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History

o Wiinschmann K, (1905) “ Uber Beruhrungsbedingungen bei
Differentialgleichungen’, Dissertation, Greifswald:

* Considered a general 3rd order ODE
y"' =F(z,y.9.y"), ()

asking what one has to assume about F' = F'(x,y,vy’,y") to be able to

define a null distance between the solutions.
* Denoting by D the total differential, D = 0, + pd, + ¢0, + F'0,, where
p=1y", q=19" hefound that the solution space of (x) is naturally

equipped with a conformal Lorentzian metric iff

Fy+ (D —3F,) (§DFy — 5F; — 3Fp) = 0. (W)
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* 1 he metric reads:

g = |[dy — pdz] [dq—%querKdy—ir(%qu—F—pK)dzL’] — [dp—qu]Q.
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* 1 he metric reads:

g = |dy —pdz] [dq—%qup+Kdy+(%qu—F—pK)dx] — [dp —qdz]”.

x Condition (W) is invariant with respect to contact transformations of
variables and contact transformations of the variables result in a conformal
change of the metric.

* Wiinschman: There is a one-to-one correspondence between equivalence
classes of 3rd order ODEs satisfying (W) considered modulo contact
transformations of variables and 3-dimensional Lorentzian conformal
geometries.

* In particular: all contact invariants of such classes of equations are
expressible in terms of the conformal invariants of the associated conformal
Lorentzian metrics.



e Chern S'S (1940) “The geometry of the differential equations
" = F(x,y,y’,y")" Sci. Rep. Nat. Tsing Hua Univ. 4 97-111:



e Chern S'S (1940) “The geometry of the differential equations
" = F(x,y,y’,y")" Sci. Rep. Nat. Tsing Hua Univ. 4 97-111:

* Description of the invariants in terms of s0(2, 3)-valued Cartan connection.



e Chern S'S (1940) “The geometry of the differential equations
" = F(x,y,y’,y")" Sci. Rep. Nat. Tsing Hua Univ. 4 97-111:

* Description of the invariants in terms of s0(2, 3)-valued Cartan connection.
* This may be identified with the Cartan normal conformal connection
associated with the conformal class [g].
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* Considered equations (*) modulo point transformations of the variables.
* If in addition to the Wiinschmann condition (W) equation () satisfies
another point invariant condition

D?°F,,— DF,, + F,, =0, (C)

then its solutions space is equipped with a 3-dimensional Lorentzain
Einstein-Weyl geometry.

* There is a one-to-one correspondence between 3-dimensional Lorentzian
Finstein-Weyl geometries and Srd order ODEs considered modulo point
transformations and satisfying conditions (W) and (C').
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e Cartan E (1932) “Sur la geometrie pseudo-conforme des hypersurfaces de
|'espace de deux variables complexes” Part | Ann. Math. Pura Appl. 11
17-90; Part Il Ann. Sc. Norm. Pisa 1 333-54:

* Solved the local equivalence problem for 3-dimensional real hypersurfaces
embedded in C? and considered modulo biholomorphic transformations of
variables

* If the hypersurface is not locally biholomorphically equivalent to C x R he
found all the invariants in terms of an su(2, 1)-valued Cartan connection
on an 8-dimensional fiber bundle defined over the hypersurface.

e Fefferman C L (1976) “ Monge-Ampere equations, the Bergman kernel, and
geometry of pseudoconvex domains” Ann. of Math. 103, 395-416:

x Defined a 4-dimensional Lorentzian class of metrics on an S*-bundle over
the hypersurface that transforms conformally when the hypersurface
udergoes a biholomorphic transformation.
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e Burns D Jr, Diederich K, Schnider S (1977) “Distinguished curves in
pseudoconvex boundaries Duke. Math. J. 44 407-31:

* understood that Cartan’s su(2, 1)-valued connection associated with a
biholomorphic class of strictly pseudoconvex hypersurfaces is a reduction of
the Cartan normal conformal connection of the associated conformal class
of Feffermann metrics.

e Segre B (1931) “Intorno al problema di Poincare dela representazione
pseudo-conforme” Rend. Acc. Lincei 131 676-83:

x biholomorphically equivalent pseudoconvex hypersurfaces in C? are analogs
of 2-nd order ODEs considered modulo point transformations

e Nurowski P, Sparling GAJ (2003) “3-dimensional Cauchy-Riemann structures
and 2nd order ODEs" Class. (). Grav. 20 4995-5016:

* What are the analogs of the Fefferman metrics for 2nd order ODEs modulo
point transformations?
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Conformal geometry of vy’ = Q(x,y,y’)

e Given 2nd order ODE: 4" = Q(x,y,y’) consider a parametrization of the
first jet space J* by (z,y,p = 1)

e on J! x R consider a metric
g = 2[(dp—Qdz)dz— (dy—pdx)(dr+3Qpdr+3Qpy(dy—pda))],  (F)

where 7 is a coordinate along R in J* x R.
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Theorem:

e |f ODE undergoes a point transformation then the metric (F') transforms
conformally.

e The point invariants of a point equivalence class of ODEs ¢ = Q(x, vy, ')
are expressible in terms of the conformal invariants of the associated
conformal class of metrics (F').

e The metrics (F') are very special among all the split signature metrics on
4-manifolds. Their Weyl tensor C' has algebraic type (N, IV) in the
Cartan-Petrov-Penrose classification. Both, the selfdual C™ and the
antiselfdual C'—, parts of C' are expressible in terms of only one component.



e C'T is proportional to

w1 = D2Qpp —4DQpy — DQppQp + 4QpEpy — 3QppQy 1 6Qy,

and C'~ is proportional to
w2 = Qpppp:
where
D = 0, + p0y + Q0.
Each of the conditions w; = 0 and wy = 0 is invariant under point
transformations.



e (O is proportional to

w1 = DQQpp —4DQpy — DQppQp + 4QpEpy — 3QppQy 1 6Qy,

and C'~ is proportional to

w2 = Qpppp;
where

D = 0, + p0y + Q0.

Each of the conditions w; = 0 and wy = 0 is invariant under point
transformations.

e Cartan normal conformal connection associated with any conformal class |g]
of metrics (F') is reducible to a certain SL(2 + 1, R) connection naturally
defined on an 8-dimensional bundle over J'. This is uniquely associated with

the point equivalence class of corresponding ODEs via Cartan'’s equivalence
method.



e The curvature of this connection has a very simple form
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e The curvature of this connection has a very simple form

/O Wo *\

o If wy; = 0 or wy = 0 this connection can be further understood as a Cartan

normal projective connection over a certain two dimensional space S
equipped with a projective structure. S can be identified either with the
solution space of the ODE in the wy; = 0 case, or with the solution space of

its dual in the wo = 0 case.
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o Hilbert D (1912) “Uber den Begriff der Klasse von Differentialgleichungen”
Mathem. Annalen Bd. 73, 95-108:

* considered equations of the form 2/ = F'(x,y,vy’,y", z) for two real
functions y = y(x) and z = z(x).

* He observed that, contrary to the equation
2 =vy"F(x,y,y,2) + G(x,y,y’, z), the general solution to the
equation 2’ = "% can not be written in integral-free form:

r = z(t,wt), w(t),...w" (),
y = y(t, wt),w'(t), ... wF(t)),

2= z(t,w(t), w (t),...w" (@)).
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e Cartan E (1910) “Les systemes de Pfaff a cing variables et les equations aux
derivees partielles du second ordre” Ann. Sc. Norm. Sup. 27 109-192:

* solved an equivalence problem for equations
7 = F(x,y, 'y, z) with Eyiry # 0, (H)

by constructing a 14-dimensional Cartan bundle P — J over the
5-dimensional space J parametrized by (x,y,vy’, 3", z). This bundle is
equipped with a Cartan connection whose curvature gives all the local
invariants of the equation.The connection has values in the Lie algebra of
the nocompact form of the exceptional group G2 and is flat iff the
equation is equivalent to the Hilbert's equation 2’ = ¢/"?;in such case the

equation has a symmetry group Go.
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e PN (2003) "Differentail equations and conformal structures’ J. Geom. Phys
55 19-49:

x Since G5 naturally seats in SO(3,4), that is in a conformal group for
(3, 2)-signature conformal metrics, is it possible to understand Cartan's
invariants in terms of inavraints of some conformal structure in 5
dimensions’
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Cartan’s construction

e Each equation (H') may be represented by forms
w' =dz — F(z,y,p,q, 2)dz
w? = dy — pdz
w? = dp — gdx
on a 5-dimensional manifold J parametrized by (z,y,p =v',q = y”, 2).

e cvery solution to the equation is a curve y(t) = (x(%), y(t), p(t), q(t), 2(t))

in J on which the forms (w!, w?, w?) simultaneously vanish.

e Transformation that transforms solutions to solution may mix the forms

(wh, w?,w?) among themselves, thus:



Definition
Two equations 2/ = F(x,y,vy’,y",z) and 2/ = F(Z,9y,y’, 3", Z) represented by
the respective forms

w'=dz — F(z,y,p,¢,2)dz, w’=dy—pdz, w®=dp— gda;



Definition )
Two equations 2/ = F(x,y,vy’,y",z) and 2/ = F(Z,9y,y’, 3", Z) represented by
the respective forms

1:dZ—F<ZC,y,p,q,Z)dCIJ, zzdy—pdx, w3:dp—Qd£C,
° = dp — qdz,

w''=dz - F(z,9,p,q,2)dz, ©°=dy—pdz, @



Definition )
Two equations 2/ = F(x,y,vy’,y",z) and 2/ = F(Z,9y,y’, 3", Z) represented by

the respective forms

w'=dz — F(z,y,p,¢,2)dz, w’=dy—pdz, w®=dp— gda;

w'=dz - F(z,9,p,q,2)dz, ©°=dy—pdz, ©° =dp— qdz,

are (locally) equivalent iff there exists a (local) diffeomorphism



Definition
Two equations 2/ = F(x,y,vy’,y",z) and 2/ = F(Z,9y,y’, 3", Z) represented by
the respective forms

w!=dz - F(z,y,p,q,2)dz, w’=dy—pdz, w’=dp— qdz;
=d2—F<:f,@ P, q, % ‘)da: w? =dy — pdz, ©°=dp— qdz,

W a B v W
d*@? | =6 € X w?
o K W UV w3
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Solution for equivalence problem for eqgs.
2 =Fz,y,y,y" 2)

Theorem

e There are two main branches of nonequivalent equations

2= F(z,y,y",y", 2). They are distinguished by vanishing or not of the
relative invariant F,, ¢ = 4"

o If F,, = 0 then such equations have integral-free solutions.



Solution for equivalence problem for eqgs.
/

7 =F(x,y,y,Y", %)

Theorem

e There are two main branches of nonequivalent equations

2= F(z,y,y",y", 2). They are distinguished by vanishing or not of the
relative invariant F,, ¢ = 4"

o If F,, = 0 then such equations have integral-free solutions.

e There are nonequivalent equations among the equations having F,, # 0. All
these equations are beyond the class of equations with integral-free solutions.
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Theorem

An equivalence class of equations 2" = F(z,y,y’,y", 2) with Fynn # 0
uniquely defines a 14-dimensional manifold P — J and a preferred coframe

(81,92,93,94,05,Ql,QQ,93,94,95,96,Q7,98,QQ) on it such that

dot = 01 A (297 + Q) + 02 A Qg + 03 A 94

d6% = 01 A Q3+ 02 A (1 + 2Q4) + 03 A 65

do3 =01 A Qs+ 02 A Qg+ 03 A (Qp + Q) + 04 A0
do* =LA Qr + 203 A Qg+ 0* A Qy + 65 A Qs

d(95:92/\Q7—%93AQ5+04/\§23+95/\Q4.



Equations 2’ = F(z,y,y,y", 2) with F . # 0

Theorem

An equivalence class of equations 2" = F(z,y,y’,y", 2) with Fynn # 0
uniquely defines a 14-dimensional manifold P — J and a preferred coframe

(81,92,93,94,95,Ql,QQ,93,94,95,96,Q7,98,QQ) on it such that

dot = 01 A (297 + Q) + 02 A Qg + 03 A 94
do? = 01 A Q3+ 02 A (Q1 +294) + 63 N 0°
do3 =01 A Qs+ 02 A Qg+ 03 A (Qp + Q) + 04 A0
do* =LA Qr + 203 A Qg+ 0* A Qy + 65 A Qs
d(95:(92/\Q7—%93/\954—04/\Qg+95/\ﬂ4.
We also have formulae for the ditferentials of the forms €2, p =1,2,...,9.
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For example:

dOy = Qs A Qo+ 30° A Qy — 204 A Qs+

%95 A Qg + o1 A Qg + 26201 A 0%+

boO1 A 03 + b30? N 03+

CL2(91 A (94 + CL3(91 A (95 + CL3(92 N (94 + CL46’2 N (95.
where as, a3, a4, by, b3, co are functions on P uniquely defined by the
equivalence class of equations.

The other differentials, when decomposed on the basis 67, (1, define more

functions, which Cartan denoted by a1, as, as, a4, as, b1, ba, b3, by, c1, o, c3,
51, 52, e, hy, ho, hs, hya, hs, hg, k1, k2, k3.

The system provides all the local invariants for the equivalence class of equations

satistying Fyq 7 0.

We pass to the interpretetion in terms of Cartan connection:
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of (G5 as its structure group.



P is a principal fibre bundle over J with the 9-dimensional parabolic subgroup H
of (G5 as its structure group.

On this fibre bundle the following matrix of 1-forms:

) 1 1
o1 Qq Qo %04 — 163 0 196
2 1 45 1,3 1
2 ,3 2 2 1,5 1 .4 1
_ 2 ¢ 2.0, 20 0 15 __1g _1lq
w V3 V3 ® /36 VE V3 V37 ’
o4 Q 0 2.0 e Q Q
7 /5% 4 2 9
6> 0 Q _2 0 Q —Q —Q
7 Va5 3 1 8
0 6° —o? %93 — 02 o1 Qq + Qy

is a Cartan connection with values in the Lie algebra of G5



The curvature of this connection R = dw + w A w ‘'measures how much a given
equivalence class of equations is ‘distorted” from the flat Hilbert case
corresponding to F' = ¢?.
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Given an equivalence class of equation 2’ = F(z,y,vy’, 4", z) consider its
corresponding bundle P with the coframe

(917 927 937 (947 957 Ql7 QQ) Q37 Q47 Q57 QG) Q77 987 QQ)

Define a bilinear form
4
G =20'0° — 20%0* + 59393

This form is degenerate on P and has signature (3,2,0,0,0,0,0,0,0,0,0).

The 9 degenerate directions generate the vertical space of P.
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Theorem

e The bilinear forms g transforms conformally when Lie transported along any
of the vertical directions.

e It descends to a well defined conformal (3, 2)-signature metric on the
5-dimensional space J on which the equation 2’ = F(x,y,vy’, 4", 2) is

defined.

e The Cartan normal conformal connection associated with this conformal
metric yields all the invariant information about the equivalence class of
the equation.

e This 50(4, 3)-valued connection is reducible and, after reduction, can be
identified with the go Cartan connection w on P.
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In the quoted paper | gave the explicit formula for the (3, 2)-siganture metric in
terms of the function F' defining the equation. Here | present a simple example.

The Hilbert equation 2z’ = y””? has mazimal symmetry group: G4 of dimension
14.

Cartan knew that 2’ = F'(x,y, v, y", z) is either equivalent to the Hilbert
equation or its group of transitive symmetries is at most 7-dimensional.

The equations with 7-dimensional group of transitive symmetries are among
those equivalent to 2" = F'(y") with F,n,» # 0.

For such F''s the (3, 2)-signature conformal metric reads:
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Any conformal metric originated from our construction, has special conformal
holonomy He C Go.
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It is always conformal to an Einstein metric § = e?¥ g with the conformal factor

T = T(q) satisfying

10(F"2 [ Y — (Y)2] — 40F"FOY' 4+ 17F"FW — 56 F(3)2 = .
Any conformal metric originated from our construction, has special conformal
holonomy He C Go.
It is therefore interesting to look for the ambient metrics for them. These, in
turn, may have special pseudo-riemanian holonomy Hyr C Go.
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In the present example it is particularly easy, since g is conformal to Einstein. We
find that the Fefferman-Graham ambient metric for this example is:

21t
_ 42
g=1"g + 2drdt + T

(56 F3)3 —17F"FW)dg?.

By construction it is Ricci flat and has pseudo-riemannian holonomy
Hyr € Ga. Since the metric g is conformal to Einstein, the equality
Hyr = Gy is excluded. We therefore have Hyr € Ga.

Conformal metrics from our construction are rarely conformal to Einstein.
Thus, evaluation of the ambient metrics for them should lead to quite nontrivial

(4, 3)-signature metrics which might have strict noncompact G
pseudo-riemannian holonomy.
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Cartan classified various types of nonequivalent equations 2’ = F'(z,y,y,y"”, 2)
according to the roots of U(z) = a12* + 4as23 + 6as32? + 4asz + as, where
(a1, as9,as, a4, as) are the scalar invariants of the equation.

This polynomial encodes partial information of the Weyl tensor of the associated
conformal (3, 2)-signature metric. In particular, the well known invariant

Iy = 6a% — 8asay + 2ajas of this polynomial is, modulo a numerical factor,
proportional to the square of the Weyl tensor C* = C**P?C,,,,, of the
conformal metric.

Vanishing of Iy means that W = W(z) has a root with multiplicity no smaller
than 3.

Our example above corresponds to the situation when this multiplicity is equal to
4. According to Cartan, all nonequivalent equations for which W has quartic root
are covered by this example.
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In this example nonequivalent equations are distinguished by the only
nonvanishing scalar invariant a5 to which the Weyl tensor of the metric g is
proportional.

If a5 =const the equation has a 7-dimensional group of symmetries.
Further relations:

Bryant R [ (2005) Conformal geometry and 3-plane fields on 6 manifolds,
DG/0511110:

Equations 2/ = F'(x,y,vy’,y", z) are in relations with 2-plane fields on
manifolds of dimension 5. Bryant found description of certain 3-plane fields in
dimension 6 in terms of conformal (3, 3)-signature geometries.
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e Bobienski M, Nurowski P (2006) “Irreducible SO(3) geometries in dimension
five" J. reine angew. Math. in print, math.DG/0507152:

e Motivated by type IIB string theory we considered Riemannian manifolds
(M?®, g) equipped with a tensor field Y s.t.

i) Tije = Tiijn, (totally symmetric)
i) Caaa =01 (trace-free)
i) YikiYimi + Y10 Y kmi + Yrti L jmi = GikGim + 9159km + gkiGim.

e Tensor Y reduces the structure group of the frame bundle via O(5) to the
irreducible (maximal) SO(3) € GL(5,R)

e A 5-dimensional Riemannian manifold (M?®, g) equipped with a tensor field T
satisfying conditions i)-iii) and admitting a unique decomposition
LC
[ =T+ 3T, with T € A’R5 and T' € 50(3) @ R is called nearly
integrable irreducible SO(3) structure.
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Such structures are classified according to the decomposition of the totally
skew symmetric torsion T" onto the irreducibles w.r.t. the SO(3) action:
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We have examples of such geometries. All our examples admit transitive
symmetry group (which may be of dimension 8, 6 and 5)

In particular, T" = 0 corresponds to the symmetric spaces SU(3)/SO(3),
SL(3,R)/SO(3), or the flat (SO(3) x, R*)/SO(3).

We also have nontrivial examples with torsion 1" % 0 being one of the pure
types R3 or R”.

Some of these examples satisfy Strominger equations of type |I1B string theory.
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M Godlinski+PN; idea from E Ferapontov

Consider a 5th order ODE y®) = F(z,v, v, y", y®, y®) modulo contact
transformation of the variables.Suppose that the equation satsifies three, contact
iInvariant conditions:

50D*F, — 75D F3 + 50F, — 60DF4F, + 30F3F, + 8F; = 0, (%)
375D%F5 — 1000DF5 + ... = 0, 1250D°%F, — 6250DF; + ... = 0

where D = 833 -+ y’ﬁy -+ y”c?y/ + y(3>8y// -+ y(4)8y(3) -+ Fay(4).

Then the solution space of the equation is naturally equipped with a class of
pairs [(g, Y)| with representatives satisfying our conditions i)-iii). The metric g of
signature (4, +, —, —, —) and the tensor T are determined by the contact
equivalence class of the ODE up to g — €2?g, T — 3?7,
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