Class. Quantum Grawi4 (1997) A261-A290. Printed in the UK Pll: S0264-9381(97)77955-3

Twistor bundles, Einstein equations and real structure$

Pawé Nurowskif

Department of Mathematical Methods in Physics, Faculty of Physics, Warsaw University,
ul Hoza 74, Warszawa, Poland

Abstract. We considerS? bundlesP and P’ of totally null planes of maximal dimension and
opposite self-duality over a four-dimensional manifold equipped with a Weyl or Riemannian
geometry. The fibre produ®P’ of P and P’ is found to be appropriate for the encoding of
both the self-dual and the Einstein—Weyl equations for the 4-metric. This encoding is realized in
terms of the properties of certain well defined geometrical object®Bh The formulation is
suitable for complex-valued metrics and unifies results for all three possible real signatures. In
the purely Riemannian positive-definite case it implies the existence of a natural almost Hermitian
structure orlPP’ whose integrability conditions correspond to the self-dual Einstein equations
of the 4-metric. All Einstein equations for the 4-metric are also encoded in the properties of
this almost Hermitian structure oRP’.

PACS numbers: 0240, 0420, 0450

1. Introduction

The natural appearance of complex coordinates in the Robinson—Trautman [13] class of
metrics was one of the first signs that complex geometric methods may be important in
general relativity. The proper understanding of this fact led to the introduction of CR-
geometric concepts to the Einstein theory [6, 11, 14, 15, 18]. Penrose’s twistor programme
was also partially motivated by this result.

In this paper we are concerned with a twistor theory over a four-dimensional manifold.
Given a metric on such a manifold the problem of encoding the Einstein equations on the
associated twistor bundle arises. Since Penrose’s original paper [10] several attempts to
construct an encoding have been undertaken [3, 16, 17]. In particular, in the case of a
positive-definite metric, Salamon in [16] used well defined differential forms on the twistor
bundle and showed that the vanishing of certain differentials corresponded to the anti-self-
dual Einstein equations on the base manifold. Our approach in [8] is very much in the
spirit of Salamon. There we studied natural forms on the twistor bundle in the Lorentzian
case. Our analysis was more complex than in the positive-definite case since we had to
deal with directions of forms rather than forms themselves. We showed that if our forms
satisfied certain well defined differential conditions on the twistor bundle then the Ricci
tensor of the base metric was traceless. Thus, in that case, we succeeded in encoding the
full set of Einstein equations, without restricting to anti-self-dual metrics. In this paper we
extend results of [8] to 4-manifolds with complex-valued metrics or real metrics of signature
(+,+,+,+) or (+,+, —, —). The proposed approach unifies all the signatures and also
applies to Weyl geometries.
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Section 2 presents a short reformulation of the main results of [8]. It will be useful for
generalizations of the results to other signatures.

Section 3 describes an analogy between Hermitian and optical geometries (see
theorem 3.1). We show there that notions such as that of a null direction in four-dimensional
Lorentzian geometry and an almost Hermitian structure in the case of a positive-definite
metric have a unified description in terms of totally null planes of maximal dimension in the
complexification of the tangent space. It turns out that the integrability conditions for both
almost Hermitian geometries and optical geometries associated with null rays have a unified
description in terms of associated fields of maximal totally null planes. These conditions
are given by equation (13).

Section 4 gives necessary information about Weyl geometries. We recall that such
geometries are given in terms of a class of paigsA) whereg is a metric andA is a
1-form on a manifold. Two pairég, A) and(g’, A’) are in the same class iff = €¥g and
A=A —2dp.

In section 5 we study 4-manifolds equipped with Weyl geometries. We consider Weyl
geometries in which botlyg and A may be complex-valued. However, we do not exclude
situations in whichg and A are real. Purely metric situations = 0, ¢ = 0 are also not
excluded in our analysis. Given a 4-manifold and a Weyl geometryg, A) on it we
consider a spac® of all self-dual totally null 2-planes in the complexification oM. This
space is ar$? bundle overM. An analogous bundi®’ of all anti-self-dual maximal totally
null spaces is also considered there. Giggand?’ we also study their fibre product space
PP’. This is a bundle oveM with typical fibre S*> x S?. We call P, P’ and PP’ twistor
bundles (section 5.1).

The rest of section 5 is devoted to studies of natural geometric structures that exist on
twistor bundles. In particular, we find th@ has the following geometrical featuresPT
splits naturally into a vertical and horizontal part. One can also naturally defiffeaapin
connection 1-form, a class of metrigs a canonical field of horizontal 2-planes and two
distinguished fields of 3-planes which are totally null in any metric from the asd/e
also find a way of writing certain differential equationsBrthat have geometrical meaning.
Analogous structures are also defined®r{section 5.2). Another set of geometrical objects
is naturally defined orPP’ (section 5). There we find a natural split of the tangent bundle
into vertical and horizontal parts. This enables a canonical field of horizontal 3-planes to
be defined orPP’. There is a nice geometry associated with these which, in particular,
distinguishes a certain field of (in general complex) directions. This field is null in the
naturally defined class of metrics @P’. It is used to define a canonical 1-form and eight
distinguished fields of 4-planes that are totally null in all the natural metricBBh

Section 6 deals with the integrability conditions of the structures defined on twistor
bundles. Using them we find a way of encoding (anti-)self-duality equations for the 4-
metric on’? and P’ (theorems 6.4 and 6.5). This gives a Weyl-geometric generalization of
the Atiyah—Hitchin—Singer [1] and the Penrose [11] theorems. Use of the natural structures
on PP’ enables the (anti-)self-dual Einstein—-Weyl equations to be encoded there. This
encoding is done by means of the integrability conditions of one of the eight naturally
defined fields of maximal totally null planes dPP’ (corollary 6.1, theorem 6.3). Other
results of this section are included in theorems 6.1 and 6.2. They provide a description of
the Einstein—-Weyl equations (without restriction to self-dual metricsp®. In the purely
metric caseA = 0, ¢ = 0 they give a signature-independent formulation of the Einstein
equationsR,,, = Ag,, on PP’.

Section 7 is concerned with the interpretations of the results of section 6 in the case of
real Weyl geometries. If the 4-metric has positive-definite or neutral signature (section 7.2),
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then the main results are included in theorem 7.1. This, in particular, states that there
is a preferred almost Hermitian structure B®’, the integrability conditions of which are
equivalent to the self-dual Einstein—~Weyl equations for the Weyl geometry. This result, even
in the purely metric case, goes a bit beyond the Atiyah—Hitchin—Singer theorem. We are
able to encode both the self-duality and Einstein equations in the integrability conditions
of natural almost Hermitian structures @?P’. Section 7.2 also includes a geometrical
interpretation of the full set of Einstein~Weyl (Einstein, in the pure metric case) equations
on PP’. This is given by theorem 7.2. It uses one of the eight distinguished almost
Hermitian structures7 on PP’ to analyse the decomposition of the differential of the
naturally defined spin connection 1-form @PP’. It turns out that the Einstein—Weyl
equations for the Weyl geometry are equivalent to the fact that this differential has zero
intersection with the T%2 space of 2-forms, where*P2 is defined with respect tg/.
Section 7.3 deals with the Lorentzian case of the 4-metric. The main result is summarized
in theorem 7.3. It, in particular, states that in the purely metric case one can associate a
natural seven-dimensional CR structure with the Minkowski 4-metric. The end of section 7
explains why in the Lorentzian case it suffices to work/@wor P’. The results of section 2

are then reobtained in terms of bundles of maximal totally null planes (theorems 7.4 and
7.5).

2. Summary of the Lorentzian case

To make the present paper self-contained we briefly recall our twistor formulation of the
Einstein equations in the Lorentzian case [8].

Let M be a four-dimensional oriented manifold equipped with a Lorentzian metric
g. It is convenient to introduce a null tetrad:, m, [, k) on M with a cotetrad(¥’) =
(01,62, 63,0% = (M, M, L, K) so that

g=g;0'0) = MM — LK, (1)

where9ig/ = %(Bi ® 6/ + 67/ ®6"). Consider the seB, of all null directions outgoing
from a given pointx € M. This set is topologically a sphere (the celestial sphere of an
observer situated af). The points of this sphere can be parametrized by a complex number
z belonging to the Argand plan@ U {oco}. A direction associated with # oo is generated

by a vector

k(z) =k + zzl — zm — zZm. (2

With z = co we associate a direction generated by vettdonversely, any null direction
from x is either parallel to the vectdror can be represented by the unique null veéiar
such thatg(k(z),1) = —1. It follows thatk(z) has, necessarily, the form (2), and that it
defines a certain € C. If a direction is parallel td we associate with it = oc.

We define a fibre bundl® = | J,.,, S over M, so that its fibres are two-dimensional
spheresS,. The anonical projectiorr : P — M is defined byr(S,) = x. We will call
the bundleP ‘Penrose’s twistor space’, or the ‘twistor bundle’. This bundle possesses quite
a broad family of well defined geometrical objects, which collectively form the so-called
‘optical geometry’ [19, 21]. Here we recall only those objects that are relevant in the present
paper (see [8] for details).

(i) The Levi-Civita connection associated with the megrion M distinguishes a horizontal
space in P. A vertical space consists, by definition, of vectors tangent to the fibres.
In this way, at any poinp € P we have a natural splitting of its tangent space onto a
direct sum TP = V, & H,, whereH, is a four-dimensional horizontal space avig
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is a two-dimensional vertical space. The vertical sp¥gas identical with a tangent

space to a certain point on the two-dimensional sphere. Thusas a natural complex

structure related to the complex structure $n Complexification ofV, splits it into
eigenspacesfp+ and V" with respect to this complex structure. We have a horizontal

lift v of any vectorv from = (p) € M to P. This is a vectorw such that aip v € H,

andm,(v) = v.

(ii) A Lorentzian metricg can be defined of® by the requirements that:

(a) a scalar product of any two horizontal vectors is definegl im terms of the scalar
product ing of their push forwards toV;

(b) a scalar product of any two vertical vectors gnis equal to their scalar product
in the natural metric on a two-dimensional sphere (this is consistent since vertical
vectors can be considered tangent vector§?o

(c) any two vectors such that one is horizontal and the other is vertical are orthogonal
in g.

(iii) There is a natural congruence of lines Bhwhich is tangent to the horizontal lifts of
null directions fromM. It is defined by the following recipe. Take a null vecioat

x € M. This represents a certain null directipk) outgoing fromx. Correspondingly,

this defines a poinp = p(k) in the fiborex ~1(x). Lift k horizontally top. This defines

k which generates a certain direction outgoing frpne . Repeating this procedure

for all directions outgoing fromx € M we attach a unique direction to any point of

771(x). If we do it for all points of M, we define a field of directions o which,

according to its construction and propertiesgofis null. Integral curves of this field

form the desired null congruence. This congruence is called the null spr@y[i].

Let X be any non-vanishing vector field tangent to the null sprayPorLet A; be a
real 1-form onP defined byA; = g(X). SinceX is defined up to a multiplication of a
non-vanishing real function o then A is also specified up to a multiplication by a real
non-vanishing functiom on P,

One associates another 1-form with the horizontal spac®.ifhis is a complex 1-form
E; onP that satisfies (). (H,) = E.(V,) =0 and (i) E, A E, # 0 atany pointp € P.
E is also defined up to a multiplication by a non-vanishing complex fundtiam P

It is easy to see that the metrgcon P can be expressed as
§=2(hhE E, + AT + F, F})

with some 1-formd’ (real) andF, (complex) onP. The above expression can be considered
a definition of the formF; . It is given up to transformations

Fp — F£=ei¢FL+PAL, (5)

where¢ (real) andp (complex) are some functions gn.
It follows that in the ordered null cotetra@’) of (1) the formsA;, F; andE; can be
represented by

Ay =—L—27zZK —zM — M, (6)
FL =M +ZK1 (7)
Ep =dz 4+ y3 + 2% — v + 25%, (8)
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wherez is the same as in (2) ang ; are Levi-Civita connection 1-forms associated with
the metricg in the cotetrad6’).

Although the above forms are only defined up to transformations (3)—(5) one can use
them to write down some well defined equationsnThe following equations, invariant
under transformations (3)—(5), are of particular interest.

dA; AAL ANFL NEL =0, 9)
dFf AALANFLANEL =0, (20)
dE, AAL ANFL ANEL =0, (11)
dE; AAL AFL ANE;, =0. (12)

Note that in equation (12) a form,, which is a complex conjugate @, appears. Since

any of the above equations is invariant under (3)—(5) we canAyseF, and E; in a
particular representation (6)—(8) to analyse them. It is a matter of a straightforward but
lengthy calculation to arrive at the following theorem.

Theorem 2.1.

() Equations (9) and (10) are identically satisfied®n

(il) Equation (11) is satisfied everywhere ¢n if and only if the metric (1) onM is
conformally flat.

(iii) Equation (12) is satisfied everywhere @ if and only if the traceless pad;; =
Fij — %g,-jr of the Ricci tensor of the metric (1) vanishes 6.

A straightforward corollary from this theorem reads as follows.

Corollary 2.1. Equation (12) is satisfied if? if and only if the base metric satisfies the
Einstein equations;; = kg;;.

To interpret equation (11) geometrically gn it is convenient to consider it together
with equations (9) and (10). It is easily seen then that the system (9)—(11) constitutes the
Froebenius condition for the three-dimensional distribufiénvhich in P annihilates forms
Ayr, F; andE;. It follows that/\ is totally null in the metrig and has maximal dimension.

We failed in finding a nice geometrical interpretation for equation (12). Since it is
invariant under transformations (3)—(5) such an interpretation should exist.

3. Hermitian and optical geometries

Suppose that we are given azalimensional real manifolR equipped with a real-valued
metric g of signature (2 + ¢, 29 +¢€). Here 21 = 2(p +q +¢€) ande = 0 or 1.
Following [5] we call the cases = 0 ande = 1 pseudo-Euclidean and pseudo-Lorentzian,
respectively. We omit the prefix ‘pseudo’ ig = 0. By complexifyingg one endows
the complexification RC of the tangent bundle ® with a metricg®. Let A" be a vector
sub-bundle of R which is totally null with respect t@® and hasn-dimensional fibres.
We call such bundles maximal totally null bundles. Givehwe also have its complex-
conjugate bundlgV” as well as bundles/NA and NV +N. ltis easy to see that' N A and
N + N are, respectively, complexifications of certain vector sub-bundlasd £ = K+ of
TR. The complex fibre dimension of A" N A (or real fibre dimension ok) depends on
the signature of and may take the following values:= ¢, 2+¢, ..., min(2p +¢, 2g +¢)
[5]. It is called a real index of\". From now on we only consider sugtfs for whichr is
constant ovefR.
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Given NV, we have a natural almost complex structufein a bundleH def L/K. To
define this we observe that any sectibof £ is of the form! = n + i wheren is some
section of /. If [] denotes the equivalence class associated ith we define7 by

T = T(n+ i) E'[—itn — ).

One may prove that7 is well defined. Moreover, since the metrgcis degenerate on
K then it descends to a unique metgicin H. It further follows that7 is an orthogonal
transformation fogg’ (we say that7 is orthogonal with respect tg or, simply, orthogonal).

If ¢ = 0 then the only possible values of the real indeaf A/ are 0 (Euclidean case)
or 1 (Lorentzian case). For sughande = 0 we see that the correspondiig = {0},
L=H=TR, g =g. Thus, in this case) defines an almost Hermitian geomefg;, .7)
in R.

If ¢ =0 ande = 1 then the maximal totally null bundl& equipsR with the structure
of the almost optical geometry of Trautman [19, 21]. This is a sequence

K < L — H
Fibre dimension 1 2—-1 2m — 2

of real vector sub-bundlek and £ of TR together with an orthogonal almost complex
structure7 in the quotient bundlé<{. Note that in this case the metri¢ in H is purely
Euclidean.

To deal with the generic case gf£ 0 we introduce the following definition [9].

Definition 3.1. Consider a real /2-dimensional manifoldR equipped with a metrig of
signature(2p +¢, 2q +¢). Let K andL = K+ (K C £) be vector sub-bundles of & which
have respective fibre dimensiorand 2n — r. If the quotient bundlé{ = £/ is equipped
with an almost complex structurg which is orthogonal with respect to the descended
metric ¢’ in H, then (K, g, H, J) is called an almost optical geometry with indexor
almostr-optical geometry).

Thus any maximal totally null bundle with real inde>gives rise to an almostoptical
geometry. The converse is also true. Given an almagptical geometry ok we define
N as the vector sub-bundle ofRIf whose sections are of the form= /; + il,, where
I3, I are sections of satisfying 7[l1] +iJ[l2] = —i[l1] + [l2]. One easily proves that’
thus defined is totally null, has fibre dimensianand real index.

The above discussion shows a one-to-one correspondence between maximal totally null
bundles of a given index and almost--optical geometries.

Given a maximal totally null bundlgy" we denote the set of all its sections byN).
It is natural to consider the following integrability conditions fbf:

[TNV), TN)] C TN). (13)

Here [, -] denotes a commutator of sections treated as vector fields. We say that an almost
r-optical geometry associated with” is r-optical if and only if the conditions (13) are
satisfied.

Definition 3.2. A CR structure [22] is a real2m — 1)-dimensional manifold? equipped
with a sub-bundleH of the tangent bundle &, which has fibres of dimension(2z — 1)
and which is endowed with an almost complex structdre
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Given a CR structur¢Q, H, J) we extend7 to the complexificatior< by linearity.
A CR structure is called an integrable CR structure if for any sectitong of H we have

JX+iTX, Y +iJY] = —-i[X+iJX, Y +iJ'Y]. (14)

We say that two CR structure®, H, J) and (Q', H', J’) are (locally) equivalent iff
there exists a (local) diffeomorphisgn: @ — Q' such that

¢*H = H/
and
*T=J.

In the following we will also need the more general structure.

Definition 3.3. An r-CR structure is a real2m — r)-dimensional manifold® equipped
with a sub-bundlg+ of the tangent bundle @ such that it has fibres of dimensiom2- 2r
and is endowed with an almost complex structdre

An r-CR structure is integrable iff any two sectiods Y of the bundle satisfy
conditions (14).

We note that a 0-CR structure is the same as an almost complex geome&ry lis
integrability conditions are equivalent to the integrability conditions of this almost complex
structure.

Given an almost--optical geometry(XC, £, H, J) on R we choose a surfacé of
dimension Z» — r in R that it is transversal to sections of the bundle It is easy to
see that any such surface is naturally endowed with-&@R structure. If it happens that
(K, L, H, J) is r-optical then the integrability conditions (13) imply thaCR structures on
any hypersurface are integrable and locally equivalent. More formally, given-asptical
geometry satisfying (13) we find that the bundleis integrable as a distribution oR.
Thus it defines a foliation ofR by r-dimensional real manifolds tangent 0. Consider
an equivalence relationr in R which identifies points lying on the same leaf of this
foliation. We assume that its quotient spa@e= R/ ~ is a manifold. Conditions (13)
guarantee that the projection ofCR structures from any of the surfacg8go this manifold
equip it with the same integrableCR structure. Hence, in such a case, the manifol
locally equivalent to the Cartesian produttx Q. This generalizes the well known fact
for almost optical geometries associated with congruences of shear-free and null geodesics
in four dimensions [14, 15].

Summing up we have the following theorem.

Theorem 3.1. Let R be a real &i-dimensional manifold equipped with a real metgiof
signature (2 + ¢, 29 +¢), where 21 = 2(p + g +¢€) ande = 0 or 1.

(i) There exists a one-to-one correspondence between ahvaygical geometries oveR
and maximal totally null bundled/ of constant real index over k.

(i) Any integrable AV of indexr locally defines an integrableCR structure.

(iii) In the case of a Euclidean metric, the bundié corresponds to an almost Hermitian
structure ¢, 7) on R. This almost Hermitian structure is integrable ff satisfies
integrability conditions (13).

(iv) In the case of a Lorentzian metric, the bundié corresponds to an almost optical
geometry ornR. This, when integrable, defines an integrable CR structure.
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In the following we will need the interpretation of the integrability conditions (13) in
terms of the theory of differential ideals.

Consider a system of complex-valued 1-forig#,, Az, ..., A;) on R. LetZ be an
ideal in the exterior algebra of all complex-valued differential forms7orgenerated by
1-forms (A1, Ao, ..., Ay). We say thatl is a closed differential ideal iff

dATAATANAIA...ANA; =0,
dAs AATAAZA ... ANA; =0,

dA; AALANAIA...NA, =0.

Any maximal totally null bundleN over R can be defined as the annihilator mf
linearly independent, totally null, complex-valued 1-forms, sdy, A, ..., A,), on R.
Given N defined by such 1-forms we have the following, well known, lemma.

Lemma 3.1. NV satisfies the integrability conditions (13) if and only if the system
(A1, Ay, ..., Ay) generates a closed differential ideal ®n

4. Weyl geometry

4.1. Definitions

From now on by a metric on a real manifold we will understand a non-degenerate, bilinear
and symmetric, complex-valued form.
Consider a four-dimensional real oriented manifditiequipped with a metrig. Fixing
four complex-valued 1-form&’) (i = 1,2, 3,4) on M for which 61 A 02 A 63 A 6% £ 0
we can represent any metricby means of its metric coefficiengg;. Thus, giveng and
(6") we have

g =gij0'0’.
The system of formg#’) will be called a cotetrad onM. We equip M with a Weyl

geometry. Such a geometry is defined in terms of a paird) whereg is a metric and
A = A;0" is a complex-valued 1-form oM. The metric and4 are related by

Dgij = dgij — gal™; — gul"i = —Agij. (15)
whereT”; are torsion-free connection 1-forms. The torsion-free condition is expressed by
do’ = —T%; A6/, (16)

Given a Weyl geometryg, A) on M the connection 1-form§‘; are uniquely determined.
They are expressible in terms afand the Levi-Civita connection 1-formg ; of the metric
g = g;0'67. Explicitly we have

I'; = ¢'*Ty;, gy =15 17)
where

Tij = vij + 38 A + g Apo", vij = gV (18)
and where we have introduced the abbreviatiph;) = (a;b; — a;b;)1.

t Round brackets will denote symmetrization of indices, e@h;, = 2 (a;ib; + a;b;).
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Given connection 1-form§’; one may associate a (Weyl) connection with them and
obtain a recipe for parallel transport of vectors &. It follows that in contrast to the
parallel transport of Riemannian geometry, this transport preserves only nullity of vectors
(see, for instance, [23] for more informatign)

The curvature of Weyl geometry is defined in terms of curvature 2-forms

Q,»j:%R,-jklekAOI:dF[j+Fik/\ij. (19)
It splits into the curvature;; of the Levi-Civita connection, and the remainidgdependent
part. This, in particular, includes the curvature

F=3F;00 A6/ =dA
of Af.

The Ricci tensorR;; and its scalaiR are defined, respectively, by; = gi"Rijkl and
R = g R;;. Note thatr;; is not symmetric in general. The traceless parRgf, is defined

by

Sij = Raj) — 3Rgij» (20)
which implies

S:=g"s; =0. (21)
We say that Weyl geometrg, A) satisfies the Einstein—Weyl equations iff

Sij =0. (22)
For further use we also define a tensor

Cijii = Rijii + 5Rgign; + Riwgni + Riugu;- (23)
This can be decomposed into the Levi-Civiia, {;) and A-dependent ;) parts

Ciji = Wijki + fiju (24)

(see appendix A). It turns out that;;,; are precisely the covariant coefficients of the usual
Weyl tensor associated with the metgic Sincew;; are antisymmetric irt, [ then we may
associate with them a collection of 2-forms

w;j = %w,‘j/d@k A 91, (25)

which we call the Weyl-tensor 2-forms.

We close this section with a remark that4df= 0 everywhere on\ then such a Weyl
geometry reduces to the usual Riemannian geometry associated with gdtriparticular,
such objects likel';;, R;;; etc reduce to their respective Levi-Civita paytg, 7;x, etc
(compare with the first footnote below).

T Our point of view on Weyl geometries is non-standard in two respects. First, we admit complex rgetrics
Second, we do not stress the conformal invariance. It is easy to check that for a fixed c@tetreglation (15)
is invariant under the transformation

(g.4) — (g, A) = (€¥g, A — 2dyp). *)

One can therefore view Weyl geometry as a pgirA) given up to transformationéx). In such a formulation

only a conformal metric is relevant. We do not refer to this point of view in our discussion since we want to have
a nice passage to Riemannian geometries (fixed metrics, not their conformal classpwhéh However, all
relevant formulae such as, for example, (22), (61), (62), (67) and (68) are covariant(und&ee appendix E

for a further discussion of this. Thus our results also apply to Weyl geometries viewed in this standard, conformal
sense.

1 Decompositions of various Weyl geometric objects onto the Levi-Civita Ardkpendent parts are given in
appendix A.
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4.2. Weyl geometries in null tetrads

Of particular interest are null cotetrads @r. These are cotetrads

6*,6% 6% 6% = (M, P,N,K) (26)
related to the metrig by
g =g0'0/ =MP — NK. (27)
A tetrad dual to (26) will be denoted by
(e1, €2, e3, eq) = (m, p,n, k). (28)
Given a null cotetradM, P, N, K) it is convenient to introduce the form
n=MAPANAK. (29)

Using it one splits the set of all null cotetrads into two classes. CotetrddsP’, N, K')
from the first class satisfyf’ A P’ A N’ A K’ = n and cotetradgsM”, P, N”, K”) from
the second class satisty” A P” A N” A K" = —n. From now on we restrict our attention
only to null cotetrads from the first class.
Given a null cotetrad andt we find Weyl connection 1-formg$”;, and calculate
curvature 2-forms. Their convenient decomposition relates to the notion of self-duality.
Given ap-form o on M we define its Hodge dualizatiorw by

(k0)(X1, ..., Xapn=w A g(X) A... Ag(Xa—p), (30)

where g(X;) is a 1-form associated with a vector field ¢ = 1,2,...,(4 — p)) by
(g(Xi), X;) = g(X;, X;). Since the metrig induces an isomorphism between forms and
vectors onM then, in an obvious way, we also have a Hodge dualizatiop-eéctors.
Hodge dualization is an involutives{ = id) automorphism of the complexified space
A\? of 2-forms onM. Its + eigenspaceg\% and \’ consist of self-dual and anti-self-dual

forms, respectively. A convenient basis f)d\rz+ is

PAK, NAK—-MAP, NAM (31)
and for A2

M AK, NAK+MAP, N A P. (32)

Any 2-form can be decomposed onto these bases. Decompositions of the cumaince
the Weyl tensor 2-formsy;; onto these bases define coefficietits ¢1, 2, ¢p, ¢1, ¢, and
W, Wy, W, W3, Wy, Wy, Wy, W5, W7, W) by

F=¢sNAP+¢(NAK+MAP)+¢)MAK+¢oNAM

+Pp1(NAK —M A P)+¢2P AK, (33)
wia=VYMAK+W(NAK+MAP)+W,NAP
w3 =—-VY,MAK —V;(NAK+MAP)—V,NAP (34)

T(was+wip) = WM AK+WyNAK+MAP)+WN AP

Woa=WoP AK +W(NAK—-MAP)+WNAM

wiz=—YPAK —W3(NAK—MAP)—UNAM (35)
T(was —w1)) = WP AK +W(NAK —M A P)+ WsN A M.

Decompositions of2(;;; can be found in appendix B.

It follows from the above decompositions that the Weyl tensor 2-fowysare anti-
self-dual (respectively, self-dual) if and only if all the coefficienty, W;, Wy, V3,
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W, (respectively, ¥, v, W5, s, W) vanisht on M. This allows for the following
terminology. Weyl geometriegg, A) on M are called anti-self-dual (respectively, self-
dual) if and only if all coefficientsl,, (respectivelyW)), u = 0, 1, 2, 3, 4 vanish onM. It
follows that this definition does not depend on the choice of the null cotetrad.

5. Geometry of twistor bundles

5.1. Twistor bundles

Let M be a real oriented 4-manifold equipped with a Weyl geomégryd). At any point
x of M we consider vector subspaces of the complexification of the tangent spade T
which

(i) are totally null with respect tg and
(i) have maximal dimension.

Such spaces are necessarily two dimensional and can be represented by a complex bivector.
It turns out that bivectors associated with spaces satisfying (i) and (ii) are either self-dual
or anti-self-dual in the Hodge dualization associated withind . This shows that the set

of all spaces that at satisfy (i) and (ii) consists of two disjoint parts and S,. We call

S. (respectively,S’) a set of all self-dual (anti-self-dual) maximal totally null spaces.at

A pair of spacegs, s") such thats € S, ands’ € S, is called a pair of maximal totally null
spaces of opposite self-duality. It is easy to see that Bptand S, are diffeomorphic to a
two-dimensional spher§,. A stereographic projection gives a convenient parametrization

of these spheres in terms of points of the Argand pl@ne{co}. Using the null tetrad (28)

for g we find that elements € S, ands’ € S, can be represented, respectively, by

s = Sparizm — k, zn — p} s’ =Spanz’'p —k,z'n — m}, (36)

wherez, 7/ € CU {oo} and thus we identified points &, with the points ofC U {oco}. For
further use we also note that any two spagesnd s’ have nonzero intersection at It

is easy to see that this intersection is one dimensional and is spanned by a null Xector
which, if s ands” are represented by (36), has the form

X=k+zzn—zm—7p. (37)

Collecting the sets,, S, point by point we have two fibre bundlgd= | J,_,, S, and
P = U,en S. over M. Any of these bundles h&S, as its typical fibre and is equipped
with respective projectiong : P - M andn’ : P — M. Any point p of P is a
certain totally null (necessarily self-dual) space of maximal dimension at the corresponding
point x of M (there is an analogous statement for points/Sf. It can therefore be
parametrized by(x, z, 7), wherez is as in (36). A pointp’ € P’ is parametrized by
(x,7',7), wherex'(p’) = x andz’ is as in (36). UsingP and P’ one defines their fibre
productPP’ = (J,c((Sx x S.) which is:

() a fibre bundle overM with a natural projectionll : PP" — M and typical fibre
diffeomorphic toS, x Sp;

(i) a fibre bundle overP with a natural projection pr PP — P and typical fibre
diffeomorphic toS;;

T It is known that conditionslp = W1 = Wy = W3 = Wy =0 or ¥) = ¥; = ¥, = W3 = ¥, = 0 are invariant

under the conformal transformations of the metric. A less well known fact states that they are also invariant under
transformationg) of the second footnote of section 4.1. This is related to the fact that the conditipns= 0
andw;ji; = 0 (hence alsofiji; = 0) are invariant undegx).
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(iii) a fibre bundle overP’ with a natural projection pr. PP — P’ and typical fibre
diffeomorphic toS,.

In particular, any point ofPP" may be understood as a pair of maximal totally null spaces
of opposite self-duality at the corresponding point/ef. A convenient parametrization of
PP is (x,z,7,7',7). The projections associated with these bundles satisfy

M=mopr=xopr, (38)
and in the above coordinates &', P and P’ are given by
M(x,z,z,7.7) =x, pr(x,z,z,z',7) = (x, 2z, 2), etc

Using the projections we can pull back forms. For example, usinge pull back forms
from M to P, using IT we pull back forms fromM to PP’ and using prwe pull back
forms from P’ to PP’t. In this way we can, for example, pull back tetrad 1-foréris
and Weyl connection 1-formk’; from M to P, P’ and PP’. Since it follows from the
context on which manifold a given form is placed, we use in the following the same letters
to denote forms and their pullbacks.

Weyl geometry(g, A) induces interesting geometrical structures on bunfle®’ and
PP’. We only outline constructions fg? and PP’.

5.2. Natural structures o® and P’

(i) The tangent bundle t@ and its complexification split naturally into a vertical and
horizontal part. To show this we give a recipe for the lifting of a given vectofrom
x € M to a chosen poinp € P in the fibre overt. Recall that a poinp can be considered
a maximal totally null self-dual space at Take any curvex(z) that is tangent ta at x.
Use the Weyl connection associated wth A) to propagate the maximal totally null space
represented by parallelly alongx(z). Since Weyl-geometric parallel propagation preserves
the nullity of vectors, then at any point of our curve we get a certain totally null space. Due
to the continuity ofx () any such space is maximal and self-dual. Thus given a cufe
tangent tov atx we have a corresponding curygr) in P which starts ap. It follows that
a direction of a tangent vector to(z) in p does not depend on the choicexaf). This is
the direction of the desired horizontal lifit of v to p. The lift is determined completely
by the additional demand that.(?) = v. Thus we are able to lift any vector frome M
to a chosen poinp from the fibre overc. Moreover, it is true that horizontal lifts of four
linearly independent vectors from constitute four linearly independent vectorsgn This
means that we have a well defined lift of the tangent spack{Tio a four-dimensional
subspace, of T,P. This subspace is called a horizontal space.affhe vertical space
V,, consists of vectors gi that are tangent to the fibres. This space is two dimensional and
may be identified with the tangent space to a certain poir°ofA direct sumH, @ V,
equals TP.

The horizontal lift that we described above can be also used to lift horizontally vectors
w from the complexification of the tangent spacerdd p € 7#~(x) C P. This is achieved
by extending the horizontal lift map: v — v by linearity to the complexification of ;TM.
Thusw = 93 + i0,, wherev; andv, are, respectively, real and imaginary partsuof This
leads to a split of the complexification of the tangent bundlI® fato vertical and horizontal
parts(TP)¢ = HC @ VC.

1 Note that due to property (38) the direct pull back of a form frarhto PP’ is the same as a pullback of this
form via P (first usingz and then pr) ofP’.
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There is a natural complex structufg in V, that comes from the natural complex
structure onS?. This, when prolonged to the complexificatioff*, gives a splitVy =
VeV, , wherel, V= +iV>:.

(ii) Spin connection 1-formWe look for a complex-valued 1-form& such that in some
neighbourhood/ of P it satisfies (a)E(H) = 0, (b) E(U,, V,) =0 and (c)E A E # 0.

In general, starting from a given point € M, we can solve these conditions only in a
cylindrical 4 over a sufficiently small neighbourhood ef Outsidel/ conditions (a)—(c)
may be contradictory. From now on we restrict our considerations to ddshfor which

the correspondingt is defined globally. This can be achieved either by assuming some
additional structure oo\ (e.g. spin manifold structure) or restricting ourselvesits to

be open subsets &*. With such an assumption, conditions (a)—(c) deffhen P up to a
multiplication by a non-vanishing complex-valued functioron P

E — hE. (39)

E is called a spin connection 1-form dn.
Using the null cotetrad (26) and the coordinatesz, z7) on P one easily finds that the
form E may be represented by

E =dz — F32 + Z(Fll — F44) + ZZFZS- (40)

(iii) Metrics. Pullback the metrig from M to P and add to it a tensdth EE with &
being a non-vanishing function dA. This defines a class of metrigson P, which can be
represented by

g =n*(g) +hhEE. (41)

(iv) Canonical field of 2-planesTake a pointp of P. It corresponds to a certain self-
dual maximal totally null plane at = 7 (p) € M. Lift this plane horizontally top. This
associates a horizontal 2-plane to any pgindf P. Thus on? we have a distinguished
field of 2-planes, which we call the canonical field of 2-planes. Note that any 2-plane in
this field is totally null in any metric from the class (41).

Dually, the canonical field of 2-planes defines a pair of 1-fosB) on P which,
by definition, annihilate the vertical space and the canonical field of 2-planesd B are
given up to transformations

(F,B) — (@F 4+ BB,y F +8B), as — By #0. (42)

This shows that a@irection of a 2-formX = F A B on P is well defined.
It is easy to see that in the null cotetrad (26) and in the coordinates z) the forms
F and B may be represented by

F=M+:zK, B=N+4:zP. (43)

(v) Distinguished totally null planes of maximal dimensioiven a pointp € P
consider a canonical 2-plane passing through this point. There are only two three-
dimensional planes ai that are totally null in any metrig and that contai as a vector
subspace. These may be defined as vector spacesd n; annihilating (F, B, E) and
(F, B, E), respectively. Point by point they define two bundles of maximal totally null
planesA; and Nz over P. According to section 2, in the case of real geometries, they
will define a pair of distinguished complex or optical structuresfon

(vi) Invariant equations.Although formsE, F, B and X are only given up to certain
transformations, one can use them to write down several geometric equatioRs &m
particular, note that the equation

dEAFABAE=0 (44)
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as well as the system of equations
dFAFABAE=0 dBAFABAE=0 (45)

are invariant under the transformations (39), (42).

(i, (ii", dii", (iv"), (v), (vi’). Analogous constructions as in (i)—(vi) can be performed
for P’. In this way onP’ we have a split of P’ into a vertical and a horizontal part.
Also the spin connection 1-forr&’, metrics, canonical field of 2-planes, classes of forms
(F', B"), ¥’, distinguished maximal totally null planes and invariant equations are defined
there.

5.3. Natural structures o®P’

(i) The tangent bundle &P’ and its complexification have a natural split into vertical and
horizontal parts. The recipe for having this split is almost as in the caseéPoWith the
exception that now a point € PP’ corresponds to a paif, s”) of maximal totally null
spaces of opposite self-duality at= IT(p) € M. Thus if we want to lift a vectov from

x € M to a pointp € II~Y(x) c PP’ we take a curve tangent to at x and propagate
parallelly spaces ands’ along this curve. This produces a pair of maximal totally null
spaces of opposite self-duality at any point along the curve. Correspondingly, we get a
curve in PP’ starting atp which defines the direction of the lift of v. As before the lift

is specified uniquely by the demand tHaL () = v. Lifting T, M horizontally we get

a horizontal spacéi, in p. The vertical spac#, is defined as the vector space tangent at
p to the fibre of PP’ over I1(p). Note that nowV, is four-dimensional and is isomorphic
to the tangent space & x S at the point corresponding tp.

(i) Connection 1-formsThese are the complex-valued 1-forms®B®’ that annihilate
the horizontal space in(PP’). It follows that the basis of such forms daP’ is given
by the four pullbacks pXE), pr(E), pr*(E’) and pt*(E’). Here we wrote pullback signs
explicitly. They will be omitted in the following.

Since the formE (respectivelyE’) was defined orP (respectively or?’) up to a scaling
by a function, the four above-mentioned forms are given up to a scaling by a non-vanishing
complex function orPP’.

Local representations off and E’ may be given in terms of the coordinates
(x,z,2,7,7Z) introduced orPP’ in section 4.1. Since they were chosen in such a way that
by projections we were getting corresponding coordingétes, z) on P and (x, z/, ') on
P’ then we easily find that

E=dz; — % + z(I'Yy — ') + 22T, (46)
E =di/ — T3, 47/ (T% —T%) + /13, (47)

Here, as usual, connection 1-forms are expressed with respect to the cotetrad (26).
(iii) Metrics. The following metrics are of particular interest &P’

g =T"(g) + hhEE + WIWEE, (48)
whereh andh’ are non-vanishing complex-valued functions Bf’.

(iv) The canonical field of 3-planes and associated bundfgsevery pointp of PP’
there is a natural 3-plane which is obtained as follows. Take a(paif) of maximal totally
null spaces of opposite self-duality whichxat= T1(p) correspond tg. Lift spacess and
s’ horizontally to a pointp € M~Y(x) corresponding tds, s’). This gives a pair of vector
spacess ands at p. But as we notlced in section 4.3,ands’ have a one-dimensional
intersection. Hence the vector Sp&Cﬂ} s has complex dimension equal to three. Thus at
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every pointp € PP’ we have a three-dimensional spa:ce §/, which we call a canonical
field of 3-planes.
Actually the above considera}/ions show that we have a list of vector sub-

bundlesS = U, cpp 5+ 8" = Upepp 5+ £=U,pepp G +5), K =U,cppGN3) of the
complexification of the tangent bundle &P’ which give rise to the following sequence:

K — L — L/K
fibre dimension 1 3 2

Note that by definition bundle§, S’ are sub-bundles of, and thatS, &', andC are
null bundles with respect to any metric from the cl@ssThis indicates parallels between
the structures defined here and the optical geometries of Trautman [19, 21].

Given the above bundles oRP’ it is interesting to ask whether such geometric
conditions as §,S] c S, [§.8] ¢ &, [S,8] C L, [K, L] C K etc, have some
interpretation in terms of the Weyl geometry g¢#.

(v) Canonical 1-form orPP’. The bundleXC has one-complex-dimensional fibres. It
can be used to define a direction of 1-foknon PP’. Indeed, ifX is a section oftC, then
we defineA by

A = g(X). (49)
Taking another section df we see that
A = uA, (50)

which shows that a direction af is well defined. We cali a canonical 1-form. We notice
that A, together withE, E, E’, E’, can be used to define a convenient basis of 1-forms on
PP'. Indeed, one easily finds that

g =hhEE +hI'E'E "™ + AT + FF/, (51)

with some complex-valued 1-form&, F’ andT on PP’. These forms are defined up to
the following transformations:

F — aF + BA, (52)
1

F'— ZF +yA, (53)
a
1

T—>(T—oe)/F—'3F’—,ByA>, (54)
u a

wherea # 0, 8, y are some functions o®PP’. It follows that the formsF and F’ are in
the class of forms obtained by taking pullbacks of the fodhand F” of section 4.2. The
set of forms(E, E, E', E', F, F', A, T) constitutes a convenient basis of 1-forms®’.
In the coordinatesx, z, z, z/, z) and in the cotetrad (26) they may be represented as

E =dz — 3+ z(T'Yy — T%) + 2212,

E'=d7 = T3 +7/(I'% —T%) + /T,

A=—-N—-727K—zP—7'M,

F=M+:zK,

F'=P+7K,

T =K.

(55)
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It is useful to consider transformations
7 <7, (56)
1e 2, 33, 44

where the last transformation means that for any objecton?, P’ or PP’, with tetrad
indices 1, 2, 3, 4 interchange indices 1 and 2 and do not change indices 3 and 4.
Examples:

' =M < 62=P, 03=N<03=N, =K < 0* =K, (57)
er=m<>e;=p, e3=n<>e3=~n, ea=k < es=k, (58)
S13 <> S23, S34 <> S34, S12 < 821, etq

'y < 2, %, & Iy, etc (59)
A < A, F < F, E < E/,

\IJM<—>\IJL,,u=O, 1,2 3,4, o < P a=0,1,2. (60)

It will be important thatA is invariant under the transformations (56).

(vi) Distinguished totally null planes of maximal dimensidg@iven a pointp € PP,
consider its corresponding pdit, s”) of maximal totally null planes of opposite self-duality
in IM(p) € M. Lift s horizontally tos in p. It follows thats is a totally null 2-plane in any
metric g in PP’. There are only four four-dimensional planespatvhich are totally null
with respect taany metric§ and which contairs as a subspag¢e These may be defined as
vector spacefr g, npgi, Nppp aNdnpgg annihilating, respectively(A, F', E, E’),

(A, F',E,E", (A, F',E,E") and (A, F’, E, E'). Point by point they define four maximal
totally null bundlesNz g, Np gz, Npgp and Ny gz over PP’

Similarly, considering extensions &f we find four other maximal totally null bundles
Nreg, Npgi, Npgp and Npgp. Thus, in real cases, we will have eight different
distinguishedr-optical structures o®PP’.

(vii) Invariant equations. One set of geometrical equations PP’ was already
mentioned at the end of section 5.3 iv. By using foriis E’, A, F and F’ we can
write further equations and systems of equations. Only those which are invariant under the
allowed transformations of the forms have geometrical meaning. Among them there are the
following:

dAANEAAAF =0 dFAEAAANF =0
dEAEAAANF=0 dAANE' AAANF =0
dFF AEEAAANF =0 dE'AE'AAANF =0
dEAEAAANF =0 dE'AE'AAANF =0
dEAE'AAAF =0 dEAE ANAANF =0.

One can continue this list. We discuss some of these equations in section 6.

6. Self-duality and the Einstein—Weyl equations

Let (M, g, A) be a four-dimensional Weyl geometry. In this section we study relations
between curvature properties @M, g, A) and the integrability conditions for the natural
objects on the corresponding twistor bundfgs 7’ and PP’. We start our analysis by

1 The requirement that these planes must be null in any of mq}risscrucial to obtain a discrete number of
them!
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giving a geometrical interpretation of the invariant equationsPg? (see section 5.3 vii).
We use the local representation (55) of the natural formsP@t to prove the following
lemma.

Lemma 6.1. The equations
dAAAAFAE=0 (61)
dFAAANFAE=0 (62)
are automatically satisfied everywhere Bf®’.
Proof. By using definitions (55) and (16) we easily compute that
AAAAAFAE =[T3+z(M% —T3) 4+ 7/ - T3
422/ (T3 + T — T% — Thy) — 2°T% — 2T + 22203 — T9)
+2'22(T3 —TH + 2%/°TIK AAANF AE
+H[z(T% 4+ T — T3 —T%) + 2T
422/ (0% —Tl3) — 22 T%]F AAAF AE (63)
and
dF AAAFAE =[z2T% +z0% —T%) —TLIF AAAFAE
I3, — Ty 4 2T 4+ 22(0% — T%) + 22/ (0% — T) — 2/2T)]
xK ANANFAE. (64)

Now, the right-hand sides of the above expressions are actually equal to zero due to the
Weyl geometry relations (15), which in the tetrad (26) read

My =r%=T%=r%=0,
I3 =T, I3 =T, Iy =T%, [, =T%,
M +r%=r3%+1r%=A.
This concludes the proof of the lemina |

Since equations (61), (62) are satisfiedR’ it is natural to ask when the forms,
F and E form a closed differential ideal. Given the equations (61), (62), this question is
equivalent to a question as to when an objeEtrdA A F A E vanishes identically oPP’.
Also the related question of the vanishing df d A A F’ A E may be interesting. A long
but straightforward calculation leads to the following expressions:

dEAAAFAE =[—Wo+4Wz — 6Woz? + 403z — Wz JFF AK AAANFAE  (65)

dEAAAF ANE = [—%544 + 2'So4 + 2814 — 22" (S12 + S34) — %1,2522
—%12511 +7'%2893 + 7%7'S13 — %ZZZ/ZS:.;:;]F AKAAANF ANE. (66)
Here we have used the notation of section 3 applied to null tetrad (26). The above formulae

are implied by the general expressions for differentials\ofF’, F’, E, E’ and K, which
can be found in appendix C.

1 Note that the Weyl connections (17), (18) are not the only connections that imply equations (61), (62). For our
purposes, however, it is enough to restrict ourselves to Weyl connections.
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Theorem 6.1.
(i) The equation
dEAAANFAE=0 (67)

is satisfied everywhere oRP’ if and only if the underlying Weyl geometrgg, A) on
M is anti-self-dual.
(i) The equation

dEAAAF AE=0 (68)

is satisfied everywhere oRP’ if and only if the underlying Weyl geometryg, A)
satisfies the Einstein—Weyl equations ..

Proof. In the null tetrad (26), (27) condition (21) expressing the zero tracs;ofeads
S12 — S34 = 0. Then the theorem follows immediately from expressions (65), (66) and the
requirement that their right-hand sides vanish for amgndz’. O

Applying the transformations (56) we also have analogous facts for primed objects.

Lemma 6.2. The equations
dAAAAF ANE =0 (69)
dFF AAAF AE =0 (70)

are automatically satisfied everywhere Bf®’.

Theorem 6.2.
(i) The equation
dE‘EANAANF ANE =0 (71)
is satisfied everywhere oRP’ if and only if the underlying Weyl geometrg, A) on
M is self-dual.
(ii) The equation
dE‘EAAANFAE =0 (72)

is satisfied everywhere o®P’ if and only if the underlying Weyl geometryg, A)
satisfies the Einstein—Weyl equations ..

Transformations (56) showA(is invariant!) that & A A A F’ A E = 0 if and only if
dE’ A A A F A E' = 0f. This observation, together with the above theorems, leads to the
following, interesting corollary.

1 Both equations here are equivalent to the Einstein—-Weyl equatioridfog, A). This is due to the fact that the
symmetric Ricci tensoR;;, (or, equivalentlys;; and R) is fully encoded in the differential of the spin connection
E. The same information about the symmetric Ricci tensor is also encodefl’inTa see this, it is enough to
note thatR as well as the quantity

[—3Saa+2'S24+ 2814 — 22 (S12+ S34) — 32'%S22 — 322811 + /%2 Sa3 + 2%/ S13 — 32%2/%Sa3]

of equation (66) are invariant under the transformations (56). See also appendix C for explicit forfsantld
dE’.
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Corollary 6.1. A Weyl geometry(M, g, A) is anti-self-dual and satisfies the Einstein—
Weyl equations if and only if the form&A, F, E, E’) form a closed differential ideal on
PP, i.e. iff on PP’ we have

dAANEAAAF =0
dFAEAAAF =0
dEAEAAAF =0
dE‘'AE'AAANF =0.

(M, g, A) is self-dual and satisfies the Einstein—Weyl equations if and only iP® we
have

dAAE'AAANF =0
dFF AE'AAANF =0
dE'AE'AAANF =0
dEAEAAAF =0,

i.e. iff (A, F/, E, E’) form a closed differential ideal oRP’.

The second part of the corollary follows from the first by applying (56).

According to section 5.3 vi the form@&\, F, E, E’) and (A, F’, E, E’) define natural
maximal totally null bundlesVi ¢ andNg g onPP’. Using lemma 3.1 we find that the
above corollary has the following geometrical interpretation.

Theorem 6.3.

(i) The natural totally null bundleVrzzr of maximal dimension ovePP’ satisfies the
integrability conditions (13) if and only if the corresponding Weyl geométy, g, A)
is anti-self-dual and satisfies the Einstein—Weyl equations.

(i) The natural totally null bundleNz g of maximal dimension orPP’ satisfies the
integrability conditions (13) if and only if the corresponding Weyl geométyy, g, A)
is self-dual and satisfies the Einstein—Weyl equations.

Looking at the formula (C3) (see appendix C), which gives a differential we see
that WAAAFAEAE =F ANEAAAFAEAE #0. This means that the system
(A, F, E, E') never forms a closed differential ideal. Thus the totally null buntlle; .,
has no chance of being integrable.

Similarly, since ANAAAFAEAE = FFAEAAANFAEAE' # 0, AAAAAF' AEAE' =
FAE'ANANF' ANEANE #0,dAAAAF' AEANE =FAE'AAANF' ANEAE' #0then
also neither of the bundle¥;zz, Ny gi, N i IS integrable in the sense of definition
(13). To study the integrability conditions (13) for bundl&$ ;s and Nz we need to
specify the real structure av. We postpone discussion of this case to the next section.

Analogous results about geometrical objects Bnand P’ (see appendix D for
differentials of the basis 1-forms) are summarized below.

Theorem 6.4. A Weyl geometry (M, g, A) is anti-self-dual if and only if the forms
(F, B, E) form a closed differential ideal o, i.e. iff
dFAEAFAB=0
dBAEAFAB=0 (73)
dEAEAFAB=0.
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Similarly, a Weyl geometryM, g, A) is self-dual iff on’”" we have
dFF AE'AF AB =0
dB'AE'AF AB =0 (74)
dE'AE'AF AB =0.
An obvious reinterpretation of this theorem in terms of the natural maximal totally null
bundles onP and P’ reads as follows.

Theorem 6.5. A Weyl geometry(M, g, A) is anti-self-dual if and only if the natural totally
null bundleNz on P is integrable.

Similarly, a Weyl geometry\M, g, A) is self-dual iff on P’ the natural totally null
bundle N is integrable.

Looking at the differentials of" on 7 and F’ on P’ (see appendix D) we find that
dFAFABAE = EAKAFABAE #0and F' AF'AB'AE' = EEAKAF' AB'AE' # 0,
respectively, orP andP’. This proves the following statement.

Theorem 6.6. Neither of the natural totally null bundle&’; on P and Nz on P’ is
integrable.

The above two theorems are the Weyl-geometric counterparts of the Atiyah—Hitchin—
Penrose—Singer theorems [1, 11] for Lorentzian and Euclidean Riemannian 4-manifolds. It
is interesting that the integrability conditions &fz and Nz say nothing aboui. They
only restrict the possible metrics om.

7. Real structures

7.1. Reality conditions for the natural structures on twistor bundles

In this section we consider real Weyl geometrigel, g, A). This means that the metric

g and the 1-formA are real-valued. Such Weyl geometries and their twistor bundles are
particular cases of the Weyl geometries considered in previous sections. Hence, our results
of the previous sections are also valid here. In particular, a null cotémad, N, K) for

g may be chosen in such a way that

M =P, N =(1-|¢))N +¢K, K=eN+1—|eDK, (75)
where ¢ = 0,1, —1 for Lorentzian, neutral and Euclidean signature, respectively.
Equations (75) imply the following reality conditions for the Weyl connection 1-forms:

1:\2 _ Fl

2 — 1

[3=(1—|eNT 34T
[2=1-|ehly +ells
[3=(1— gD+ T2 (76)
[;=(1—|e)I%+el?
[f=@-2ehr*+e|A
[3=(1—-2eN% + le|A.
Reality conditions for the curvature coefficients can be obtained from these equations.
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The above reality conditions imply the following properties of the natural maximal
totally null bundles orP, P’ and PP'.

(i) Reality conditions for the maximal totally null bundles BrandP’. On P we have
two natural maximal totally null bundle§z and ;. It is easy to see that their real indices
rg andr; are equal. They depend on the signaturey afccording torg = r; = 1 — |¢|.

In the local representatiox, z, 7) of P one finds that

NeNNg =Nz 0ONg = A — |e))k — zin — Zp + 2Z71), (77)
where(m, p, i, k) are the horizontal lifts of the null tetra@, p,n, k) from M toP. An
analogous formula foN; and M, reads

Ne NNg =Nz N Ng = A — ek —2'p — 2’ +2'7'7). (78)
(i) Reality conditions for the maximal totally null bundles &P’. We have eight

natural totally null bundles o®P’. Their reality conditions are given below in the local
representationx, z, z, z’, 7’) of PP".

Nree mj\_/FEE/ = NFEE’ ﬁj\_/FEE/ = NFEE’ mNFEE’ = NFEE/ HNFEE’
= (L— e (k — 2 — 2 + 27i),

Nrep m-/\_/F’EE’ = NF/EE"’ m-/\-[F/EE" = NF/EE’ m-/\-[F/EE' = NF/EE"’ m-/\-/F/EE'
= Q- ek —2'p — T + Z70).

Here (m, p, 11, k) are horizontal lifts of null tetradm, p, n, k) to PP’.

Note that the real indices of all of the natural maximal totally null bundlesPorP’
and PP’ are either 0 or 1. Thus, the twistor bundles get naturally equipped with either
Hermitian or optical geometries. We do not see possibilities for distinguishiogtical
geometries withr > 1 onP, P’ and PP’.

7.2. Euclidean and neutral signature

These cases are characterized|dy= 1. It follows from section 7.1 that the real indices
of all the natural maximal totally null bundles are equal to zero. This, in particular, means
that Nz and \V; define almost complex structurgg: and J; on P. These structures
are almost Hermitian in any metri¢. Similarly, we have two natural almost Hermitian
structures(Jg, g') and (Jg, &) on P’, and eight almost Hermitian structuréSreg, ),
(JFEEu g’), (jFE_E’f g’), (jFEE_” g’), (JF’EE’,g)a (jF’EE_” g); (JFfEEug)y (jF’E_E_” g) on
PP’. Integrability conditions of these almost Hermitian structures are equivalent to
conditions (13) for the correspondinys. Most of them have already been studied in
section 6. The integrability conditions for the remaining two structu&s;z . g) and
(Jr 5 &) follow from the expressions of appendix C. In particular, looking at (C3) and
the primed counterpart of (C2) we find that

dAAAAF AE' AE=0,

dFF AAAF' AE' AE=0.
On the other hand (C8) and the primed counterpart of (C1) show that

dE' AAAF' AE'ANE=0,

dEAAAF AE'ANE=0
if and only if the Weyl geometry is self-dual and satisfies the Einstein-Weyl equations.
Thus we find that 7z, &) is integrable only for such Weyl geometries. An analogous
result also holds fo( 7.5z, &). This leads to the following theorem.
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Theorem 7.1. Let M be a four-dimensional real manifold equipped with a Euclidean or
a neutral signature Weyl geometry, A). Let P (respectively,P’) be a corresponding
twistor bundle of all self-dual (respectively, anti-self-dual) maximal totally null spaces over
M. Let PP’ be a fibre product of the bundléz andP’.

(i) There are two natural almost Hermitian structurgés and 7z on P. Jg is integrable
if and only if the Weyl geometry is anti-self-dualf; is never integrable.
(if) There are two natural almost Hermitian structurgs and Jz onP’. J is integrable

if and only if the Weyl geometry is self-dualy; is never integrable.

(iii) There are eight natural almost Hermitian structu¢% e, &), (Jrzi» ) (Trips &),

(Triin &) (Trees 8)s (Tpeis &)y (Trip &)y (Tpie» &) onPP.

(a) (jpEE/,§) is integrable if and only if the Weyl geometry is anti-self-dual and
satisfies the Einstein-Weyl equations. These integrability conditions are also
equivalent to the integrability of 7z z §).

(b) (JrEE, §) is integrable if and only if the Weyl geometry is self-dual and satisfies
the Einstein—Weyl equations. These integrability conditions are also equivalent to
the integrability of(7, ;1. 2).

©) (Trie- 8 (Triis 8 (Tpepis 8), (Tpip, § are never integrable.

Note that there are no restrictions on the potentlain this theorem. This is a
generalization of the classical Atiyah—Hitchin—Singer theorem [1]. It is interesting that
in a purely Euclidean case & —1, A = 0) we have a holomorphic interpretation of the
self-dual Einstein equations.

In section 6, theorem 6.1, we interpreted an invariant equation

dEAAAF AE=0 (79)

onPP’ as a necessary and sufficient condition for the Weyl geometry to satisfy the Einstein—
Weyl equations. In the present real case we can reformulate this fact in holomorphic
language.

Given an almost complex structugé on PP’ we can decompose the complexification
T(PP)C of its tangent bundle onto the eigenspaces/of The +i, —i eigenspaces are
denoted, respectively, byd® and TV, One easily finds that &V is the same as the
maximal totally null bundleN" representing7. The above decomposition of(PP)¢
induces an analogous decomposition of the complexificatioP®')¢ of the cotangent
space. We denote by*F? the annihilator of Y and by T the annihilator of 7.

In an analogous way*™*) denotes an exterior product efcopies of T¢? andw copies
of T*@D pundles. It is well known that we have the following decomposition of the bundle
A? of all complex-valued 2-forms o®P’:

A2 — T*(Z,O) D T*(l.l) oy T*(O,Z)_ (80)

Consider now a natural almost complex structyferr on PP’ and its corresponding
decomposition ofA2. We analyse the differential &l of the spin connection 1-form from
the point of view of this decomposition. To do this we consider a/§ebf 2-forms over
PP’ defined by

W={wel (A% st. w=QAE+tdE},

where Q2 and: are, respectively, any complex-valued 1-form and functionR%». We
decomposéV according to (80).
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Theorem 7.2. A real Euclidean- or a neutral-signature four-dimensional Weyl geometry
(M, g, A) satisfies the Einstein—Weyl equations if and only if

WN T (T02) = {0}.

Proof. Observe that sections of#% and T are in the ideal generated by the forms
(A, F', E, E"). On the other hand the set of sections ¢f%P has zero intersection with
this ideal. Thus in the decomposition of the sections 8#¥ onto a basis corresponding
to (F,F',A,T,E,E,E' E') there are no forms\, F’, E, E’. Now the proof follows
directly from the differential ofE given by (C1) (see appendix C).

We close this section by considering a Weyl geometry which is not anti-self-dual. Fibres
of its twistor bundleP have a discrete number of distinguished points. To see this consider
such points in a fibrer ~1(x), x € M, in which the expressionEA E A F A B vanishes.

Due to

dEAEAFAB=[—Wy+4W;z — 6Wpz% +4W3z° — Wz lPAKAEAFAB  (81)

we find that in the not anti-self-dual case there are at most feucorresponding to four
points at the fibrer~%(x), in which the right-hand side of (81) is zero. These four points
correspond to four maximal totally null self-dual planesxatThus, in a generic case, at
every point ofM we have four distinguished almost Hermitian structures. It further follows
from reality conditions fon,, that in the not anti-self-dual case these four structures grouped
in pairs of mutually conjugated structures. These two pairs may coincide in particular cases
and, together with the additional two pairs associated with similar consideratiofs,on
may be used to classify Weyl geometries. An interesting fact is that in the non-half-flat case
these distinguished almost Hermitian structures are the only ones that may be integrable on
M [2]. A less well known fact is that in a purely Euclidean case<(—1, A = 0), if the
Einstein equations are satisfied, then any of the distinguished almost Hermitian structures
is integrable [4, 7, 12].

7.3. Lorentzian signature

Due to the conditior = 0 the fibres 0tNrzp N Nrpp, Nppp N Nepi, Nepp N Nigp
andN:;zz N Nz;z are all one-dimensional and, at every pojint PP’, are spanned by
a real vector

Kk =k —zm—Zp+ z7n.

The fibres of N ee N Neee, Npgi O Npgi, Npgg N Npges Negi O Npgp are
spanned by a real vector

k' =k —z7'p—zm+777).
These two real vectors are null and, together with their corresponding maximal totally
null spaces, define eight distinguished optical geometiese, Opzpy Oppis Oriis
Orkee, Oppps Opgiy Oppp 0N PP, According to section 2 any seven-dimensional
submanifold of PP’ transversal toc is equipped with four CR structures that correspond
to Orgey, Opppy Orpiy Oppi- Another four families of CR structures are associated
with the seven-dimensional submanifolds Bf’ transversal tac’. To get a Lorentzian
version of theorem 7.1 we still need to note that = 0 then¥ = v, and¢, = ¢, for
all u =0,1,2,3,4 and alla = 0,1, 2. Thus in this case (anti)-self-duality of the Weyl
tensor is equivalent to conformal flatness of the metric and (anti)-self-dualify wfeans
that F = 0.
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Theorem 7.3. Let M be a four-dimensional real manifold equipped with a Lorentzian
Weyl geometry(g, A). Let P (respectively,P’) be the corresponding twistor bundle of all
self-dual (respectively, anti-self-dual) maximal totally null spaces over Let PP’ be a
fibre product of bundle® andP’.

(i) There are eight natural almost optical geomettits:z/, Oprz, Opge, Oppiy Orer,

Opgin Opips Op i ONPP.

(i) The following conditions are equivalent:

(@) Ofgg (respectivelyOr /) is integrable;

(b) there exists a unique integrable seven-dimensional CR structure obtaine@®#6om
by identifying points lying on the same integral curveofrespectively’) and
associated wittO g (respectivelyOp gg);

(c) the Weyl geometry is conformally flat and satisfies the Einstein—Weyl equations.

(iii) The following conditions are equivalent:

(a) Opgp (respectivelyOp 55 is integrable;

(b) there exists a unique integrable seven-dimensional CR structure obtaine@®fom
by identifying points lying on the same integral curveofrespectively«’) and
associated wittO .z, (respectively O zg);

(c) the Weyl geometry is conformally flat, has zero scalar curvaikuend a potential
A such that d = 0.

(V) Opgps Opgis Op g and O are never integrable.

Only point (iiic) of the theorem requires justification. It is, however, easy to see that
this follows from the differentials of the basis 1-forms given in appendix C and from
formula (C8) withe = 0.

To find a passage from the above results to the description of the original Penrose bundle
given in section 2 we proceed as follows.

First, we note thaf® defined as a bundle of all self-dual totally null 2-planes\ifiis
naturally isomorphic to the Penrose bundle of all real null directiond4n This is due to
the fact that in the case of a Lorentzian metric any two-dimensional totally null plane in
M is in one-to-one correspondence with a null direction.

Second, we note that the natural field of real null directiorsan be naturally pushed
forward fromPP’ to P by means of projection pr This defines a field of real directions
X = pr.« onP which is null in any metrigg. Using X, we define a field of directions of
a real 1-formA; = g(X;). Now, we can takeE; = E and define 1-formg; (complex)
and7 (real) byg = hhE E, +A.T + F.F,. Itis easy to see that the forna ., F;, E.)
are precisely given up to transformations (3)-(5). The above information is sufficient to
reconstruct onP all the structures of section 2. In particular, the annihilatésr of
(AL, Fr, E;) defines an almost optical geomettyrr on P. Similarly the annihilators
Nig, Npg and N of, respectively(A;, Fr, Er), (A, Fr, Er) and(AL, F;, E;) define
optical geometrie®;,, Oz and Oy ;. Their integrability conditions are summarized in
the following theorem.

Theorem 7.4. There are four natural optical geometr@sr, Of, Oz andO;; on a six-
dimensional Penrose twistor bundle of all null directions over a four-dimensional manifold
M equipped with a Lorentzian Weyl geometfiy, A).

(i) The following conditions are equivalent:
(a) Opg or Of is integrable;
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(b) a five-dimensional manifold of lines of a congruence generatef bys naturally
equipped with an integrable CR structure;
(c) the metricg is conformally flat.

(i) O and O are never integrable.
We failed to find a geometrical interpretation of the following theorem.

Theorem 7.5. A Lorentzian four-dimensional Weyl geometry satisfies the Einstein—Weyl
equations if the forms$E; , F;, A;) satisfy an invariant equation

dEAFLAALAELZO
everywhere orP.
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Appendix A

In this appendix we present formulae which give decompositions of certain Weyl-geometric
objects onto the Levi-Civita and-dependent parts.
For the Riemann tensor 2-forng; we have

Qij = wij + 381 F + DA A Oy + SA[0q A A — SA%0, A O, (A1)
wherew;; denote curvature 2-forms of the Levi-Civita connectign
DA; = A;j60/ =dA; — Ay, 0 = giub* (A2)

and A% = g A;A;. From these equations one easily gets curvature coefficients
Riju = riji + 281 Fu + (Ajwgni — Anwan)) + 3(A;giAn — AigiiAn) — %Azgi[kgl]j-
(A3)
Herer;, are the usual components of the curvature tensor for the Levi-Civita connection
i
g j.The Ricci tensor and Ricci scalar decompositions read, respectively,
Rjy=rji+ 3T — Ay — 38% Avigji + 341 A1 — 5A%g;1. (A4)
R=r—3g/"A;; — 342 (A5)
Here quantitiesr;; and r denote, respectively, the Ricci tensor and Ricci scalar of the

Levi-Civita connection associated with
The symmetric part of the Ricci tensor decomposes according to

Riiy = rji = Agin — 38" Aiigji + 34, A1 — 3A%g;1. (A6)



A286 P Nurowski

Si; has the following decomposition into the Levi-Civits;§ and theA-dependentd;;)
part:

Sij = sij + 0ij, (A7)
where

Sij = Tij — lergij (A8)
and

0ij = —Agj) + 38" Acugi; + 3AiA; — 5A%g). (A9)

Decomposition ofC;jy; is given by
Ciju = Wijki + fijuis (A10)
where the Levi-Civita ;i) and A-dependent ;) parts read, respectively,
Wikl = Yijki + %rgi[kgz]j + i &ni + rip8u;js (A11)
fijkt = 3(Fjuegni + Fiugny) + 38 Fa- (A12)

Returning to the curvature form@;; we decompose it into antisymmetric and symmetric
parts. We note thaf;;) can be further decomposed into a paf;, with coefficients
having all the symmetries of the usual (i.e. Levi-Civita connection) Riemann tensor and the

remaining par2]}y. Explicitly we have

@ = Qfly + iy + s (A13)
where

Qij = 38 (A14)

QY = 10, AF; — 6, A F), (AL5)

Q[l{j] =w;j + 55RO A0+ 56 AS; —6; A S, (A16)

andF; = 6XF;, Si = 0% Sy

Appendix B

Given a Weyl geometry M, g, A) consider null cotetrad (26). Then the decomposition of
the antisymmetric part of the curvature 2-forif2g;; onto basis of self-dual and anti-self-
dual 2-forms read as follows:

Quay = VoM A K + (V] + 3¢5 (N AK + M AP)+ (W + LR+ 361N AP
+1844P ANK + 3Siu(NAK — M AP) + 1SuN A M
Qs = (—V5+ SR+ 3¢)MAK + (—V5+ 290)(N AK + M A P)—W,N AP
—382P ANK — 3S32(NAK — M AP)— S3sN AM (B1)
3(Qpaa + Quap) = (V) — 30) M AK + (¥ — LR)(NAK +MAP)
+(W5+ 300)N AP+ 3S2P A K
+2(S12+ S3)(N AK — M AP) + 1SN A M
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Qpay = WoP AK + (W14 2¢0) (NAK — M AP)+ (W2 + SR+ 3¢1)N A M
+3SuM A K + 3S42(N AK + M A P) + 38N A P
Quaj = (—V2+ 5R+ 3¢1)P AK + (—Va+ 3¢0)(NAK — M AP) —W4N AM
—3SUM AK — 3Ssi(NAK + M A P) — 1SN A P (B2)
2(Qaa) — Quap) = (V21— 3¢2)PAK + (V2 — 5.R)(NAK — M A P)
+(W3+ 3do)N A M + 3SuM A K
+5(S12+ S3)(N A K + M A P)+ 553N A P.

Appendix C

In this appendix we give differentials of basis 1-fort#s, E, E', E', F, F', A, T) on PP’.
For a given Weyl geometryM, g, A) we use a null cotetrad (26) and represent the basis
1-forms onPP’ according to (55).

Let

2y =T211+ Taa1+ 2zT131 — 2 (C213+ [a43) — 222'Tass,

20w = T214+ T3aa+ 2(2 134 — T211 — Taa1) — 2/ (F212+ T342)
+22'(T213+ Taas — 2T132) — 22°T131 + 2222 Tiza,

20 = JSas— 7' S2a— 2814+ 22/ (S12+ S3a) + 32/ 2S22+ 32°511
—7'%2803 — 27/ S13+ %221'2533,
AU = Wy — AW, 7 + 6Wyz2 — 4Wsz3 + W72,

4p = —¢p + 22¢1 — 2o,
2a = A1z + Azzl — A3ZZ, — Ag.
Applying transformations (56) we also get the quantiti¢se’, ¥ and¢’t.

Vanishing of some of the above coefficients has a well defined meaning in terms of
the Weyl geometry onM. Note, for example, tha® = 0 means that the Weyl geometry
satisfies the Einstein—Weyl equatiods = 0 means that the Weyl geometry is anti-self-dual,
¢’ = 0 means that curvatur& of A is self-dual.

Using the above quantities and denoting their derivatives atoogz’ by a subscript
or ,» respectively, we find that the differentials of the basis 1-forms read as follows:
dE =2yEAF -2y, ANE —20,EAF +20EANK +20K AF +4VK A F'

+®, AANF +[3W..+ SR+ ¢ JANF
+H[W. +p[KAA—FAF1+®[KAA+FAF], (C1)

dF = EANK + [y — 2y — ., —a]F dzA +y,F' A A

’
2z

Hol, + Y 1K AA+[y' 4+ 0 +a]JF ANF +[o—o' +alF ANK, (C2)

dA=FAE +F NE+[y —w.—a]ANF
+Hy' —wy —a JAAF +[o+ o +a]AAK, (C3)

1 Note that these transformations do not affécainda.
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dK =y FAA+y FAA+[ys+v.+a JANK + [0, —w, —2y —a]JK AF
+[VZ/ taz—yr+ w;z/ —om  JF AF' + o — w/zl -2y —a]K A F.
(C4)
Differentials of E’ and F’ are obtained from the above equations by means of transformations
56).
( )To calculate differentials of and E’ we need to know what the reality conditions are
for the null cotetrad (26) ooM. If we assume the reality conditions (75) then we find that

F=1—-ez)F —e77/F —eZA+ (7 — 7' + €2z — ¢))K, (C5)
A=1—le|+ezZ)A+ (L —|e| +e22)z — ZVF + (L — |e| + e22)7' — DF

+(@ —2DE —2) —e(e — 2D (e — z2)]K, (C6)
K=1-|e|+e27)K —ez'F —szF — ¢eA. (C7)

The corresponding formula faf’ may be obtained fron¥ by applying (56). .
_ Now, using the above expressions and (C1), (76) we easily get formulaetf@nd
dE’. These, in particular, imply that

dEAEAAAF AE
={@— D[4 +2(F: + §)E — ) + (3¥z: + LR +6:) G — 2)7]
+e[ — 20 +20:7'(e —2'7) — Pzz(e — 2TV JKAFAEAANF ANE.
(C8)
As usual, the primed counterpart of (C8) is obtained by applying (56).

Appendix D

Differentials of the basis 1-forms dR are obtained by using their representation (26), (43).
dF = E A K +[Ta12+ 2(T132— T2139) — z°T133l F A P
+[T213— 231+ 2T13a F A B+ [T2144 2(T1za — T211) — 2°T1ai] F A K
+[234 — 2T231] B A K + [[232 — 2233l B A P
dB = E AP+ [~T43a+2(Taz1 — Ta1a) + 2°T311] B A K
+[~Tas1+ Fa13— 2T313] B A F + [~Tago+ 2(Tazz — a1 + 2°T'313) B A P
+[—Ta12+ z2T413l F A P +[-Ta1a+ zla11] F A K
dE =213+ I'sa3+ 22133l E A B
+[T3a1+ o1+ 22T EAF
+[T212+ T3a2+ 2(2T132 — T213 — [a43) — 22°T'133 E A P
+[T214 4 T34a+ 2(2T 134 — To11 — Tag1) — 22°T13] E A K
+[5S4a — 2841+ 32%S11]K A F
+[Wo — 4W1z + 6Wpz® — 4Waz® + Wez|K A P
+[Wo + LR+ 11 — 2(2Ws + Lgo) + 22Wa]K A P
+[ 3522 — 2832+ 32°S33| P A B
+[ = W1 — 32+ 2(3W2 + 301)
—z2%(3W3 + J¢o) — 2°Ws|(PAF — K A B)
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+[3S42— 32(S12+ S34) + 32°Sa1|(P A F + K A B)
dK =T'313B A F + I'323B A P + [['321 — T'z12+ 2313l F A P
+[T341 — T'314] F A K 4+ [T3a3— 2313l BA K
+[—T'324+ Taaz+ 2(—T312+ M'a21 — Tasa) + 2°T319)] P A K
dP =[-T132+ 23l P A B +[T'121—zl'131] P A F
+T131B A F +T141K A F +[T134— a3 — z2lM131] B A K
+[T'124 — T1a2+ 2(T143 — T1aa — T120) + 2°T1a] P A K.

The complex conjugate ofKlis easily calculable using (75) and (76).
Finally, differentials of the basis 1-forms @ follow from the above by applying (56).

Appendix E

In this appendix we study the properties of the basis 1-form$@ from the point of
view of the Weyl transformations

(8, A) — (&, A) = (€¥g, A - 20p). ()
We start with the local representation (55) of the forms. Then we note Ehhas the
following decomposition onto the Levi-Civita anttdependent pajt

E=E" +E*,
where

ELC =dz — v + 2y — v + 2294,
and

E* = J(A2 — zA9)A + 3(zA1 + 2/ Ap — 22 As — Ay F.

We now represent the Weyl transformations as transformations that change coefficients of
the metric and do not affect the null cotetrad. Thus we have

(gij, A) — (&ij, Ap) = (ezwgi_/, A —2¢),

where the subscript means a derivative along the null tetrad veetorNow, it is easy to
see that under the above transformations the fafiffs and E# transform as follows.

ELC = ELC 4 (P2 — 293 A + (o1 + 292 — 22’913 — @) F,
EA=EA - (2 — z9R)A — (zpi1 + 292 — 2293 — @a) F.

This shows thaf is invariant under the Weyl transformations. The same is also trug for
F’ andA. This, in particular, implies the invariance of the (anti)-self-duality equations (67)
under the Weyl transformations. The invariance of the Einstein—Weyl equations (68) under
these transformations also follows.

Finally, we comment on the purely Riemannian case. In this case we have a given
metric g and A = 0. Since our twistor bundles are constructed out of null objects then
it is reasonable to ask how the constructions change under the conformal transformations
g — & = g of the metric. It follows from the above transformations®#¢ and from the
conformal invariance of\, F and F’ that although the twistor bundles for any metric from
a given conformal class are the same, the horizontal spaces for different base metrics are
different. This difference is not essential for the system of (anti)-self-duality equations (61),

1 Analogous formulae may also be obtained &t
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(62), (67) which is invariant under the conformal transformations, but it is essential for the
Einstein equations (68). In this latter case, we need to pick up a particular metki¢ and

then use it to define the forn’s, A, F’. Using them we can encode the Einstein equations
for g in PP".
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