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Abstract
We discuss the existence, arising by analogy to that in algebraically special
spacetimes, of a unique CR structure realized on null infinity for (almost) any
asymptotically flat Einstein or Einstein–Maxwell spacetime.

PACS number: 03.50.De

1. Introduction

It has been well known in a large portion of the relativity community that shear-free null
geodesic congruences play an extremely important role in general relativity [1, 2] and Maxwell
theory [3, 4]. Though it is hard to argue from a priori knowledge that this should be true,
nevertheless from many examples and theoretical discoveries, the importance does, in fact,
become easy to see. For example, many of the most important exact solutions of the vacuum
Einstein or Einstein–Maxwell equations possess a degenerate principal null vector that is
both geodesic and shear free, e.g. the Schwarzschild, the Reissner–Nordstrom, the Kerr and
Kerr–Newman metrics. In electrodynamics, the null [3] and the Lienard–Wiechert (as well
as the complex Lienard–Wiechert [4]) Maxwell fields have a principal null vector that is also
tangent to a shear-free null geodesic congruence. These observations, in turn, led to the more
general issue: find all Einstein metrics that possess a principal null vector field that is shear
free and geodesic. From this came the discovery of the algebraically special metrics and
the beautiful Goldberg–Sachs theorem stating that the degenerate principal null vectors for
Einstein metrics are always geodesic and shear free. It opened the door to the large subject of
studying the properties and integrating the algebraically special metrics. One of the very pretty
mathematical discoveries was the automatic existence of a three-dimensional CR structure
[5–9] associated with these metrics. In the special case of asymptotically flat algebraically
special metrics (or in their flat-space limits), one could choose null infinity, [I+], as the
realization space of the CR manifold where a ‘portion’ of the metric (coming from the
congruence itself) defines the CR structure.
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From a different perspective, Penrose, in his development of flat-space twistor theory,
realized the importance of what is now known as the Kerr theorem, which states that a
holomorphic function (of three complex variables) on projective twistor space, CP3, defines
in Minkowski space, a shear-free null geodesic congruence that is, in general, twisting, i.e. is
not surface forming. Thus, in some general sense the shear-free null geodesic congruences
lie at the centre or origin of twistor theory. The real five-dimensional subspace of projective
twistor space, N, defined by the vanishing of the twistor norm, possesses a five-dimensional
CR structure [10, 11]. The intersection of N with the subspace of CP3 that is obtained from
the vanishing of a holomorphic function (via the Kerr theorem) is a real three-dimensional CR
manifold with the CR structure inherited from that of N.

The one purpose of this paper is to point out that the shear-free structures associated with
these special situations, i.e. flat space or the algebraically special metrics, can be generalized to
virtually all asymptotically flat Einstein or Einstein–Maxwell spacetimes. Though shear-free
null geodesic congruences cannot be found in arbitrary spacetimes, the idea of shear-free
null geodesic congruences can be generalized to asymptotically shear-free null geodesic
congruences. They exist in all asymptotically flat spacetimes.

In several recent articles [12–15] we returned, with a rather unconventional point of view,
to the study of asymptotically flat solutions of the Einstein or Einstein–Maxwell equations.
The main development in that work was the realization that for any given asymptotically flat
Einstein or Einstein–Maxwell spacetime with any given Bondi asymptotic shear (with non-
vanishing total electric charge), one can find a class of asymptotically shear-free (but in general
twisting) null geodesic congruences. Individual members of the class are uniquely given by
the choice of an arbitrary complex analytic world lines in the complex four-dimensional space
known as H-space. In the case of asymptotically flat vacuum spacetimes, by mimicking some
terms that are found in algebraically special type II metrics, this complex world line can be
chosen uniquely. For the case of the Einstein–Maxwell fields, there is a pair of uniquely
defined complex world lines in the H-space: one is defined from imposed properties of the
Maxwell tensor at null infinity while the other is found again from mimicking terms found in
the type II metrics. We concentrated on the special or degenerate case where the two world
lines coincide or the pure vacuum case. At first it was not at all clear as to what meaning
one could assign to this (these) world line(s). Gradually, however, suggestions as to their
meaning or physical content did appear. Though it is not the intention here to go into the
details of this issue, we remark that the real part of the world line can be identified as a position
vector in some sort of ‘screen’ or ‘observation’ space, with the meaning of a ‘centre-of-mass’,
while the imaginary part can be identified with the asymptotically defined specific spin-angular
momentum, i.e. spin per unit mass. The most surprising aspect of this attempt to understand the
complex world line was discovering its relationship with the classical Bondi mass–momentum,
(M,P i), and its evolution. Writing the complex world line as za = ξa(τ ) = ξa

R(τ ) + iξa
I (τ )

and with second-order approximations (essentially around the Reissner–Nordstrom metric),
we discovered that we had the relationship [15]

P i = M
dξ i

R

du
− 2q2

3c3

d2ξ i
R

du2
− 3

2c
Mεijk

dξ
j

I

du

dξk
R

du
+ · · · . (1)

Then, using the Bondi mass–momentum loss equation, i.e. the equations for dP i/du and
dM/du, the equations of motion for both the real and imaginary parts of the world line were
determined. One could see immediately that there was, in addition to the standard mass times
acceleration, the classical radiation-reaction force and from the mass loss term, there was
an additional counterterm that appears to suppress the runaway solutions associated with the
radiation-reaction force [15].
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2. Asymptotically shear-free null geodesic congruences and CR structures

The main point of this paper is however to point out that there is a simple clear mathematical
restatement of our main results [12–15] that generalizes the CR structures associated with
the algebraically special spacetimes. What we have shown is that for any asymptotically flat
vacuum or Einstein–Maxwell spacetime (with a non-vanishing charge), there is (in general) a
pair of unique CR structures given on I+: one is determined from the Maxwell field, the other
from the Weyl tensor. We assumed in that work the special case where the two world lines
coincided. Since in the vacuum case there is only one CR structure, we deal in either case
with only one CR structure.

The unique CR structure arises in the following manner. We begin with Bondi coordinates
(u, ζ, ζ̄ ) on I+ and with a Bondi one-form basis (n, l,m, m̄) and dual vector basis. The one-
form n is the covector version of the tangent vector to the generators of I+ and l is the covector
version of the vector normals to the u = constant slices of I+ (m, m̄ are the one-form versions
of the tangent vectors to the ‘slices’, u = constant). We then perform a null rotation around n
of the form [12]

l∗ = l +
L

r
m̄ +

L̄

r
m + O(r−2), m∗ = m +

L

r
n + O(r−2),

where L, at this moment, is an arbitrary complex function on I+, i.e. L = L(u, ζ, ζ̄ ). The
resulting 1-forms on I+ are (after a conformal rescaling of m)

l∗ = du − L

1 + ζ ζ̄
dζ − L̄

1 + ζ ζ̄
dζ̄ ,

m∗ = dζ

1 + ζ ζ̄
, m∗ = dζ

1 + ζ ζ̄
.

(2)

We note that, for any choice of the function L(u, ζ, ζ̄ ), the three 1-forms from equation (2)
are a representative set of 1-forms (up to gauge freedom) that define a CR structure on I+.

Note also that L can be geometrically interpreted as the complex stereographic angle on the
sphere of the past light cones on I+, so that geometrically L(u, ζ, ζ̄ ) is an angle field on I+.

When we required that the new null congruence defined by l∗ be asymptotically shear
free, we discovered [12] that L = L(u, ζ, ζ̄ ) satisfies the nonlinear differential equation

DL + LL,u = σ(u, ζ, ζ̄ ) (3)

with σ(u, ζ, ζ̄ ) the freely chosen radiation data, i.e. the Bondi asymptotic shear.
It was shown that this equation could be transformed [12], so that, surprisingly, one could

see immediately that the solutions were given up to the choice of an arbitrary world line in
H-space. Specifically, the solutions were constructed in the following manner.

We begin with the transform of (3), the ‘good cut equation’, i.e.

D2X = σ(X, ζ, ζ̄ ).

and write the general solution as

u = X(za, ζ, ζ ), (4)

with za an arbitrary point in the four complex dimensional H-space. Then choosing an
arbitrary H-space world line, za = ξa(τ ), and substituting it into the solution, (4), yields

u = X(ξa(τ ), ζ, ζ ) ≡ Z(τ, ζ, ζ ).
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Finally by the application of D to Z(τ, ζ, ζ ), we have the solution to equation (3) that is given
parametrically by

u = Z(τ, ζ, ζ ) (5)

L(u, ζ, ζ̄ ) = DZ(τ, ζ, ζ ). (6)

We thus have the result that each (regular) asymptotically shear-free null geodesic
congruence is determined by the arbitrary choice of the H-space world line za = ξa(τ ).
At this stage, we have a CR structure for each choice of the world line.

Finally, by imposing the conditions (mentioned earlier) on the Weyl tensor and Maxwell
tensor that mimicked the algebraically special Weyl tensor, we obtained a unique world line
and unique solution for L(u, ζ, ζ̄ ). Consequently, we have a unique CR structure on I+.

An additional point to note is that if the equation u = Z(τ, ζ, ζ ) is inverted so that

τ = T (u, ζ, ζ̄ ), (7)

it becomes easy to show that τ is a CR function, i.e. T (u, ζ, ζ̄ ) satisfies the CR equation

DT + LT,u = 0, (8)

which gives a geometric meaning to the world line parameter τ. The proof of this comes from
differentiating the implicit form of τ, i.e. from (5). The u derivative yields

1 = ∂τZ(τ, ζ, ζ ) · T,u (9)

∂τZ(τ, ζ, ζ ) = 1

T,u

, (10)

and the D derivative gives

0 = ∂τZ(τ, ζ, ζ ) · DT + DZ (11)

0 = ∂τZ(τ, ζ, ζ ) · DT + L. (12)

Putting (10) into (12) then yields the CR equation, (8).
The local C2 from which the three-dimensional CR manifold is defined is (τ, ζ̄ ), with the

parametric form of the embedding given by (τ, ζ̄ ) = (T (u, ζ, ζ̄ ), ζ̄ ).

3. Discussion

In summary, considering only the special Einstein–Maxwell case where the congruence
obtained from the Maxwell tensor coincided with that of the Weyl tensor, we have shown
that for any asymptotically flat vacuum Einstein or Einstein–Maxwell spacetime (with non-
vanishing total charge), there is a unique asymptotically shear-free null geodesic congruence
that is determined by mimicking certain properties of algebraically special Weyl tensors. From
the description of this congruence, i.e. from the H-space curve, za = ξa(τ ), and the related
angle field, L(u, ζ, ζ ), we found a unique three-dimensional CR structure that was realized on
real I+. Though we do not see an immediate physical consequence of this observation, there
is now considerable unification of the mathematical ideas associated with the algebraically
special metrics and general asymptotically flat spacetimes. Perhaps the strange fact that the
CR function τ = T (u, ζ, ζ ) parametrizes the motion of the H-space world line that leads to the
physical momenta and equations of motion, (1), has physical meaning. For certain flat-space
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situations, τ can be taken as the proper time along a real world line. In any case, that question
needs further study.

We mention that for the Einstein–Maxwell spacetimes, when the two world lines coincide,
i.e. when there is a unique CR structure, we found from our physical interpretation of the world
line, the surprising result that the gyromagnetic ratio (the ratio of spin to magnetic moment) is
the same as that of Dirac, namely g = 2. The charged Kerr metric, which possesses a single
H-space complex world line and a unique CR structure, is a special case of this result.

Since we are dealing here with the CR structure arising from asymptotically shear-free
congruences rather than from shear-free congruences, a question immediately arises: is there
any analogue of the Kerr theorem, which gave the shear-free null geodesic congruences [10]
via arbitrary holomorphic functions on twistor space, to our case of finding asymptotically
shear-free null geodesic congruences. The answer is yes. The full details, which are lengthy,
will be presented elsewhere. We simply note the basic structures involved. The role of flat
twistor space is played by asymptotic twistor space [11, 16–19]. The analogue of the Kerr
theorem, which produces asymptotically shear-free congruences, lies in the arbitrary choice
of the complex world line in H-space. The vanishing of the (Kähler) norm [18, 11] of the
asymptotic twistor space, which defines the analogue of N, yields the five-dimensional CR
manifold, N∗, a real subspace of projective asymptotic twistor space. The three-dimensional
CR structure given on I+, which has been described here, is inherited from N∗.
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