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Abstract
We show how, beginning with the space of curves in R2 and the space
of 2-surfaces in R3, one can define conformal Lorentzian three- and four-
dimensional metrics on certain special subspaces. It is conjectured that for
the case of curves in R2 this is how Wunschmann obtained his well-known
equation. Generalizing the argument to the case of 2-surfaces, leads to a
generalized Wunschmann equation. We point out that all conformal Lorentzian
three- and four-dimensional metrics (thus including Einstein metrics) can be
obtained in this manner.

PACS numbers: 02.30.Hq, 02.30.Jr, 02.40.Hw, 02.40.Ky, 04.20.Cv

1. Introduction

In the past several years there have been a series of papers [1–5] relating the conformal
geometries of three and four-dimensional Lorentzian spacetimes, via the solutions of
the (conformally invariant) eikonal equation, with certain sets of differential equations.
One showed that all three-dimensional conformal Lorentzian geometries were encoded in
equivalence classes of third-order ordinary differential equations (ODEs) with the vanishing
of a certain function, defined from the differential equation itself, that is referred to as the
Wunschmann invariant. Likewise, all four-dimensional conformal Lorentzian geometries were
encoded in equivalence classes of pairs of second-order partial differential equations (PDEs)
with the vanishing of an analogous generalized Wunschmann invariant. The four-dimensional
case is obviously of greater interest to physicists since among all four-dimensional Lorentzian
geometries the conformal Einstein equations are included. This, however, means that to
code or obtain the conformal Einstein equations into the pairs of second-order PDEs further
restrictions (in addition to that of the vanishing of the generalized Wunschmann invariant)
must be imposed on the pairs. This is the basic point of view [6] of what has been called the
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null surface formulation of general relativity (GR). Though at present these further conditions
are not explicitly known, recent work [7, 8] has suggested how those conditions could be
found—and calculations to this end have begun. When we know how to restrict the pairs of
second-order PDEs to those containing the conformal Einstein equations we will have another
tool to investigate general relativity.

The purpose of the present work is to go back and understand the origin of the Wunschmann
invariant. Though it only codifies the conformally invariant four-dimensional spacetimes and
not specifically the Einstein equations, understanding the Wunschmann condition is essential.
Specifically, one would like to see geometrically how the Wunschmann condition is expressed
from the spacetime point of view.

We begin with a brief historical review.
In the first years of the twentieth century a great deal of effort in mathematics was devoted

to the study and classification of ordinary differential equations according to their equivalence
classes under a variety of transformations and the resulting induced geometries on the solution
spaces. As an example, Lie and Tresse, and later Cartan [9–11] studied the classification
of general second-order equations under point transformations and related them to induced
projective structures in the two-dimensional solution space.

Among the many discoveries concerning the study of the geometry associated with
ODEs there is one that appeared to us to be particularly worth revisiting. Wunschmann
[12] discovered that in the set of all third-order equations there was a particular subclass
of equations (referred to as the Wunschmann class) with the rather remarkable property of
inducing on the (three-dimensional) solution space, an indefinite conformal metric. (In fact
all indefinite conformal three-metrics can be obtained in this fashion.) An interesting fact
about Wunschmann’s work is that, even though the defining equation for the Wunschmann
class is often quoted [1, 3, 13–17] and referred to as the Wunschmann equation, we, however,
have never seen a description of how Wunschmann obtained this class nor how he defined the
conformal three-metric from the ODE.

The purpose of this paper is twofold; (1) we will show how Wunschmann might have
discovered his class of equations and their associated conformal three-metrics and (2) show
how this (presumed) method of Wunschmann can be generalized to pairs of overdetermined
second-order PDEs, so that one obtains on the four-dimensional solution space, conformal
Lorentzian four-metrics. (Again we remark that all conformal Lorentzian four-metrics can be
obtained in this fashion.)

In section 2, we will begin with the general third-order ODE (prime denotes s derivatives)

u′′′ = F(u, u′, u′′, s) = F(u, p, q, s) (1)

whose solution space consists of three independent parameters, xi = (t, x1, x2). Then by
studying the three-parameter family of curves in the (u, s) space defined as solutions to
equation (1), namely

u = z(s, xi) (2)

and their generalized Jacobi fields, (δu, δu′, δu′′) obtained by the independent variation of the
three constants of integration xi and two s derivatives of equation (2), we will show how a
simple condition on neighbouring curves that touch (i.e., are tangent) leads to the Wunschmann
equation and the associated conformal metric.

In section 3, we generalize our considerations and, instead of equation (1), consider the
pair of PDEs (the subscripts s and t denote partial derivatives)

uss = S(u, us, ut , ust , s, t) utt = S∗(u, us, ut , ust , s, t) (3)
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which possess a four-parameter [3] (or dimensional) solution space, xa . The solutions

u = Z(s, t, xa) (4)

define a four-parameter family of 2-surfaces in the three-space, (u, s, t). By varying the
parameters xa we get variations in the u and its s and t derivatives that we denote by
(δu, δus, δut , δust ,) and refer to as a generalized Jacobi field. Again by imposing a simple
condition on the touching of two neighbouring 2-surfaces we show how a generalization of
Wunschmann’s equation arises and with it a conformal Lorentzian four-metric determined
uniquely in terms of the functions S and S∗.

The two problems addressed here, i.e., the geometry associated with third-order ODEs
and pairs of second-order PDEs, are not new; there already exists a large literature dealing
with them. In this work we are simply showing an alternate approach that appears to us to be
both simple and clear and thus complements the earlier work.

2. Third-order ODEs

Beginning with the general third-order ODE

u′′′ = F(u, u′, u′′, s) (5)

and a three-parameter solution

u = z(s, xi) (6)

we define the varied solution by

δu = ∂iz dxi ≡ zi(s, x
j ) dxi (7)

which, in turn, satisfies the deviation equation (or linearized equation (5))

δu′′′ = δF (u, u′, u′′, s) ≡ Fuδu + Fu′δu′ + Fu′′δu′′. (8)

In the two-dimensional (u, s) space, for fixed xj , equation (7) defines, via the three
dxi , a three-parameter family of neighbouring curves. Rather than treating the variation
to be associated with the independent dxi , we will treat the three (δu(s), δu′(s), δu′′(s)) as
independent variations (the s behaviour, of course, subject to the deviation equation). On this
three-space of independent curves we will attempt to define an infinitesimal quadratic distance
(i.e., metric distance) between nearby curves. At the beginning of the discussion this distance
will clearly depend on the value of s, i.e., will depend on a point on the first curve for the
comparison with the neighbouring curve. As conditions are imposed, this distance becomes
a conformal distance; i.e., for two neighbouring curves there will be a distance between them
that is unique up to an s-dependent conformal factor.

To begin with we define a metric distance (the gAB to be determined) between nearby
curves, at the point s, by

g(s, xi) = gABδuAδuB

= g00δuδu + 2g0+δuδu′ + 2g01δuδu′′ + g++δu
′δu′ + 2g+1δu

′δu′′ + g11δu
′′δu′′ (9)

where our notation associates (0, +, 1) with (δu, δu′, δu′′) = (δu0, δu+, δu1). The following
two conditions are imposed on the metric.

• The first condition is that the distance between neighbouring curves that are tangent to
each other, at some point s0, should vanish at s0. Tangency means that both δu and δu′

vanish at s0. This then implies, via equation (9), that we must have g11 = 0.
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• The second condition imposed is that when two curves are tangent at some point s0, the
distance between them should vanish at all points along either curve. This means that if
g(s, xi) vanishes at s0, its derivative must also vanish there. This implies that the basic
condition imposed on the metric should be

g′ = �g. (10)

Remark 1. The notation g′ means that the s derivatives are applied to both the gAB and δuA.

Remark 2. When equation (10) is satisfied, then for g̃ = �g, with � = �0 e− ∫ s
�ds and

�′
0 = 0, we find that

g̃′ = 0,

i.e. a conformal metric exists on the three-space of curves. We thus see that the condition
(10), if it can be imposed on the function F(u, u′, u′′, s), is a very powerful constraint. We
now prove the following theorem:

Theorem 1. Given a third-order ODE (equation (5)) and its deviation equation, if the metric
defined by equation (9) with g11 = 0 satisfies equation (10), then the metric, up to an arbitrary
conformal factor, is uniquely determined as a function of F(u, u′, u′′, s) and furthermore,
F(u, u′, u′′, s) satisfies the differential equation (the vanishing of the Wunschmann invariant),

D2Fu′′ − 2Fu′′DFu′′ − 3DFu′ + 6Fu + 4
9F 3

u′′ + 2Fu′′Fu′ = 0 (11)

with the total s derivative D defined by

DJ(u, u′, u′′, s) ≡ Js + Juu
′ + Ju′u′′ + Ju′′F. (12)

Definition 2. We will use a D to denote s derivatives of functions of (u, u′, u′′, s) and simply
a prime to denote s derivatives of functions only of s.

Before proving the theorem, we first prove the lemma;

Lemma 3. Equation (9), with g11 = 0, and equation (10) imply that g1+ = 0.

Proof. This is easily seen by first writing equation (9), with g11 = 0, as

g(s, xi) = g00(δu)2 + 2g0+δuδu′ + 2g01δuδu′′ + g++δu
′δu′ + 2g+1δu

′δu′′

≡ ĝ(s, xi) + 2g+1δu
′δu′′ (13)

and then noting that, since g has no δu′′δu′′ term, equation (10)

Dg = Dĝ + 2Dg+1δu
′δu′′ + 2g+1δu

′′δu′′ + 2g+1δu
′δu′′′ = �g

implies that

g+1 = 0. �

Proof of theorem 1. By choosing a conformal factor (done for simplicity but not needed) so
that

g01 = 1,

the metric has the form

g(s, xi) = 2αδuδu + 2βδuδu′ + γ δu′δu′ + 2δuδu′′
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with three unknown functions, α, β and γ . Explicitly differentiating g and writing Dg = �g

we obtain

2Dαδuδu + 2(2α + Dβ)δuδu′ + (2β + Dγ )δu′δu′ + 2βδuδu′′ + 2(γ + 1)δu′δu′′ + 2δuδu′′′

= �{2αδuδu + 2βδuδu′ + γ δu′δu′ + 2δuδu′′}.
Replacing δu′′′ by the deviation equation

δu′′′ = Fuδu + Fu′δu′ + Fu′′δu′′ (14)

we obtain

(2Dα + 2Fu)δuδu + 2(2α + Dβ + Fu′)δuδu′ + (2β + Dγ )δu′δu′

+ 2(β + Fu′′)δuδu′′ + 2(γ + 1)δu′δu′′

= �{2αδuδu + 2βδuδu′ + γ δu′δu′ + 2δuδu′′}.
Equating the coefficients of the quadratic deviation terms, we immediately obtain

Dα + Fu = �α

2α + Dβ + Fu′ = �β

2β + Dγ = �γ

(β + Fu′′) = �

γ + 1 = 0

and thus finally have

γ = −1 (15)

� = −2β (16)

β = − 1
3Fu′′ (17)

α = −β2 − 1
2Dβ − 1

2Fu′ (18)

Dα + Fu + 2βα = 0 (19)

where the first four relations define the unknown functions in terms of F , while the last
equation, using the two previous ones, yields the Wunschmann equation:

D2Fu′′ − 3DFu′ − 2Fu′′DFu′′ + 6Fu + 4
9F 3

u′′ + 2Fu′′Fu′ = 0. (20)
�

We thus see that by requiring that the vanishing of the distance function between two
touching curves be preserved as one moves along the curves, we obtain a conformal (2, 1)

metric on the solution space of the ODE. From a vague comment or clue in Cartan’s work
[13] we believe that the argument just given is essentially that of Wunschmann. Without
discussion, we point out that it has been shown elsewhere [3] that all conformal Lorentzian
three-metrics can be obtained from third-order ODEs that satisfy the Wunschmann equation.

3. Pairs of second-order PDEs

Here we show that the (presumed) Wunschmann argument for the third-order ODEs is easily
extended to pairs of second-order PDEs and leads to a generalized Wunschmann equation and
a four-dimensional conformal Lorentzian metric on the solution space of the PDEs.
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To begin we establish the following notation; our independent variable is z as a function
of the two dependent variables (s and t), i.e., u = z(s, t). For functions of (s, t) we denote
their derivatives by (zs, zt , zst , zss, ztt ) while for functions of (z, zs, zt , zst , s, t) we will denote
the total (s and t) derivatives by Ds and Dt . For example,

DsJ (z, zs, zt , zst , s, t) = Jzzs + Jzs
zss + Jzt

zts + Jzts
zsst + Js

where zss and zsst are expressed in terms of the differential equations.
We begin with the general pair of equations

G1(z, zs, zt , zst , zss, ztt ) = 0 G2(z, zs, zt , zst , zss, ztt ) = 0

and assume that they can be solved for (zss, ztt ) yielding the pair

zss = S(z, zs, zt , zst , s, t) ztt = T (z, zs, zt , zst , s, t) (21)

that satisfy the integrability condition

D2
s T = D2

t S (22)

and the weak inequality

1 − Szst
Tzst

> 0. (23)

With no loss of generality (but with a simplification of the calculations), we take both
(s, t) and (S, T ) to be complex conjugate pairs and use instead the notation (s, s∗) and (S, S∗).
The PDEs are then

zss = S(z, zs, zs∗ , zss∗ , s, s∗) zs∗s∗ = S∗(z, zs, zs∗ , zss∗ , s, s∗). (24)

It has been shown [3] that, for this pair of equations satisfying equations (22) and (23), the
solution space is four dimensional so that the solutions can be written as

u = z(s, s∗, xa) (25)

and interpreted as a four-parameter family, xa , of 2-surfaces in the three-dimensional space
(u, s, s∗). (We make an assumption of genericity, namely, that the four functions, z, zs, zs∗ , zss∗

are independent functions of the xa and hence can be inverted.) For a surface with fixed value
of xa there is a four-parameter family of neighbouring surfaces with coordinates xa + dxa .
Rather than describing the neighbouring surfaces by the independent dxa we will do so by the
independent ‘connecting vectors’,

(δz, δzs, δzs∗ , δzss∗) (26)

i.e., δz = za dxa, δzs = zsa dxa , etc.
The variation of the higher derivative terms (e.g., δzss, δzsss∗ , etc) is obtained from the

deviation equations obtained by the variation of equations (24) (where for typographic reasons
we use S0 = Sz, S+ = Szs

, S− = Szs∗ , S1 = Szss∗ , etc), i.e.,

δzss = S0δz + S+δzs + S−δzs∗ + S1δzss∗

δzs∗s∗ = S∗
0δz + S∗

+δzs + S∗
−δzs∗ + S∗

1δzss∗
(27)

and their derivatives
δzsss∗ ≡ K0δz + K+δzs + K−δzs∗ + K1δzss∗

δzs∗s∗s ≡ K∗
0 δz + K∗

+δzs + K∗
−δzs∗ + K∗

1 δzss∗
(28)

with the K (given in the appendix) being further derivatives of S and S∗.
The presumed Wunschmann-like argument begins, as in the previous section, with a

quadratic conformal metric defining, initially, the distance between two neighbouring surfaces
at the point (s, s∗) in terms of the deviation vector, i.e.,

g = gABδzAδzB (29)
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with

δzA = (δz, δzs, δzs∗ , δzss∗) ≡ (δz0, δz+, δz−, δz1).

• In analogy with the argument for the third-order ODE, the first condition we impose
is that the distance between neighbouring 2-surfaces, that are tangent to each other at
some point (s0, s

∗
0 ), should vanish at that point. Tangency means that (δz, δzs, δzs∗) ≡

(δz0, δz+, δz−) must vanish at (s0, s
∗
0 ). This in turn implies that the coefficient of δz1δz1

must vanish, i.e.,

g11 = 0.

• The second condition imposed is that when two 2-surfaces are tangent and hence have a
vanishing distance at some point (s0, s

∗
0 ), the distance between them should vanish at all

points. This means that if g(s0, s
∗
0 , xi) vanishes at (s0, s

∗
0 ), its derivative must also vanish

there. This implies our basic conditions to be imposed on the metric, namely

Dsg = �g, (30)

Ds∗g = �∗g. (31)

In a similar manner to the proof of the lemma in section 2, one can easily see that
equations (30) and (31) imply that the coefficients of δz+δz1 and δz−δz1 must vanish, i.e.,

g1+ = g1− = 0.

With the choice of conformal factor so that

g10 = 1

the metric, equations (29), with six arbitrary functions, can be written as

g = 2{θ(0θ1) − θ(+θ−)}
with

θ0 = δz,

θ1 = δzss∗ + aδzs + āδzs∗ + cδz,

θ+ = α(δzs + bδzs∗),

θ− = α(δzs∗ + b̄δzs)

or
1
2g = cδz2 + δzδzss∗ + aδzδzs + a∗δzδzs∗ − α2{(1 + bb∗)δzsδzs∗ + b∗δz2

s + bδz2
s∗

}
. (32)

By a simple calculation from the nine non-trivial components of Dsg = �g (and its
conjugate equation) we obtain nine (plus the conjugate) equations that uniquely determine
the coefficients (c, a, a∗, α, b, b∗,�,�∗) plus a differential condition on the functions S and
S∗ referred to as the generalized Wunschmann equation. Explicitly, we have the unknown
functions expressed completely in terms of the derivatives of S and S∗ in the following recursive
manner,

b = −1 +
√

1 − S1S
∗
1

S∗
1

(33)

b̄ = −1 +
√

1 − S1S
∗
1

S1
(34)
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α2 = 1 + bb̄

(1 − bb̄)2
(35)

a = α2b−1[b̄sb − b̄bs + 2b̄bS+ + (1 + bb̄)b̄S−] (36)

ā = α2b̄−1[bs∗ b̄ − bb̄s∗ + 2b̄bS∗
− + (1 + bb̄)bS∗

+] (37)

� = ā + K1 − 2ab

(1 + bb̄)
(38)

2c = (� − S+)a − as − K+ + 2α2b̄S0 (39)

and

bs + S− − bS+ +
(1 − b̄b)

(1 + b̄b)
b(ā − ab) = 0 (40)

for the (complex) generalized Wunschmann equation. The details for this calculation are given
in appendices A and B.

We thus have the theorem:

Theorem 4. Given the pair of overdetermined PDEs, equations (24), satisfying equations (22)
and (23) and the generalized Wunschmann equation, there is induced on the four-dimensional
solution space a unique conformal four-dimensional Lorentzian metric.

By conformally rescaling the metric, equation (32), so that g̃ = �g, one can find � so
that

Dsg̃ = Ds∗ g̃ = 0 (41)

showing that a conformal metric does exist on the solution space xa . Demonstrating this
requires showing the integrability of the pair Dsg = �g and Ds∗g = �∗g, a fairly lengthy
calculation.

Remark 3. As mentioned earlier, we stress that it has been shown [3, 5] that all
conformal Lorentzian four-metrics can be constructed in this manner, i.e., any four-dimensional
Lorentzian metric can be constructed from some complex conjugate pair S and S∗ satisfying
the generalized Wunschmann equation.

4. Conclusions

There has been much work and many publications on the differential geometry associated with
both ODEs and PDEs over the years. Much of it was based on the problems arising from the
study of equivalence classes for fibre preserving, point and contact transformations. Others
arose from the study of the eikonal equation [4] in three- and four-dimensional Lorentzian
manifolds and some were even specialized to Einstein manifolds. The rich geometries arising
from these considerations can lead to a variety of structures, e.g., Cartan normal conformal or
projective connections [3, 18–20].

In this paper we have shown how it could have been possible for Wunschmann, in one of
the earliest and simplest efforts, to have approached these issues from the study of a distance
function between neighbouring curves in a three-parameter family of curves in two-space and
its generalization to a four-parameter family of 2-surfaces in three-space.

As a final comment, we describe how these curves of Wunschmann and their generalization
to 2-surfaces have a simple and pretty interpretation in terms of three- and four-dimensional
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spacetimes. These ‘spacetimes’ are simply defined as the three- and four-dimensional solutions
spaces of the differential equations.

We consider first an arbitrary but general 2-surface S embedded in the three-dimensional
solution space of the third-order ODE. This surface is to be a realization of the (u, s) space
of section 2. The (three-dimensional) family of light cones emanating from (the three-
dimensional set) of spacetime points xi will, in general, intersect S in a three-parameter
family of curves that can be identified with the Wunschmann curves in the (u, s) space. The
point of tangency of two neighbouring curves is interpreted as the intersection with S of a
common null geodesic on two different light cones so that their neighbouring apexes have a
null metric separation. The light cones will be tangent to each other on the geodesic and are
thus tangent at S. This agrees with and gives our choice of conformal metric on the space of
curves an alternative meaning; namely that of a conformal metric on the solution space.

This immediately generalizes to the four-dimensional case where the (four-dimensional)
family of light cones from spacetime points intersect an arbitrary 3-surfaces, I (e.g., the Scri
of an asymptotically flat spacetime is often used) in a four-parameter family of 2-surfaces, the
cuts of I. I is interpreted as being the (u, s, s∗) space. The conformal metric on the space of
2-surfaces is then reinterpreted as a conformal metric on the four-space of solutions, i.e., on
spacetime.

Attempts are now being made to find further restrictions on the pairs of second-order
PDEs to those yielding the conformal Einstein metrics.
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Appendix A

By taking the s and s∗ derivatives of the deviation equations

δzss = S0δz + S+δzs + S−δzs∗ + S1δzss∗

δzs∗s∗ = S∗
0δz + S∗

+δzs + S∗
−δzs∗ + S∗

1δzss∗
(A.1)

and after some manipulation we obtain

δzsss∗ ≡ K0δz + K+δzs + K−δzs∗ + K1δzss∗ (A.2)

and its complex conjugate with

K0 = (1 − S1S
∗
1 )−1{S−S∗

0 + S0t + S1(S
∗
+S0 + S∗

0s)}
K+ = (1 − S1S

∗
1 )−1{S−S∗

+ + S+t + S1(S
∗
0 + S∗

+S+ + S∗
+s)}

K− = (1 − S1S
∗
1 )−1{S0 + S−S∗

− + S−t + S1(S
∗
+S− + S∗

−s)}
K1 = (1 − S1S

∗
1 )−1{S−S∗

1 + S1t + S+ + S1(S
∗
+S1 + S∗

1s + S∗
−)}.

(A.3)

Appendix B

Using

Dsg ≡ KABδzAδzB = �gABδzAδzB
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with the deviation equations and their derivatives, we obtain after a lengthy but straightforward
calculation

K1+ � 1 − α2(1 + bb̄) − 2α2b̄S1 = 0
K1− � −α2[(1 + bb̄)S1 + 2b] = 0

K00 � 2(cs + S0a + K0) = 2�c

K0+ � as + 2c + S+a + K+ − 2S0α
2b̄ = �a

K0− � ās + S−a + K− − α2[1 + bb̄]S0 = �ā

K01 � ā + K1 − 2ab

(1 + bb̄)
= �

K++ � 2

[
a − α2

{
b̄2(3 + bb̄)

(1 − bb̄)(1 + bb̄)
bs +

1 + 3b̄b

(1 + bb̄)(1 − bb̄)
b̄s + 2b̄S+

}]
= −2�b̄α2

K−+ � ā − α2

[
4

(1 − bb̄)
(bb̄)s + 2S−b̄ + [1 + bb̄]S+

]
= −�[1 + bb̄]α2

K−− � −2α2

{
b2 3 + bb̄

(1 − bb̄)(1 + bb̄)
b̄s +

1 + 3bb̄

(1 − bb̄)(1 + bb̄)
bs + S−(1 + b̄b)

}
= −2�bα2.

(B.1)

From the analysis of these equations we obtained all the unknown functions of
equation (33) etc and the Wunschmann equation

bs + S− − bS+ +
(1 − bb∗)
(1 + bb∗)

b(a∗ − ab) = 0.

For example, from the K1+ = 0 and K1− = 0 equations and their conjugates, we obtain
(b, b∗, α2).

Many of the equations satisfy identities among themselves and their conjugates and even
contain first and second derivatives of the Wunschmann equation. Their analysis and sorting
out the details were fairly involved.
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