

µlµ̄l̄, (1)

φ = i

k∑
j̄=1

(m̄j̄ ⊗ µ̄j̄ )− i

k∑
j=1

(mj ⊗ µj). (2)

Since (S, (ξ, η, φ, g)) is Sasakian then its bundle C ⊗ ξ ⊕N is involutive. This is equivalent
to the condition that the forms µ1, µ2, . . . , µk generate a closed differential ideal i.e.

dµi ∧ µ1 ∧ µ2 ∧ . . . ∧ µk = 0 ∀i = 1, 2, . . . , k. (3)

Condition (6) of definition 1 of a Sasakian manifold in this basis reads

dη = −2i
k∑

l=l̄,l=1

µl ∧ µ̄l̄ . (4)

Thus, the fact that the manifold is Sasakian necessarily implies the existence of a local basis
(ξ,mi, m̄ī) with a dual basis (η, µi, µ̄ī ) such that (1)–(4) holds. The converse is also true:
if a real vector field ξ on a manifold S can be supplemented by k complex-valued vector
fields mi such that (ξ,mi, m̄ī) and (η, µi, µ̄ī ) form a mutually dual basis for TCS and T∗CS,
respectively, satisfying (3)–(4), then the structure (ξ, η, φ, g) defined by ξ , η and g, φ of (1)–
(2) is a Sasakian manifold. This fact can be seen by noting that condition (3) is equivalent to
the existence of complex-valued functions aijk , bij̄k and cij such that

dµi =
k∑

j,n=1

aijnµ
j ∧ µn +

k∑
j̄ ,n=1

bij̄nµ̄
j̄ ∧ µn +

k∑
j=1

cijµ
j ∧ η. (5)
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The dual conditions to conditions (4)–(5) imply thatN is involutive and that [ξ, �(N)] ⊂ �(N).
These, when compared with lemma of corollary 1, imply condition (7), which is the only
condition from definition 1 which, a priori, was not assumed for (ξ, η, φ, g). This proves the
following proposition.

Proposition 1
(I) Local version
Let (ξ, η, φ, g) be a Sasakian structure on a manifold S of dimension 2k + 1. Then there exists
a local basis (ξ,mi, m̄ī), i, ī = 1, 2, . . . k of TCS with dual basis (η, µi, µ̄ī ) such that

g = η2 + 2
k∑

l=l̄,l=1

µlµ̄l̄

φ = i

k∑
j̄=1

(m̄j̄ ⊗ µ̄j̄ )− i

k∑
j=1

(mj ⊗ µj),

dµi ∧ µ1 ∧ µ2 ∧ . . . ∧ µk = 0 ∀i = 1, 2, . . . , k,

dη = −2i
k∑

l=l̄,l=1

µl ∧ µ̄l̄ .

(II) Global version
Every almost contact metric structure which satisfies condition (6) of definition 1 is Sasakian
if and only if its canonical decomposition TCS = C ⊗ ξ ⊕ N ⊕ N̄, consists of involutive
C ⊗ ξ ⊕N part.

We close this section with a quick application of part (I) of proposition 1. It is well known
that a vector field ξ on a Sasakian manifold (S, (ξ, η, φ, g)) is a Killing vector field. This in
particular means that the Lie derivatives Lξ of g and η vanish. The second of these facts is an
immediate consequence of (4). To calculate Lξ g one uses (4) and (5). After some work one
shows that vanishing of Lξ g is equivalent to cij + cji = 0 where cij are functions appearing in
(5). On the other hand, these equations are automatically implied by application of d on both
sides of equation (4).

4. Analogue of the Kähler potential

We pass to a construction of local coordinates on a Sasakian manifold (S, (ξ, η, φ, g)). We
assume that all the fields defining the Sasakian structure are smooth on S.

In a considered region of S, we chose a local frame (ξ,mi, m̄ī) of proposition 1. Now,
the fact that ξ is a Killing vector field on S together with the complex version of the Frobenius
theorem, assures that condition (3) is equivalent to the existence of complex-valued functions
f ij and zi , i, j = 1, 2, . . . k such that

µi =
k∑
j=1

f ijdz
j . (6)

Since the forms (µi, µ̄ī ) form a part of the basis on the considered region of S then we also
have

dz1 ∧ dz2 ∧ . . . dzk ∧ dz̄1 ∧ dz̄2 ∧ . . . ∧ dz̄k �= 0. (7)
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For the basis (ξ, ∂z1 , . . . , ∂zk , ∂z̄1 , . . . , ∂z̄k ) and its dual (η, dz1, . . . , dzk, dz̄1, . . . , dz̄k) the
Maurer–Cartan relations readily show that [ξ, ∂/∂zi] = 0 = [ξ, ∂/∂z̄ī]. Therefore, there
exists a real coordinate x complementary to z1, . . . , zk, z̄1, . . . , z̄k such that

ξ = ∂x (8)

and the form η reads

η = dx + pjdz
j + p̄j̄dz̄

j̄ . (9)

Comparing this with the fact that ξ preserves η leads to the conclusion that the functions pi
are independent of the coordinate x, ∂pi/∂x = 0.

Condition (4) is now equivalent to the following two conditions for the differentials of
functions pi :

pi,j − pj,i = 0 (10)

and

pj,ī − p̄ī,j = 2i
k∑

l=l̄,l=1

f lj f̄
l̄

ī
. (11)

In a simply connected region of S equation (10) guarantees an existence of a complex-valued
function V such that

pi = ∂V

∂zi
. (12)

Since pi is independent of x it is enough to consider functions V such that ∂V/∂x = 0.
Inserting a so determined pi in equation (11) we show that now (11) is equivalent to

K,j ī =
k∑

l=l̄,l=1

f lj f̄
l̄

ī
, (13)

where we have introduced ImV = K and ReV = L. Finally we note that now

η = d(x + L) + i
k∑
j=1

K,jdz
j − i

k∑
j̄=1

K,j̄dz̄
j̄ ,

so redefining the x coordinate by x → x+Lwe simplify η to the form η = dx+i
∑k

j=1 Kjdzj−
i
∑k

j̄=1 Kj̄dz̄
j̄ . Using (13) we can eliminate functions f ij from formulae defining our Sasakian

structure. Indeed,

g = η2 + 2
k∑

l=l̄,l=1

µlµ̄l̄ = η2 + 2
k∑

l=l̄,l=1

k∑
j,ī=1

f lj f̄
l̄

ī
dzjdz̄ī = η2 + 2

k∑
j,ī=1

K,j īdz
jdz̄ī .

In this way we obtain the following theorem.

Theorem 1
Let U be an open set of Ck × R and let (z1, z2, . . . , zk, x) be Cartesian coordinates in U .
Consider:

(i) a vector field ξ = ∂x
(ii) a real-valued function K on U such that ξ(K) = 0

(iii) a 1-form

η = dx + i
k∑

m=1

(K,mdzm)− i

k∑
m̄=1

(K,m̄dz̄m̄)
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(iv) a bilinear form

g = η2 + 2
k∑

m,k̄=1

K,mk̄dz
mdz̄k̄

(v) a tensor field

φ = −i
k∑

m=1

[(∂m − iK,m∂x)⊗ dzm] + i
k∑

m̄=1

[(∂m̄ + iK,m̄∂x)⊗ dz̄m̄].

If the functionK is chosen in such a way that the bilinear form g has positive definite signature
then U equipped with the structure (φ, ξ, η, g) is a Sasakian manifold. Moreover, every
Sasakian manifold can locally be generated by such a function K .

Since the characteristic vector field ξ is non-vanishing everywhere, it defines a one-
dimensional foliation on the Sasakian manifold S. Each such foliation can be locally viewed as
a principal U(1)-bundle, i.e. more precisely, each point of S has a neighbourhood isomorphic
to an open subset of a principal U(1)-bundle. With such identification, the vector field ξ is a
fundamental vector field of the bundle and the 1-form η is a connection form. Our coordinates
(x, zi) are consistent with a local trivialization of the bundle. The relation between the Sasakian
metric on S, the Kähler metric on the base space and the connection form can be understood
as a special case of the construction known in the Kaluza–Klein unification scheme. In the
context of the Sasakian structure, our result is to some extent known (see theorem 2.8 of [3]),
however under some global assumptions concerning the manifold S and the Sasakian structure
on it (quasi-regularity assumption). We underline that the form of the Sasakian metric given
above is valid without any topological restriction, however it is valid locally.

The functionK appearing in the above theorem is a Sasakian analogue of the Kähler potential
generating Kähler geometries. We call it a Sasakian potential.

We close this section with a remark that several Sasakian potentials may generate the same
Sasakian structure. This is evident if one notes that the following transformations

K → K + f (zj ) + f̄ (z̄j̄ ) x → x + if̄ (z̄j̄ )− if (zj ), (14)

with f being a holomorphic function of zj s, do not change the Sasakian structure of theorem 1.
Thus, transformations (14) are the gauge transformations for the Sasakian potential.

5. Locally Sasakian–Einstein structures

In this section we calculate the Ricci tensor for the Sasakian metric g generated in a region
U by the Sasakian potential K of theorem 1. We also derive the equation which the Sasakian
potential has to obey for the Sasakian metric to satisfy the Einstein equations Ric(g) = λg.
In this section we use the Einstein summation convention.

Let U be a simply connected region of of Ck × R as in theorem 1. Consider a Sasakian
structure defined in this theorem by the Sasakian potential K . In the holonomic cobasis

(dyµ) = (dx, dzj , dz̄j̄ )

the covariant components of the Sasakian metric read

gµν =

 1 iK,j −iK,j̄

iK,i −K,iK,j K,ij̄ +K,iK,j̄

−iK,ī K,īj +K,īK,j −K,īK,j̄


 . (15)
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The contravariant components of the metric read

gµν =




1 + 2K,iK,j̄ κ
ij̄ iK,j̄ κ

ij̄ −iK,j κ
j ī

iK,īκ
j ī 0 κj ī

−iK,iκ
ij̄ κij̄ 0


 , (16)

where

κj l̄K,il̄ = δ
j

i κlj̄K,lī = δ
j̄

ī
κlj̄ = κj l̄ = κl̄j . (17)

The connection 1-forms �µν = 1
2 (gµν,ρ + gρµ,ν − gνρ,µ)dyρ read

�xx = 0 �xi = iK,ijdz
j �xī = �xi �ix = iK,ij̄dz̄

j̄ �īx = �ix

�ij = −K,iK,jldz
l −K,jK,il̄dz̄

l̄ �īj̄ = �ij (18)

�ij̄ = iK,ij̄dx −K,lK,ij̄dz
l + (K,ij̄ l̄ +K,iK,j̄ l̄ +K,j̄K,il̄ +K,l̄K,ij̄ )dz̄

l̄ �,īj = �ij̄ .

It is convenient to introduce the following functions:

Cijm = κil̄K,l̄jm Bijm = Cijm + δimK,j + δijK,m Ajm = CljmK,l + 2K,jK,m −K,jm

Cī
j̄m̄

= Cijm Bī
j̄m̄

= Bijm A j̄m̄ = A jm.

Then the connection 1-forms �µν read

�xx = −dK �xj = −K,jdx − iAjmdzm �ix = −idzi �x
j̄

= �xj �īx = �ix

�ij = −iδijdx − δijK,l̄dz̄
l̄ + Bijldz

l �i
j̄

= −K,j̄dz
i �ī

j̄
= �ij �īj = �i

j̄
.

The curvature 2-forms /µ
ν = 1

2R
µ
νρσdyρ ∧ dyσ = d�µν + �µρ ∧ �ρν read

/x
x = iK,ldx ∧ dzl − iK,l̄dx ∧ dz̄l̄

/x
j = −K,jK,ldx ∧ dzl + (K,j l̄ +K,jK,l̄)dx ∧ dz̄l̄ + iAjl,m̄dzl ∧ dz̄m̄

/i
x = −δijdx ∧ dzj + iδijK,ldz

j ∧ dzl + iK,l̄dz̄
l̄ ∧ dzi

/i
j = −iδilK,jdx ∧ dzl + (BimnB

m
jl − Bijn,l + Ajnδ

i
l)dz

n ∧ dzl

+(K,jK,l̄δ
i
n − δijK,nl̄ − Bi

jn,l̄
)dzn ∧ dz̄l̄

/i

j̄
= iδilK,j̄dx ∧ dzl + (K,j̄ l +K,j̄K,l)δ

i
ndz

n ∧ dzl − δinK,j̄Kl̄dz
n ∧ dz̄l̄

/x

j̄
= /x

j /ī
x = /i

x /ī

j̄
= /i

j /ī
j = /i

j̄
.

The Ricci tensor Rνσ = Rµνµσ components read

Rxx = 2k Rxj = 2ikK,j Rij = −2kK,iK,j Rīj = 2kK,īK,j − 2K,īj − Cm̄
m̄ī,j

Rxj̄ = Rxj Rīj̄ = Rij .

Now, the Einstein equations Ric(g) = λg, which are nontrivial only for the components Rxx
and Rīj become

λ = 2k − (κm̄lK,m̄lī ),j = 2(k + 1)K,īj .
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Since the matrix (κm̄l) is the inverse of (K,īj ) then the left hand side of the second equations
above is

−(κm̄lK,m̄lī ),j = −[log(det(K,mn̄))],īj ,

see e.g. [7].
Thus we arrive to the following theorem.

Theorem 2
Any Sasakian manifold of dimension (2k + 1) can be locally represented by the Sasakian
potential K of theorem 1. In the region where the potential is well defined the manifold
satisfies Einstein equations Ric(g) = λg if and only if the cosmological constant

λ = 2k

and the potential satisfies

− log[(det(K,mn̄))],īj = 2(k + 1)K,īj . (19)

Surprisingly equation (19) is the same as the Einstein condition Ric(h) = 2(k + 1)h for the
Kähler metric h = 2K,ījdz̄

īdzj in dimension 2k. Thus we have the following corollary.

Corollary
Every Sasakian–Einstein manifold in dimension (2k+1) is locally in one to one correspondence
with a Kähler–Einstein manifold in dimension 2k whose cosmological constant λ = 2(k + 1).
The correspondence is obtained by identifying the Kähler potential for the Kähler–Einstein
manifold with the Sasakian potential for the Sasakian–Einstein manifold.

Examples
(1) Sasakian potential for the sphere S2k+1.

Consider a function

K = 1
2 log(z1z̄1 + . . . + zk+1z̄k+1)

defined on Ck+1 − {0}. Let

N = i(K,jdz
j − K,j̄dz̄

j̄ ),

H = 2K,ij̄dz
idz̄j̄

and

G = N2 +H.

The tensor fields N and G restrict to a sphere

S2k+1 = {(z1, . . . , zk+1) ∈ Ck+1 − {0} | z1z̄1 + . . . + zk+1z̄k+1 = 1}.
Denote these restrictions by η and g, respectively. Then the 1-form η and the Riemannian
metric g define a Sasakian–Einstein structure on S2k+1. This structure coincides with the one
defined in example 1 of section 1.

To see this, recall the Hopf fibration U(1) → S2k+1 → CP k with the action of eiφ ∈ U(1)
on (z1, . . . , zk+1) ∈ S2k+1 defined by eiφ(z1, . . . , zk+1) = (eiφz1, . . . , eiφzk+1). The canonical
projection is given by S2k+1 � (z1, . . . , zk+1) → dir(z1, . . . , zk+1) ∈ CP k . The sphere is
covered by k + 1 charts

Uj = Vj × U(1),
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where

Vj = {dir(z1, . . . , zk+1) | (z1, . . . , zk+1) ∈ S2k+1 and zj �= 0}.
The local coordinates on each Uj are(

ξ ij = zi

zj
, φj = i

2
log

zj

z̄j

)
, i = 1, . . . , k + 1, i �= j.

Then on each chart Uj the form ηj = η|Uj reads

ηj = dφj +
i

2

∑k+1
i=1,i �=j (ξ̄

ijdξ ij − ξ ijdξ̄ ij )

1 +
∑k+1

i=1,i �=j |ξ ij |2 .

The metric g restricted to Uj is

gj = (ηj )
2 +

(1 +
∑k+1

i=1,i �=j |ξ ij |2)(∑k+1
i=1,i �=j |dξ ij |2)− | ∑k+1

i=1,i �=j (ξ
ijdξ̄ ij )|2

(1 +
∑k+1

i=1,i �=j |ξ ij |2)2 .

Now, observe that on each Uj the structure (gj , ηj ) may be obtained by means of theorems 1
and 2 choosing a Sasakian potential

Kj = 1

2
log

(
1 +

k+1∑
i=1,i �=j

|ξ ij |2
)

on the correspondingVj . It is easy to check thatKj satisfies equation (19) onVj . Thus, theorem
2 assures that the Sasakian structure generated by (gj , ηj ) is Sasakian–Einstein. Easy, but
lengthy, calculation shows that the Weyl tensor of gj vanishes identically on Uj . This proves
that (Uj , gj ) is locally isometric to a standard Riemannian structure on S2k+1. Since (gj , ηj )
originate from the global structure (g, η) then this global Sasakian structure must coincide
with the standard Sasakian structure of example 1. Note also that hj = gj − (ηj )

2 projects to
Vj and patched together defines the Fubini–Study metric on CP k . In this sense the standard
Sasakian structure on S2k+1 described in example 1 is the analogue of the Fubini–Study Kähler
structure on CP k .

(2) Sasakian–Einstein structure on Cq × Cn × R.
Consider a function

K = 1

q + n + 1

[ q∑
i=1

log(1 + |vi |2)
]

+
n + 1

2(q + n + 1)
log

(
1 +

n∑
I=1

|wI |2
)

defined on Cq × Cn, with coordinates (zµ) = (vi, wI ). It is easy to check that

[log det(K,µν̄)],ρσ̄ = −2(q + n + 1)K,ρσ̄ .

Thus, via theorems 1 and 2, suchK generates a Sasakian–Einstein structure on Cq ×Cn×R1.

(3) Locally Sasakian–Einstein structures in dimension 5.
If k = 2 then, modulo the gauge (14), equation (19) may be integrated to the form

K,11̄K,22̄ −K,12̄K,21̄ = e−6K.

This is a well known equation describing the gravitational instantons in four dimensions
[2, 5, 9, 10]. Examples of the Kähler–Einstein metrics generated by its solutions can be found
e.g. in [5, 8, 11]. Via theorems 1 and 2, each of these Kähler–Einstein structures defines a
nontrivial Sasakian–Einstein manifold in dimension 5.
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