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Twistor bundles, Einstein equations and real structures∗

Pawe l Nurowski†
Department of Mathematical Methods in Physics, Faculty of Physics, Warsaw University,
ul Hoża 74, Warszawa, Poland

Abstract. We considerS2 bundlesP andP ′ of totally null planes of maximal dimension and
opposite self-duality over a four-dimensional manifold equipped with a Weyl or Riemannian
geometry. The fibre productPP ′ of P andP ′ is found to be appropriate for the encoding of
both the self-dual and the Einstein–Weyl equations for the 4-metric. This encoding is realized in
terms of the properties of certain well defined geometrical objects onPP ′. The formulation is
suitable for complex-valued metrics and unifies results for all three possible real signatures. In
the purely Riemannian positive-definite case it implies the existence of a natural almost Hermitian
structure onPP ′ whose integrability conditions correspond to the self-dual Einstein equations
of the 4-metric. All Einstein equations for the 4-metric are also encoded in the properties of
this almost Hermitian structure onPP ′.

PACS numbers: 0240, 0420, 0450

1. Introduction

The natural appearance of complex coordinates in the Robinson–Trautman [13] class of
metrics was one of the first signs that complex geometric methods may be important in
general relativity. The proper understanding of this fact led to the introduction of CR-
geometric concepts to the Einstein theory [6, 11, 14, 15, 18]. Penrose’s twistor programme
was also partially motivated by this result.

In this paper we are concerned with a twistor theory over a four-dimensional manifold.
Given a metric on such a manifold the problem of encoding the Einstein equations on the
associated twistor bundle arises. Since Penrose’s original paper [10] several attempts to
construct an encoding have been undertaken [3, 16, 17]. In particular, in the case of a
positive-definite metric, Salamon in [16] used well defined differential forms on the twistor
bundle and showed that the vanishing of certain differentials corresponded to the anti-self-
dual Einstein equations on the base manifold. Our approach in [8] is very much in the
spirit of Salamon. There we studied natural forms on the twistor bundle in the Lorentzian
case. Our analysis was more complex than in the positive-definite case since we had to
deal with directions of forms rather than forms themselves. We showed that if our forms
satisfied certain well defined differential conditions on the twistor bundle then the Ricci
tensor of the base metric was traceless. Thus, in that case, we succeeded in encoding the
full set of Einstein equations, without restricting to anti-self-dual metrics. In this paper we
extend results of [8] to 4-manifolds with complex-valued metrics or real metrics of signature
(+, +, +, +) or (+, +, −, −). The proposed approach unifies all the signatures and also
applies to Weyl geometries.
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Section 2 presents a short reformulation of the main results of [8]. It will be useful for
generalizations of the results to other signatures.

Section 3 describes an analogy between Hermitian and optical geometries (see
theorem 3.1). We show there that notions such as that of a null direction in four-dimensional
Lorentzian geometry and an almost Hermitian structure in the case of a positive-definite
metric have a unified description in terms of totally null planes of maximal dimension in the
complexification of the tangent space. It turns out that the integrability conditions for both
almost Hermitian geometries and optical geometries associated with null rays have a unified
description in terms of associated fields of maximal totally null planes. These conditions
are given by equation (13).

Section 4 gives necessary information about Weyl geometries. We recall that such
geometries are given in terms of a class of pairs(g, A) whereg is a metric andA is a
1-form on a manifold. Two pairs(g, A) and(g′, A′) are in the same class iffg′ = e2ϕg and
A′ = A − 2dϕ.

In section 5 we study 4-manifolds equipped with Weyl geometries. We consider Weyl
geometries in which bothg andA may be complex-valued. However, we do not exclude
situations in whichg and A are real. Purely metric situationsA = 0, ϕ = 0 are also not
excluded in our analysis. Given a 4-manifoldM and a Weyl geometry(g, A) on it we
consider a spaceP of all self-dual totally null 2-planes in the complexification of TM. This
space is anS2 bundle overM. An analogous bundleP ′ of all anti-self-dual maximal totally
null spaces is also considered there. GivenP andP ′ we also study their fibre product space
PP ′. This is a bundle overM with typical fibreS2 × S2. We callP, P ′ andPP ′ twistor
bundles (section 5.1).

The rest of section 5 is devoted to studies of natural geometric structures that exist on
twistor bundles. In particular, we find thatP has the following geometrical features. TP
splits naturally into a vertical and horizontal part. One can also naturally define onP a spin
connection 1-form, a class of metricsg̃, a canonical field of horizontal 2-planes and two
distinguished fields of 3-planes which are totally null in any metric from the classg̃. We
also find a way of writing certain differential equations onP that have geometrical meaning.
Analogous structures are also defined onP ′ (section 5.2). Another set of geometrical objects
is naturally defined onPP ′ (section 5). There we find a natural split of the tangent bundle
into vertical and horizontal parts. This enables a canonical field of horizontal 3-planes to
be defined onPP ′. There is a nice geometry associated with these which, in particular,
distinguishes a certain field of (in general complex) directions. This field is null in the
naturally defined class of metrics onPP ′. It is used to define a canonical 1-form and eight
distinguished fields of 4-planes that are totally null in all the natural metrics onPP ′.

Section 6 deals with the integrability conditions of the structures defined on twistor
bundles. Using them we find a way of encoding (anti-)self-duality equations for the 4-
metric onP andP ′ (theorems 6.4 and 6.5). This gives a Weyl-geometric generalization of
the Atiyah–Hitchin–Singer [1] and the Penrose [11] theorems. Use of the natural structures
on PP ′ enables the (anti-)self-dual Einstein–Weyl equations to be encoded there. This
encoding is done by means of the integrability conditions of one of the eight naturally
defined fields of maximal totally null planes onPP ′ (corollary 6.1, theorem 6.3). Other
results of this section are included in theorems 6.1 and 6.2. They provide a description of
the Einstein–Weyl equations (without restriction to self-dual metrics) onPP ′. In the purely
metric caseA = 0, ϕ = 0 they give a signature-independent formulation of the Einstein
equationsRµν = λgµν on PP ′.

Section 7 is concerned with the interpretations of the results of section 6 in the case of
real Weyl geometries. If the 4-metric has positive-definite or neutral signature (section 7.2),
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then the main results are included in theorem 7.1. This, in particular, states that there
is a preferred almost Hermitian structure onPP ′, the integrability conditions of which are
equivalent to the self-dual Einstein–Weyl equations for the Weyl geometry. This result, even
in the purely metric case, goes a bit beyond the Atiyah–Hitchin–Singer theorem. We are
able to encode both the self-duality and Einstein equations in the integrability conditions
of natural almost Hermitian structures onPP ′. Section 7.2 also includes a geometrical
interpretation of the full set of Einstein–Weyl (Einstein, in the pure metric case) equations
on PP ′. This is given by theorem 7.2. It uses one of the eight distinguished almost
Hermitian structuresJ on PP ′ to analyse the decomposition of the differential of the
naturally defined spin connection 1-form onPP ′. It turns out that the Einstein–Weyl
equations for the Weyl geometry are equivalent to the fact that this differential has zero
intersection with the T∗(0,2) space of 2-forms, where T∗(0,2) is defined with respect toJ .
Section 7.3 deals with the Lorentzian case of the 4-metric. The main result is summarized
in theorem 7.3. It, in particular, states that in the purely metric case one can associate a
natural seven-dimensional CR structure with the Minkowski 4-metric. The end of section 7
explains why in the Lorentzian case it suffices to work onP or P ′. The results of section 2
are then reobtained in terms of bundles of maximal totally null planes (theorems 7.4 and
7.5).

2. Summary of the Lorentzian case

To make the present paper self-contained we briefly recall our twistor formulation of the
Einstein equations in the Lorentzian case [8].

Let M be a four-dimensional oriented manifold equipped with a Lorentzian metric
g. It is convenient to introduce a null tetrad(m, m̄, l, k) on M with a cotetrad(θ i) =
(θ1, θ2, θ3, θ4) = (M, M̄, L, K) so that

g = gij θ
iθj = MM̄ − LK, (1)

whereθ iθj = 1
2(θ i ⊗ θj + θj ⊗ θ i). Consider the setSx of all null directions outgoing

from a given pointx ∈ M. This set is topologically a sphere (the celestial sphere of an
observer situated atx). The points of this sphere can be parametrized by a complex number
z belonging to the Argand planeC ∪ {∞}. A direction associated withz 6= ∞ is generated
by a vector

k(z) = k + zz̄l − zm − z̄m̄. (2)

With z = ∞ we associate a direction generated by vectorl. Conversely, any null direction
from x is either parallel to the vectorl or can be represented by the unique null vectork(z)

such thatg(k(z), l) = −1. It follows that k(z) has, necessarily, the form (2), and that it
defines a certainz ∈ C. If a direction is parallel tol we associate with itz = ∞.

We define a fibre bundleP = ⋃
x∈M Sx over M, so that its fibres are two-dimensional

spheresSx . The anonical projectionπ : P → M is defined byπ(Sx) = x. We will call
the bundleP ‘Penrose’s twistor space’, or the ‘twistor bundle’. This bundle possesses quite
a broad family of well defined geometrical objects, which collectively form the so-called
‘optical geometry’ [19, 21]. Here we recall only those objects that are relevant in the present
paper (see [8] for details).

(i) The Levi-Civita connection associated with the metricg onM distinguishes a horizontal
space in TP. A vertical space consists, by definition, of vectors tangent to the fibres.
In this way, at any pointp ∈ P we have a natural splitting of its tangent space onto a
direct sum TpP = Vp ⊕ Hp, whereHp is a four-dimensional horizontal space andVp
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is a two-dimensional vertical space. The vertical spaceVp is identical with a tangent
space to a certain point on the two-dimensional sphere. ThusVp has a natural complex
structure related to the complex structure onS2. Complexification ofVp splits it into
eigenspacesV +

p andV −
p with respect to this complex structure. We have a horizontal

lift ṽ of any vectorv from π(p) ∈ M to P. This is a vector̃v such that atp ṽ ∈ Hp

andπ∗(ṽ) = v.
(ii) A Lorentzian metricg̃ can be defined onP by the requirements that:

(a) a scalar product of any two horizontal vectors is defined ing̃ in terms of the scalar
product ing of their push forwards toM;

(b) a scalar product of any two vertical vectors ing̃ is equal to their scalar product
in the natural metric on a two-dimensional sphere (this is consistent since vertical
vectors can be considered tangent vectors toS2);

(c) any two vectors such that one is horizontal and the other is vertical are orthogonal
in g̃.

(iii) There is a natural congruence of lines onP which is tangent to the horizontal lifts of
null directions fromM. It is defined by the following recipe. Take a null vectork at
x ∈ M. This represents a certain null directionp(k) outgoing fromx. Correspondingly,
this defines a pointp = p(k) in the fibreπ−1(x). Lift k horizontally top. This defines
k̃ which generates a certain direction outgoing fromp ∈ P. Repeating this procedure
for all directions outgoing fromx ∈ M we attach a unique direction to any point of
π−1(x). If we do it for all points ofM, we define a field of directions onP which,
according to its construction and properties ofg̃, is null. Integral curves of this field
form the desired null congruence. This congruence is called the null spray onP [17].

Let X be any non-vanishing vector field tangent to the null spray onP. Let 3L be a
real 1-form onP defined by3L = g̃(X). SinceX is defined up to a multiplication of a
non-vanishing real function onP then3L is also specified up to a multiplication by a real
non-vanishing functionu on P,

3L → 3′
L = u3L. (3)

One associates another 1-form with the horizontal space inP. This is a complex 1-form
EL on P that satisfies (i)EL(Hp) = EL(V −

p ) = 0 and (ii)EL ∧ ĒL 6= 0 at any pointp ∈ P.
EL is also defined up to a multiplication by a non-vanishing complex functionh on P

EL → E′
L = hEL. (4)

It is easy to see that the metric̃g on P can be expressed as

g̃ = 2(hh̄ELĒL + 3LT + FLF̄L)

with some 1-formsT (real) andFL (complex) onP. The above expression can be considered
a definition of the formFL. It is given up to transformations

FL → F ′
L = eiφFL + p3L, (5)

whereφ (real) andp (complex) are some functions onP.
It follows that in the ordered null cotetrad(θ i) of (1) the forms3L, FL andEL can be

represented by

3L = −L − zz̄K − zM̄ − z̄M, (6)

FL = M + zK, (7)

EL = dz + γ 3
2 + z(γ 1

1 − γ 4
4) + z2γ 2

3, (8)
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wherez is the same as in (2) andγ i
j are Levi-Civita connection 1-forms associated with

the metricg in the cotetrad(θ i).
Although the above forms are only defined up to transformations (3)–(5) one can use

them to write down some well defined equations onP. The following equations, invariant
under transformations (3)–(5), are of particular interest.

d3L ∧ 3L ∧ FL ∧ EL = 0, (9)

dFL ∧ 3L ∧ FL ∧ EL = 0, (10)

dEL ∧ 3L ∧ FL ∧ EL = 0, (11)

dEL ∧ 3L ∧ F̄L ∧ EL = 0. (12)

Note that in equation (12) a form̄FL, which is a complex conjugate ofFL, appears. Since
any of the above equations is invariant under (3)–(5) we can use3L, FL and EL in a
particular representation (6)–(8) to analyse them. It is a matter of a straightforward but
lengthy calculation to arrive at the following theorem.

Theorem 2.1.

(i) Equations (9) and (10) are identically satisfied onP.
(ii) Equation (11) is satisfied everywhere onP if and only if the metric (1) onM is

conformally flat.
(iii) Equation (12) is satisfied everywhere onP if and only if the traceless partsij =

rij − 1
4gij r of the Ricci tensor of the metric (1) vanishes onM.

A straightforward corollary from this theorem reads as follows.

Corollary 2.1. Equation (12) is satisfied inP if and only if the base metric satisfies the
Einstein equationsrij = κgij .

To interpret equation (11) geometrically onP it is convenient to consider it together
with equations (9) and (10). It is easily seen then that the system (9)–(11) constitutes the
Froebenius condition for the three-dimensional distributionN which in P annihilates forms
3L, FL andEL. It follows thatN is totally null in the metricg̃ and has maximal dimension.

We failed in finding a nice geometrical interpretation for equation (12). Since it is
invariant under transformations (3)–(5) such an interpretation should exist.

3. Hermitian and optical geometries

Suppose that we are given a 2m-dimensional real manifoldR equipped with a real-valued
metric g of signature (2p + ε, 2q + ε). Here 2m = 2(p + q + ε) and ε = 0 or 1.
Following [5] we call the casesε = 0 andε = 1 pseudo-Euclidean and pseudo-Lorentzian,
respectively. We omit the prefix ‘pseudo’ ifpq = 0. By complexifyingg one endows
the complexification TRC of the tangent bundle TR with a metricgC. Let N be a vector
sub-bundle of TRC which is totally null with respect togC and hasm-dimensional fibres.
We call such bundles maximal totally null bundles. GivenN we also have its complex-
conjugate bundleN̄ as well as bundlesN ∩N̄ andN +N̄ . It is easy to see thatN ∩N̄ and
N + N̄ are, respectively, complexifications of certain vector sub-bundlesK andL = K⊥ of
TR. The complex fibre dimensionr of N ∩ N̄ (or real fibre dimension ofK) depends on
the signature ofg and may take the following values:r = ε, 2+ε, . . . , min(2p+ε, 2q +ε)

[5]. It is called a real index ofN . From now on we only consider suchN s for whichr is
constant overR.
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Given N , we have a natural almost complex structureJ in a bundleH def= L/K. To
define this we observe that any sectionl of L is of the form l = n + n̄ wheren is some
section ofN . If [ l] denotes the equivalence class associated withl in H we defineJ by

J ([l]) = J ([n + n̄])
def= [−i(n − n̄)].

One may prove thatJ is well defined. Moreover, since the metricg is degenerate on
K then it descends to a unique metricg′ in H. It further follows thatJ is an orthogonal
transformation forg′ (we say thatJ is orthogonal with respect tog′ or, simply, orthogonal).

If q = 0 then the only possible values of the real indexr of N are 0 (Euclidean case)
or 1 (Lorentzian case). For suchq and ε = 0 we see that the correspondingK = {0},
L = H = TR, g′ = g. Thus, in this case,N defines an almost Hermitian geometry(g, J )

in R.
If q = 0 andε = 1 then the maximal totally null bundleN equipsR with the structure

of the almost optical geometry of Trautman [19, 21]. This is a sequence

K ↪→ L −→ H
Fibre dimension 1 2m − 1 2m − 2

of real vector sub-bundlesK and L of TR together with an orthogonal almost complex
structureJ in the quotient bundleH. Note that in this case the metricg′ in H is purely
Euclidean.

To deal with the generic case ofq 6= 0 we introduce the following definition [9].

Definition 3.1. Consider a real 2m-dimensional manifoldR equipped with a metricg of
signature(2p+ε, 2q +ε). Let K andL = K⊥ (K ⊂ L) be vector sub-bundles of TR which
have respective fibre dimensionr and 2m− r. If the quotient bundleH = L/K is equipped
with an almost complex structureJ which is orthogonal with respect to the descended
metric g′ in H, then (K, g,H, J ) is called an almost optical geometry with indexr (or
almostr-optical geometry).

Thus any maximal totally null bundle with real indexr gives rise to an almostr-optical
geometry. The converse is also true. Given an almostr-optical geometry onR we define
N as the vector sub-bundle of TRC whose sections are of the formn = l1 + il2, where
l1, l2 are sections ofL satisfyingJ [l1] + iJ [l2] = −i[ l1] + [l2]. One easily proves thatN
thus defined is totally null, has fibre dimensionm and real indexr.

The above discussion shows a one-to-one correspondence between maximal totally null
bundles of a given indexr and almostr-optical geometries.

Given a maximal totally null bundleN we denote the set of all its sections by0(N ).
It is natural to consider the following integrability conditions forN :

[0(N ), 0(N )] ⊂ 0(N ). (13)

Here [·, ·] denotes a commutator of sections treated as vector fields. We say that an almost
r-optical geometry associated withN is r-optical if and only if the conditions (13) are
satisfied.

Definition 3.2. A CR structure [22] is a real(2m − 1)-dimensional manifoldQ equipped
with a sub-bundleH of the tangent bundle TQ, which has fibres of dimension 2(m − 1)

and which is endowed with an almost complex structureJ .
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Given a CR structure(Q, H, J ) we extendJ to the complexificationHC by linearity.
A CR structure is called an integrable CR structure if for any sectionsX, Y of H we have

J [X + iJ X, Y + iJ Y ] = −i[X + iJ X, Y + iJ ′Y ]. (14)

We say that two CR structures(Q, H, J ) and (Q′, H′, J ′) are (locally) equivalent iff
there exists a (local) diffeomorphismφ : Q → Q′ such that

φ∗H = H′

and

φ∗J = J ′.

In the following we will also need the more general structure.

Definition 3.3. An r-CR structure is a real(2m − r)-dimensional manifoldQ equipped
with a sub-bundleH of the tangent bundle TQ such that it has fibres of dimension 2m− 2r

and is endowed with an almost complex structureJ .
An r-CR structure is integrable iff any two sectionsX, Y of the bundleH satisfy

conditions (14).

We note that a 0-CR structure is the same as an almost complex geometry inQ. Its
integrability conditions are equivalent to the integrability conditions of this almost complex
structure.

Given an almostr-optical geometry(K, L, H, J ) on R we choose a surfaceS of
dimension 2m − r in R that it is transversal to sections of the bundleK. It is easy to
see that any such surface is naturally endowed with anr-CR structure. If it happens that
(K, L, H, J ) is r-optical then the integrability conditions (13) imply thatr-CR structures on
any hypersurfaceS are integrable and locally equivalent. More formally, given anr-optical
geometry satisfying (13) we find that the bundleK is integrable as a distribution onR.
Thus it defines a foliation ofR by r-dimensional real manifolds tangent toK. Consider
an equivalence relation∼ in R which identifies points lying on the same leafX of this
foliation. We assume that its quotient spaceQ ≡ R/ ∼ is a manifold. Conditions (13)
guarantee that the projection ofr-CR structures from any of the surfacesS to this manifold
equip it with the same integrabler-CR structure. Hence, in such a case, the manifoldR is
locally equivalent to the Cartesian productX × Q. This generalizes the well known fact
for almost optical geometries associated with congruences of shear-free and null geodesics
in four dimensions [14, 15].

Summing up we have the following theorem.

Theorem 3.1. Let R be a real 2m-dimensional manifold equipped with a real metricg of
signature (2p + ε, 2q + ε), where 2m = 2(p + q + ε) andε = 0 or 1.

(i) There exists a one-to-one correspondence between almostr-optical geometries overR
and maximal totally null bundlesN of constant real indexr over R.

(ii) Any integrableN of index r locally defines an integrabler-CR structure.
(iii) In the case of a Euclidean metric, the bundleN corresponds to an almost Hermitian

structure (g, J ) on R. This almost Hermitian structure is integrable iffN satisfies
integrability conditions (13).

(iv) In the case of a Lorentzian metric, the bundleN corresponds to an almost optical
geometry onR. This, when integrable, defines an integrable CR structure.
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In the following we will need the interpretation of the integrability conditions (13) in
terms of the theory of differential ideals.

Consider a system of complex-valued 1-forms(A1, A2, . . . , As) on R. Let I be an
ideal in the exterior algebra of all complex-valued differential forms onR generated by
1-forms(A1, A2, . . . , As). We say thatI is a closed differential ideal iff

dA1 ∧ A1 ∧ A2 ∧ . . . ∧ As = 0,

dA2 ∧ A1 ∧ A2 ∧ . . . ∧ As = 0,

. . .

. . .

. . .

dAs ∧ A1 ∧ A2 ∧ . . . ∧ As = 0.

Any maximal totally null bundleN over R can be defined as the annihilator ofm

linearly independent, totally null, complex-valued 1-forms, say(A1, A2, . . . , Am), on R.
Given N defined by such 1-forms we have the following, well known, lemma.

Lemma 3.1. N satisfies the integrability conditions (13) if and only if the system
(A1, A2, . . . , Am) generates a closed differential ideal onR.

4. Weyl geometry

4.1. Definitions

From now on by a metric on a real manifold we will understand a non-degenerate, bilinear
and symmetric, complex-valued form.

Consider a four-dimensional real oriented manifoldM equipped with a metricg. Fixing
four complex-valued 1-forms(θ i) (i = 1, 2, 3, 4) on M for which θ1 ∧ θ2 ∧ θ3 ∧ θ4 6= 0
we can represent any metricg by means of its metric coefficientsgij . Thus, giveng and
(θ i) we have

g = gij θ
iθj .

The system of forms(θ i) will be called a cotetrad onM. We equipM with a Weyl
geometry. Such a geometry is defined in terms of a pair(g, A) whereg is a metric and
A = Aiθ

i is a complex-valued 1-form onM. The metric andA are related by

Dgij = dgij − gik0
k
j − gjk0

k
i = −Agij , (15)

where0i
j are torsion-free connection 1-forms. The torsion-free condition is expressed by

dθ i = −0i
j ∧ θj . (16)

Given a Weyl geometry(g, A) on M the connection 1-forms0i
j are uniquely determined.

They are expressible in terms ofA and the Levi-Civita connection 1-formsγ i
j of the metric

g = gij θ
iθj . Explicitly we have

0i
j = gik0kj , gikgkj = δi

j (17)

where

0ij = γij + 1
2gijA + gk[iAj ]θ

k, γij = gikγ
k
j (18)

and where we have introduced the abbreviationa[ibj ] = 1
2(aibj − ajbi)†.

† Round brackets will denote symmetrization of indices, e.g.a(ibj) = 1
2(aibj + aj bi ).
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Given connection 1-forms0i
j one may associate a (Weyl) connection with them and

obtain a recipe for parallel transport of vectors onM. It follows that in contrast to the
parallel transport of Riemannian geometry, this transport preserves only nullity of vectors
(see, for instance, [23] for more information)†.

The curvature of Weyl geometry is defined in terms of curvature 2-forms

�ij = 1
2Rijklθ

k ∧ θ l = d0ij + 0ik ∧ 0k
j . (19)

It splits into the curvatureωij of the Levi-Civita connection, and the remainingA-dependent
part. This, in particular, includes the curvature

F = 1
2Fij θ

i ∧ θj = dA

of A‡.
The Ricci tensorRjl and its scalarR are defined, respectively, byRjl = gikRijkl and

R = gijRij . Note thatRij is not symmetric in general. The traceless part ofR(jl) is defined
by

Sij = R(ij) − 1
4Rgij , (20)

which implies

S := gijSij = 0. (21)

We say that Weyl geometry(g, A) satisfies the Einstein–Weyl equations iff

Sij = 0. (22)

For further use we also define a tensor

Cijkl = Rijkl + 1
3Rgi[kgl]j + Rj [kgl]i + Ri[lgk]j . (23)

This can be decomposed into the Levi-Civita (wijkl) andA-dependent (fijkl) parts

Cijkl = wijkl + fijkl (24)

(see appendix A). It turns out thatwijkl are precisely the covariant coefficients of the usual
Weyl tensor associated with the metricg. Sincewijkl are antisymmetric ink, l then we may
associate with them a collection of 2-forms

wij = 1
2wijklθ

k ∧ θ l, (25)

which we call the Weyl-tensor 2-forms.
We close this section with a remark that ifA = 0 everywhere onM then such a Weyl

geometry reduces to the usual Riemannian geometry associated with metricg. In particular,
such objects like0ij , Rijkl etc reduce to their respective Levi-Civita partsγij , rijkl , etc
(compare with the first footnote below).

† Our point of view on Weyl geometries is non-standard in two respects. First, we admit complex metricsg.
Second, we do not stress the conformal invariance. It is easy to check that for a fixed cotetrad(θ i ) equation (15)
is invariant under the transformation

(g, A) → (g′, A′) = (e2ϕg, A − 2dϕ). (∗)

One can therefore view Weyl geometry as a pair (g, A) given up to transformations(∗). In such a formulation
only a conformal metric is relevant. We do not refer to this point of view in our discussion since we want to have
a nice passage to Riemannian geometries (fixed metrics, not their conformal class) whenA = 0. However, all
relevant formulae such as, for example, (22), (61), (62), (67) and (68) are covariant under(∗). See appendix E
for a further discussion of this. Thus our results also apply to Weyl geometries viewed in this standard, conformal
sense.
‡ Decompositions of various Weyl geometric objects onto the Levi-Civita andA-dependent parts are given in
appendix A.
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4.2. Weyl geometries in null tetrads

Of particular interest are null cotetrads onM. These are cotetrads

(θ1, θ2, θ3, θ4) = (M, P, N, K) (26)

related to the metricg by

g = gij θ
iθj = MP − NK. (27)

A tetrad dual to (26) will be denoted by

(e1, e2, e3, e4) = (m, p, n, k). (28)

Given a null cotetrad(M, P, N, K) it is convenient to introduce the form

η = M ∧ P ∧ N ∧ K. (29)

Using it one splits the set of all null cotetrads into two classes. Cotetrads(M ′, P ′, N ′, K ′)
from the first class satisfyM ′ ∧ P ′ ∧ N ′ ∧ K ′ = η and cotetrads(M ′′, P ′′, N ′′, K ′′) from
the second class satisfyM ′′ ∧ P ′′ ∧ N ′′ ∧ K ′′ = −η. From now on we restrict our attention
only to null cotetrads from the first class.

Given a null cotetrad andA we find Weyl connection 1-forms0i
j , and calculate

curvature 2-forms. Their convenient decomposition relates to the notion of self-duality.
Given ap-form ω on M we define its Hodge dualization∗ω by

(∗ω)(X1, . . . , X4−p)η = ω ∧ g(X1) ∧ . . . ∧ g(X4−p), (30)

where g(Xi) is a 1-form associated with a vector fieldXi (i = 1, 2, . . . , (4 − p)) by
〈g(Xi), Xj 〉 = g(Xi, Xj ). Since the metricg induces an isomorphism between forms and
vectors onM then, in an obvious way, we also have a Hodge dualization ofp-vectors.

Hodge dualization is an involutive (∗2 = id) automorphism of the complexified space∧2 of 2-forms onM. Its ± eigenspaces
∧2

+ and
∧2

− consist of self-dual and anti-self-dual

forms, respectively. A convenient basis for
∧2

+ is

P ∧ K, N ∧ K − M ∧ P, N ∧ M (31)

and for
∧2

−
M ∧ K, N ∧ K + M ∧ P, N ∧ P. (32)

Any 2-form can be decomposed onto these bases. Decompositions of the curvatureF and
the Weyl tensor 2-formswij onto these bases define coefficientsφ0, φ1, φ2, φ′

0, φ′
1, φ′

2 and
90, 91, 92, 93, 94, 9 ′

0, 9 ′
1, 9 ′

2, 9 ′
3, 9 ′

4 by

F = φ′
0N ∧ P + φ′

1(N ∧ K + M ∧ P) + φ′
2M ∧ K + φ0N ∧ M

+φ1(N ∧ K − M ∧ P) + φ2P ∧ K, (33)

w14 = 9 ′
0M ∧ K + 9 ′

1(N ∧ K + M ∧ P) + 9 ′
2N ∧ P

w23 = −9 ′
2M ∧ K − 9 ′

3(N ∧ K + M ∧ P) − 9 ′
4N ∧ P (34)

1
2(w34 + w12) = 9 ′

1M ∧ K + 9 ′
2(N ∧ K + M ∧ P) + 9 ′

3N ∧ P

w24 = 90P ∧ K + 91(N ∧ K − M ∧ P) + 92N ∧ M

w13 = −92P ∧ K − 93(N ∧ K − M ∧ P) − 94N ∧ M (35)
1
2(w34 − w12) = 91P ∧ K + 92(N ∧ K − M ∧ P) + 93N ∧ M.

Decompositions of�[ij ] can be found in appendix B.
It follows from the above decompositions that the Weyl tensor 2-formswij are anti-

self-dual (respectively, self-dual) if and only if all the coefficients90, 91, 92, 93,
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94 (respectively,9 ′
0, 9 ′

1, 9 ′
2, 9 ′

3, 9 ′
4) vanish† on M. This allows for the following

terminology. Weyl geometries(g, A) on M are called anti-self-dual (respectively, self-
dual) if and only if all coefficients9µ (respectively9 ′

µ), µ = 0, 1, 2, 3, 4 vanish onM. It
follows that this definition does not depend on the choice of the null cotetrad.

5. Geometry of twistor bundles

5.1. Twistor bundles

Let M be a real oriented 4-manifold equipped with a Weyl geometry(g, A). At any point
x of M we consider vector subspaces of the complexification of the tangent space TxM
which

(i) are totally null with respect tog and
(ii) have maximal dimension.

Such spaces are necessarily two dimensional and can be represented by a complex bivector.
It turns out that bivectors associated with spaces satisfying (i) and (ii) are either self-dual
or anti-self-dual in the Hodge dualization associated withg andη. This shows that the set
of all spaces that atx satisfy (i) and (ii) consists of two disjoint partsSx andS ′

x . We call
Sx (respectively,S ′

x) a set of all self-dual (anti-self-dual) maximal totally null spaces atx.
A pair of spaces(s, s ′) such thats ∈ Sx ands ′ ∈ S ′

x is called a pair of maximal totally null
spaces of opposite self-duality. It is easy to see that bothSx andS ′

x are diffeomorphic to a
two-dimensional sphereS2. A stereographic projection gives a convenient parametrization
of these spheres in terms of points of the Argand planeC ∪ {∞}. Using the null tetrad (28)
for g we find that elementss ∈ Sx ands ′ ∈ S ′

x can be represented, respectively, by

s = Span{zm − k, zn − p} s ′ = Span{z′p − k, z′n − m}, (36)

wherez, z′ ∈ C ∪ {∞} and thus we identified points ofS2 with the points ofC ∪ {∞}. For
further use we also note that any two spacess and s ′ have nonzero intersection atx. It
is easy to see that this intersection is one dimensional and is spanned by a null vectorX

which, if s ands ′ are represented by (36), has the form

X = k + zz′n − zm − z′p. (37)

Collecting the setsSx , S ′
x point by point we have two fibre bundlesP = ⋃

x∈M Sx and
P ′ = ⋃

x∈M S ′
x over M. Any of these bundles hasS2 as its typical fibre and is equipped

with respective projectionsπ : P → M and π ′ : P ′ → M. Any point p of P is a
certain totally null (necessarily self-dual) space of maximal dimension at the corresponding
point x of M (there is an analogous statement for points ofP ′). It can therefore be
parametrized by(x, z, z̄), where z is as in (36). A pointp′ ∈ P ′ is parametrized by
(x, z′, z̄′), whereπ ′(p′) = x and z′ is as in (36). UsingP and P ′ one defines their fibre
productPP ′ = ⋃

x∈M(Sx × S ′
x) which is:

(i) a fibre bundle overM with a natural projection5 : PP ′ → M and typical fibre
diffeomorphic toS2 × S2;

(ii) a fibre bundle overP with a natural projection pr :PP ′ → P and typical fibre
diffeomorphic toS2;

† It is known that conditions90 = 91 = 92 = 93 = 94 = 0 or 9 ′
0 = 9 ′

1 = 9 ′
2 = 9 ′

3 = 9 ′
4 = 0 are invariant

under the conformal transformations of the metric. A less well known fact states that they are also invariant under
transformations(∗) of the second footnote of section 4.1. This is related to the fact that the conditionsCijkl = 0
andwijkl = 0 (hence alsofijkl = 0) are invariant under(∗).
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(iii) a fibre bundle overP ′ with a natural projection pr′ : PP ′ → P ′ and typical fibre
diffeomorphic toS2.

In particular, any point ofPP ′ may be understood as a pair of maximal totally null spaces
of opposite self-duality at the corresponding point ofM. A convenient parametrization of
PP ′ is (x, z, z̄, z′, z̄′). The projections associated with these bundles satisfy

5 = π ◦ pr = π ′ ◦ pr′, (38)

and in the above coordinates onPP ′, P andP ′ are given by

5(x, z, z̄, z′, z̄′) = x, pr(x, z, z̄, z′, z̄′) = (x, z, z̄), etc.

Using the projections we can pull back forms. For example, usingπ we pull back forms
from M to P, using5 we pull back forms fromM to PP ′ and using pr′ we pull back
forms from P ′ to PP ′†. In this way we can, for example, pull back tetrad 1-formsθ i

and Weyl connection 1-forms0i
j from M to P, P ′ and PP ′. Since it follows from the

context on which manifold a given form is placed, we use in the following the same letters
to denote forms and their pullbacks.

Weyl geometry(g, A) induces interesting geometrical structures on bundlesP, P ′ and
PP ′. We only outline constructions forP andPP ′.

5.2. Natural structures onP andP ′

(i) The tangent bundle toP and its complexification split naturally into a vertical and
horizontal part. To show this we give a recipe for the lifting of a given vectorv from
x ∈ M to a chosen pointp ∈ P in the fibre overx. Recall that a pointp can be considered
a maximal totally null self-dual space atx. Take any curvex(t) that is tangent tov at x.
Use the Weyl connection associated with(g, A) to propagate the maximal totally null space
represented byp parallelly alongx(t). Since Weyl-geometric parallel propagation preserves
the nullity of vectors, then at any point of our curve we get a certain totally null space. Due
to the continuity ofx(t) any such space is maximal and self-dual. Thus given a curvex(t)

tangent tov at x we have a corresponding curvep(t) in P which starts atp. It follows that
a direction of a tangent vector top(t) in p does not depend on the choice ofx(t). This is
the direction of the desired horizontal lift̃v of v to p. The lift is determined completely
by the additional demand thatπ∗(ṽ) = v. Thus we are able to lift any vector fromx ∈ M
to a chosen pointp from the fibre overx. Moreover, it is true that horizontal lifts of four
linearly independent vectors fromx constitute four linearly independent vectors inp. This
means that we have a well defined lift of the tangent space TxM to a four-dimensional
subspaceHp of TpP. This subspace is called a horizontal space atp. The vertical space
Vp consists of vectors atp that are tangent to the fibres. This space is two dimensional and
may be identified with the tangent space to a certain point ofS2. A direct sumHp ⊕ Vp

equals TpP.
The horizontal lift that we described above can be also used to lift horizontally vectors

w from the complexification of the tangent space atx to p ∈ π−1(x) ⊂ P. This is achieved
by extending the horizontal lift map̃: v → ṽ by linearity to the complexification of TxM.
Thus w̃ = ṽ1 + iṽ2, wherev1 andv2 are, respectively, real and imaginary parts ofw. This
leads to a split of the complexification of the tangent bundle toP into vertical and horizontal
parts(TP)C = HC ⊕ VC.

† Note that due to property (38) the direct pull back of a form fromM to PP ′ is the same as a pullback of this
form via P (first usingπ and then pr) orP ′.
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There is a natural complex structureIp in Vp that comes from the natural complex
structure onS2. This, when prolonged to the complexificationV C

p , gives a splitV C
p =

V +
p ⊕ V −

p , whereIpV ±
p = ±iV ±

p .
(ii) Spin connection 1-form.We look for a complex-valued 1-formE such that in some

neighbourhoodU of P it satisfies (a)E(H) = 0, (b) E(
⋃

p∈U V −
p ) = 0 and (c)E ∧ Ē 6= 0.

In general, starting from a given pointx ∈ M, we can solve these conditions only in a
cylindrical U over a sufficiently small neighbourhood ofx. OutsideU conditions (a)–(c)
may be contradictory. From now on we restrict our considerations to suchMs for which
the correspondingE is defined globally. This can be achieved either by assuming some
additional structure onM (e.g. spin manifold structure) or restricting ourselves toMs to
be open subsets ofR4. With such an assumption, conditions (a)–(c) defineE on P up to a
multiplication by a non-vanishing complex-valued functionh on P

E → hE. (39)

E is called a spin connection 1-form onP.
Using the null cotetrad (26) and the coordinates(x, z, z̄) on P one easily finds that the

form E may be represented by

E = dz − 03
2 + z(01

1 − 04
4) + z202

3. (40)

(iii) Metrics. Pullback the metricg from M to P and add to it a tensorhh̄EĒ with h

being a non-vanishing function onP. This defines a class of metricsg̃ on P, which can be
represented by

g̃ = π∗(g) + hh̄EĒ. (41)

(iv) Canonical field of 2-planes.Take a pointp of P. It corresponds to a certain self-
dual maximal totally null plane atx = π(p) ∈ M. Lift this plane horizontally top. This
associates a horizontal 2-plane to any pointp of P. Thus onP we have a distinguished
field of 2-planes, which we call the canonical field of 2-planes. Note that any 2-plane in
this field is totally null in any metric from the class (41).

Dually, the canonical field of 2-planes defines a pair of 1-forms(F, B) on P which,
by definition, annihilate the vertical space and the canonical field of 2-planes.F andB are
given up to transformations

(F, B) → (αF + βB, γF + δB), αδ − βγ 6= 0. (42)

This shows that adirection of a 2-form6 = F ∧ B on P is well defined.
It is easy to see that in the null cotetrad (26) and in the coordinates(x, z, z̄) the forms

F andB may be represented by

F = M + zK, B = N + zP . (43)

(v) Distinguished totally null planes of maximal dimension.Given a pointp ∈ P
consider a canonical 2-planeσ passing through this point. There are only two three-
dimensional planes atp that are totally null in any metric̃g and that containσ as a vector
subspace. These may be defined as vector spacesnE and nĒ annihilating (F, B, E) and
(F, B, Ē), respectively. Point by point they define two bundles of maximal totally null
planesNE and NĒ over P. According to section 2, in the case of real geometries, they
will define a pair of distinguished complex or optical structures onP.

(vi) Invariant equations.Although formsE, F , B and6 are only given up to certain
transformations, one can use them to write down several geometric equations onP. In
particular, note that the equation

dE ∧ F ∧ B ∧ E = 0 (44)
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as well as the system of equations

dF ∧ F ∧ B ∧ E = 0 dB ∧ F ∧ B ∧ E = 0 (45)

are invariant under the transformations (39), (42).
(i ′), (ii ′), (iii ′), (iv′), (v′), (vi′). Analogous constructions as in (i)–(vi) can be performed

for P ′. In this way onP ′ we have a split of TP ′ into a vertical and a horizontal part.
Also the spin connection 1-formE′, metrics, canonical field of 2-planes, classes of forms
(F ′, B ′), 6′, distinguished maximal totally null planes and invariant equations are defined
there.

5.3. Natural structures onPP ′

(i) The tangent bundle toPP ′ and its complexification have a natural split into vertical and
horizontal parts. The recipe for having this split is almost as in the case ofP with the
exception that now a pointp ∈ PP ′ corresponds to a pair(s, s ′) of maximal totally null
spaces of opposite self-duality atx = 5(p) ∈ M. Thus if we want to lift a vectorv from
x ∈ M to a pointp ∈ 5−1(x) ⊂ PP ′ we take a curve tangent tov at x and propagate
parallelly spacess and s ′ along this curve. This produces a pair of maximal totally null
spaces of opposite self-duality at any point along the curve. Correspondingly, we get a
curve inPP ′ starting atp which defines the direction of the lift̃̃v of v. As before the lift
is specified uniquely by the demand that5∗( ˜̃v) = v. Lifting T5(p)M horizontally we get
a horizontal spaceHp in p. The vertical spaceVp is defined as the vector space tangent at
p to the fibre ofPP ′ over 5(p). Note that nowVp is four-dimensional and is isomorphic
to the tangent space ofS2 × S2 at the point corresponding top.

(ii) Connection 1-forms.These are the complex-valued 1-forms onPP ′ that annihilate
the horizontal space in T(PP ′). It follows that the basis of such forms onPP ′ is given
by the four pullbacks pr∗(E), pr∗(Ē), pr′∗(E′) and pr′∗(Ē′). Here we wrote pullback signs
explicitly. They will be omitted in the following.

Since the formE (respectivelyE′) was defined onP (respectively onP ′) up to a scaling
by a function, the four above-mentioned forms are given up to a scaling by a non-vanishing
complex function onPP ′.

Local representations ofE and E′ may be given in terms of the coordinates
(x, z, z̄, z′, z̄′) introduced onPP ′ in section 4.1. Since they were chosen in such a way that
by projections we were getting corresponding coordinates(x, z, z̄) on P and (x, z′, z̄′) on
P ′ then we easily find that

E = dz − 03
2 + z(01

1 − 04
4) + z202

3, (46)

E′ = dz′ − 03
1 + z′(02

2 − 04
4) + z′ 201

3. (47)

Here, as usual, connection 1-forms are expressed with respect to the cotetrad (26).
(iii) Metrics. The following metrics are of particular interest onPP ′:

˜̃g = 5∗(g) + hh̄EĒ + h′h̄′EĒ′, (48)

whereh andh′ are non-vanishing complex-valued functions onPP ′.
(iv) The canonical field of 3-planes and associated bundles.At every pointp of PP ′

there is a natural 3-plane which is obtained as follows. Take a pair(s, s ′) of maximal totally
null spaces of opposite self-duality which atx = 5(p) correspond top. Lift spacess and
s ′ horizontally to a pointp ∈ 5−1(x) corresponding to(s, s ′). This gives a pair of vector
spaces̃̃s and ˜̃s ′

at p. But as we noticed in section 4.1,s and s ′ have a one-dimensional
intersection. Hence the vector space˜̃s + ˜̃s ′

has complex dimension equal to three. Thus at
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every pointp ∈ PP ′ we have a three-dimensional space˜̃s + ˜̃s ′
, which we call a canonical

field of 3-planes.
Actually the above considerations show that we have a list of vector sub-

bundlesS = ⋃
p∈PP ′ ˜̃s, S ′ = ⋃

p∈PP ′ ˜̃s ′
, L = ⋃

p∈PP ′( ˜̃s + ˜̃s ′), K = ⋃
p∈PP ′( ˜̃s ∩ ˜̃s ′

) of the
complexification of the tangent bundle toPP ′ which give rise to the following sequence:

K ↪→ L −→ L/K
fibre dimension 1 3 2

.

Note that by definition bundlesS, S ′ are sub-bundles ofL, and thatS, S ′, andK are
null bundles with respect to any metric from the class˜̃g. This indicates parallels between
the structures defined here and the optical geometries of Trautman [19, 21].

Given the above bundles onPP ′ it is interesting to ask whether such geometric
conditions as [S, S] ⊂ S, [S ′, S ′] ⊂ S ′, [S, S ′] ⊂ L, [K, L] ⊂ K etc, have some
interpretation in terms of the Weyl geometry onM.

(v) Canonical 1-form onPP ′. The bundleK has one-complex-dimensional fibres. It
can be used to define a direction of 1-form3 on PP ′. Indeed, ifX is a section ofK, then
we define3 by

3 = ˜̃g(X). (49)

Taking another section ofK we see that

3 → u3, (50)

which shows that a direction of3 is well defined. We call3 a canonical 1-form. We notice
that 3, together withE, Ē, E′, Ē′, can be used to define a convenient basis of 1-forms on
PP ′. Indeed, one easily finds that

˜̃g = hh̄EĒ + h′h̄′E′Ē prime + 3T + FF ′, (51)

with some complex-valued 1-formsF , F ′ and T on PP ′. These forms are defined up to
the following transformations:

F → αF + β3, (52)

F ′ → 1

α
F ′ + γ3, (53)

T → 1

u

(
T − αγF − β

α
F ′ − βγ3

)
, (54)

whereα 6= 0, β, γ are some functions onPP ′. It follows that the formsF andF ′ are in
the class of forms obtained by taking pullbacks of the formsF andF ′ of section 4.2. The
set of forms(E, Ē, E′, Ē′, F, F ′, 3, T ) constitutes a convenient basis of 1-forms onPP ′.
In the coordinates(x, z, z̄, z′, z̄′) and in the cotetrad (26) they may be represented as

E = dz − 03
2 + z(01

1 − 04
4) + z202

3,

E′ = dz′ − 03
1 + z′(02

2 − 04
4) + z′ 201

3,

3 = −N − zz′K − zP − z′M,

F = M + zK,

F ′ = P + z′K,

T = K.

(55)
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It is useful to consider transformations

z ↔ z′, (56)

1 ↔ 2, 3 ↔ 3, 4 ↔ 4

where the last transformation means that for any object onM, P, P ′ or PP ′, with tetrad
indices 1, 2, 3, 4 interchange indices 1 and 2 and do not change indices 3 and 4.

Examples:

θ1 = M ↔ θ2 = P, θ3 = N ↔ θ3 = N, θ4 = K ↔ θ4 = K, (57)

e1 = m ↔ e2 = p, e3 = n ↔ e3 = n, e4 = k ↔ e4 = k, (58)

S13 ↔ S23, S34 ↔ S34, S12 ↔ S21, etc,

01
4 ↔ 02

4, 02
2 ↔ 01

1, etc, (59)

3 ↔ 3, F ↔ F ′, E ↔ E′,
9µ ↔ 9 ′

µ, µ = 0, 1, 2, 3, 4, φa ↔ φ′
a, a = 0, 1, 2. (60)

It will be important that3 is invariant under the transformations (56).
(vi) Distinguished totally null planes of maximal dimension.Given a pointp ∈ PP ′,

consider its corresponding pair(s, s ′) of maximal totally null planes of opposite self-duality
in 5(p) ∈ M. Lift s horizontally to ˜̃s in p. It follows that ˜̃s is a totally null 2-plane in any
metric ˜̃g in PP ′. There are only four four-dimensional planes atp which are totally null
with respect toany metric ˜̃g and which contaiñ̃s as a subspace†. These may be defined as
vector spacesnF ′EE′ , nF ′EĒ′ , nF ′ĒE′ and nF ′ĒĒ′ annihilating, respectively,(3, F ′, E, E′),
(3, F ′, E, Ē′), (3, F ′, Ē, E′) and(3, F ′, Ē, Ē′). Point by point they define four maximal
totally null bundlesNF ′EE′ , NF ′EĒ′ , NF ′ĒE′ andNF ′ĒĒ′ over PP ′.

Similarly, considering extensions of˜̃s ′
we find four other maximal totally null bundles

NFEE′ , NFEĒ′ , NFĒE′ and NFĒĒ′ . Thus, in real cases, we will have eight different
distinguishedr-optical structures onPP ′.

(vii) Invariant equations. One set of geometrical equations onPP ′ was already
mentioned at the end of section 5.3 iv. By using formsE, E′, 3, F and F ′ we can
write further equations and systems of equations. Only those which are invariant under the
allowed transformations of the forms have geometrical meaning. Among them there are the
following:

d3 ∧ E ∧ 3 ∧ F = 0 dF ∧ E ∧ 3 ∧ F = 0

dE ∧ E ∧ 3 ∧ F = 0 d3 ∧ E′ ∧ 3 ∧ F ′ = 0

dF ′ ∧ E′ ∧ 3 ∧ F ′ = 0 dE′ ∧ E′ ∧ 3 ∧ F ′ = 0

dE ∧ E ∧ 3 ∧ F ′ = 0 dE′ ∧ E′ ∧ 3 ∧ F = 0

dE ∧ E′ ∧ 3 ∧ F ′ = 0 dE ∧ E′ ∧ 3 ∧ F = 0.

One can continue this list. We discuss some of these equations in section 6.

6. Self-duality and the Einstein–Weyl equations

Let (M, g, A) be a four-dimensional Weyl geometry. In this section we study relations
between curvature properties of(M, g, A) and the integrability conditions for the natural
objects on the corresponding twistor bundlesP, P ′ and PP ′. We start our analysis by

† The requirement that these planes must be null in any of metrics˜̃g is crucial to obtain a discrete number of
them!
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giving a geometrical interpretation of the invariant equations onPP ′ (see section 5.3 vii).
We use the local representation (55) of the natural forms onPP ′ to prove the following
lemma.

Lemma 6.1. The equations

d3 ∧ 3 ∧ F ∧ E = 0 (61)

dF ∧ 3 ∧ F ∧ E = 0 (62)

are automatically satisfied everywhere onPP ′.

Proof. By using definitions (55) and (16) we easily compute that

d3 ∧ 3 ∧ F ∧ E = [03
4 + z(02

4 − 03
1) + z′(01

4 − 03
2)

+zz′(03
3 + 04

4 − 02
2 − 01

1) − z202
1 − z′ 201

2 + zz′ 2(01
3 − 04

2)

+z′z2(02
3 − 04

1) + z2z′ 204
3]K ∧ 3 ∧ F ∧ E

+[z(02
2 + 01

1 − 03
3 − 04

4) + z′01
2

+zz′(04
2 − 01

3) − z2z′04
3]F ′ ∧ 3 ∧ F ∧ E (63)

and

dF ∧ 3 ∧ F ∧ E = [z204
3 + z(01

3 − 04
2) − 01

2]F ′ ∧ 3 ∧ F ∧ E

+[03
2 − 01

4 + z′01
2 + z2(04

1 − 02
3) + zz′(04

2 − 01
3) − z′z204

3)]

×K ∧ 3 ∧ F ∧ E. (64)

Now, the right-hand sides of the above expressions are actually equal to zero due to the
Weyl geometry relations (15), which in the tetrad (26) read

01
2 = 02

1 = 03
4 = 04

3 = 0,

01
3 = 04

2, 02
3 = 04

1, 01
4 = 03

2, 02
4 = 03

1,

01
1 + 02

2 = 03
3 + 04

4 = A.

This concludes the proof of the lemma†. �

Since equations (61), (62) are satisfied onPP ′ it is natural to ask when the forms3,
F and E form a closed differential ideal. Given the equations (61), (62), this question is
equivalent to a question as to when an object dE ∧3∧F ∧E vanishes identically onPP ′.
Also the related question of the vanishing of dE ∧ 3 ∧ F ′ ∧ E may be interesting. A long
but straightforward calculation leads to the following expressions:

dE ∧ 3 ∧ F ∧ E = [−90 + 491z − 692z
2 + 493z

3 − 94z
4]F ′ ∧ K ∧ 3 ∧ F ∧ E (65)

dE ∧ 3 ∧ F ′ ∧ E = [− 1
2S44 + z′S24 + zS14 − zz′(S12 + S34) − 1

2z′ 2S22

− 1
2z2S11 + z′ 2zS23 + z2z′S13 − 1

2z2z′ 2S33]F ∧ K ∧ 3 ∧ F ′ ∧ E. (66)

Here we have used the notation of section 3 applied to null tetrad (26). The above formulae
are implied by the general expressions for differentials of3, F , F ′, E, E′ andK, which
can be found in appendix C.

† Note that the Weyl connections (17), (18) are not the only connections that imply equations (61), (62). For our
purposes, however, it is enough to restrict ourselves to Weyl connections.
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Theorem 6.1.

(i) The equation

dE ∧ 3 ∧ F ∧ E = 0 (67)

is satisfied everywhere onPP ′ if and only if the underlying Weyl geometry(g, A) on
M is anti-self-dual.

(ii) The equation

dE ∧ 3 ∧ F ′ ∧ E = 0 (68)

is satisfied everywhere onPP ′ if and only if the underlying Weyl geometry(g, A)

satisfies the Einstein–Weyl equations onM.

Proof. In the null tetrad (26), (27) condition (21) expressing the zero trace ofSij reads
S12 − S34 = 0. Then the theorem follows immediately from expressions (65), (66) and the
requirement that their right-hand sides vanish for anyz andz′. �

Applying the transformations (56) we also have analogous facts for primed objects.

Lemma 6.2. The equations

d3 ∧ 3 ∧ F ′ ∧ E′ = 0 (69)

dF ′ ∧ 3 ∧ F ′ ∧ E′ = 0 (70)

are automatically satisfied everywhere onPP ′.

Theorem 6.2.

(i) The equation

dE′ ∧ 3 ∧ F ′ ∧ E′ = 0 (71)

is satisfied everywhere onPP ′ if and only if the underlying Weyl geometry(g, A) on
M is self-dual.

(ii) The equation

dE′ ∧ 3 ∧ F ∧ E′ = 0 (72)

is satisfied everywhere onPP ′ if and only if the underlying Weyl geometry(g, A)

satisfies the Einstein–Weyl equations onM.

Transformations (56) show (3 is invariant!) that dE ∧ 3 ∧ F ′ ∧ E = 0 if and only if
dE′ ∧ 3 ∧ F ∧ E′ = 0†. This observation, together with the above theorems, leads to the
following, interesting corollary.

† Both equations here are equivalent to the Einstein–Weyl equations for(M, g, A). This is due to the fact that the
symmetric Ricci tensorR(ij) (or, equivalentlySij andR) is fully encoded in the differential of the spin connection
E. The same information about the symmetric Ricci tensor is also encoded in dE′. To see this, it is enough to
note thatR as well as the quantity[− 1

2S44 + z′S24 + zS14 − zz′(S12 + S34) − 1
2z′ 2S22 − 1

2z2S11 + z′ 2zS23 + z2z′S13 − 1
2z2z′ 2S33

]
of equation (66) are invariant under the transformations (56). See also appendix C for explicit forms of dE and
dE′.
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Corollary 6.1. A Weyl geometry(M, g, A) is anti-self-dual and satisfies the Einstein–
Weyl equations if and only if the forms(3, F, E, E′) form a closed differential ideal on
PP ′, i.e. iff on PP ′ we have

d3 ∧ E ∧ 3 ∧ F = 0

dF ∧ E ∧ 3 ∧ F = 0

dE ∧ E ∧ 3 ∧ F = 0

dE′ ∧ E′ ∧ 3 ∧ F = 0.

(M, g, A) is self-dual and satisfies the Einstein–Weyl equations if and only if onPP ′ we
have

d3 ∧ E′ ∧ 3 ∧ F ′ = 0

dF ′ ∧ E′ ∧ 3 ∧ F ′ = 0

dE′ ∧ E′ ∧ 3 ∧ F ′ = 0

dE ∧ E ∧ 3 ∧ F ′ = 0,

i.e. iff (3, F ′, E, E′) form a closed differential ideal onPP ′.
The second part of the corollary follows from the first by applying (56).
According to section 5.3 vi the forms(3, F, E, E′) and (3, F ′, E, E′) define natural

maximal totally null bundlesNFEE′ andNF ′EE′ on PP ′. Using lemma 3.1 we find that the
above corollary has the following geometrical interpretation.

Theorem 6.3.

(i) The natural totally null bundleNFEE′ of maximal dimension overPP ′ satisfies the
integrability conditions (13) if and only if the corresponding Weyl geometry(M, g, A)

is anti-self-dual and satisfies the Einstein–Weyl equations.
(ii) The natural totally null bundleNF ′EE′ of maximal dimension onPP ′ satisfies the

integrability conditions (13) if and only if the corresponding Weyl geometry(M, g, A)

is self-dual and satisfies the Einstein–Weyl equations.

Looking at the formula (C3) (see appendix C), which gives a differential d3, we see
that d3 ∧ 3 ∧ F ∧ Ē ∧ E′ = F ′ ∧ E ∧ 3 ∧ F ∧ Ē ∧ E′ 6= 0. This means that the system
(3, F, Ē, E′) never forms a closed differential ideal. Thus the totally null bundleNFĒE′

has no chance of being integrable.
Similarly, since d3∧3∧F∧Ē∧Ē′ = F ′∧E∧3∧F∧Ē∧Ē′ 6= 0, d3∧3∧F ′∧E∧Ē′ =

F ∧E′ ∧3∧F ′ ∧E ∧ Ē′ 6= 0, d3∧3∧F ′ ∧ Ē ∧ Ē′ = F ∧E′ ∧3∧F ′ ∧ Ē ∧ Ē′ 6= 0 then
also neither of the bundlesNFĒĒ′ , NF ′EĒ′ , NF ′ĒĒ′ is integrable in the sense of definition
(13). To study the integrability conditions (13) for bundlesNFEĒ′ andNF ′ĒE′ we need to
specify the real structure onM. We postpone discussion of this case to the next section.

Analogous results about geometrical objects onP and P ′ (see appendix D for
differentials of the basis 1-forms) are summarized below.

Theorem 6.4. A Weyl geometry (M, g, A) is anti-self-dual if and only if the forms
(F, B, E) form a closed differential ideal onP, i.e. iff

dF ∧ E ∧ F ∧ B = 0

dB ∧ E ∧ F ∧ B = 0 (73)

dE ∧ E ∧ F ∧ B = 0.
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Similarly, a Weyl geometry(M, g, A) is self-dual iff onP ′ we have

dF ′ ∧ E′ ∧ F ′ ∧ B ′ = 0

dB ′ ∧ E′ ∧ F ′ ∧ B ′ = 0 (74)

dE′ ∧ E′ ∧ F ′ ∧ B ′ = 0.

An obvious reinterpretation of this theorem in terms of the natural maximal totally null
bundles onP andP ′ reads as follows.

Theorem 6.5. A Weyl geometry(M, g, A) is anti-self-dual if and only if the natural totally
null bundleNE on P is integrable.

Similarly, a Weyl geometry(M, g, A) is self-dual iff on P ′ the natural totally null
bundleNE′ is integrable.

Looking at the differentials ofF on P and F ′ on P ′ (see appendix D) we find that
dF ∧F ∧B∧Ē = E∧K∧F ∧B∧Ē 6= 0 and dF ′∧F ′∧B ′∧Ē′ = E′∧K∧F ′∧B ′∧Ē′ 6= 0,
respectively, onP andP ′. This proves the following statement.

Theorem 6.6. Neither of the natural totally null bundlesNĒ on P and NĒ′ on P ′ is
integrable.

The above two theorems are the Weyl-geometric counterparts of the Atiyah–Hitchin–
Penrose–Singer theorems [1, 11] for Lorentzian and Euclidean Riemannian 4-manifolds. It
is interesting that the integrability conditions ofNE and NE′ say nothing aboutA. They
only restrict the possible metrics onM.

7. Real structures

7.1. Reality conditions for the natural structures on twistor bundles

In this section we consider real Weyl geometries(M, g, A). This means that the metric
g and the 1-formA are real-valued. Such Weyl geometries and their twistor bundles are
particular cases of the Weyl geometries considered in previous sections. Hence, our results
of the previous sections are also valid here. In particular, a null cotetrad(M, P, N, K) for
g may be chosen in such a way that

M̄ = P, N̄ = (1 − |ε|)N + εK, K̄ = εN + (1 − |ε|)K, (75)

where ε = 0, 1, −1 for Lorentzian, neutral and Euclidean signature, respectively.
Equations (75) imply the following reality conditions for the Weyl connection 1-forms:

0̄2
2 = 01

1

0̄2
3 = (1 − |ε|)01

3 + ε01
4

0̄2
4 = (1 − |ε|)01

4 + ε01
3

0̄1
3 = (1 − |ε|)02

3 + ε02
4

0̄1
4 = (1 − |ε|)02

4 + ε02
3

0̄4
4 = (1 − 2|ε|)04

4 + |ε|A
0̄3

3 = (1 − 2|ε|)03
3 + |ε|A.

(76)

Reality conditions for the curvature coefficients can be obtained from these equations.



Twistor bundles, Einstein equations and real structures A281

The above reality conditions imply the following properties of the natural maximal
totally null bundles onP, P ′ andPP ′.

(i) Reality conditions for the maximal totally null bundles onP andP ′. On P we have
two natural maximal totally null bundlesNE andNĒ . It is easy to see that their real indices
rE and rĒ are equal. They depend on the signature ofg according torE = rĒ = 1 − |ε|.
In the local representation(x, z, z̄) of P one finds that

NE ∩ N̄E = NĒ ∩ N̄Ē = (1 − |ε|)(k̃ − zm̃ − z̄p̃ + zz̄ñ), (77)

where(m̃, p̃, ñ, k̃) are the horizontal lifts of the null tetrad(m, p, n, k) from M to P. An
analogous formula forNE′ andNĒ′ reads

NE′ ∩ N̄E′ = NĒ′ ∩ N̄Ē′ = (1 − |ε|)(k̃ − z′p̃ − z̄′m̃ + z′z̄′ñ). (78)

(ii) Reality conditions for the maximal totally null bundles onPP ′. We have eight
natural totally null bundles onPP ′. Their reality conditions are given below in the local
representation(x, z, z̄, z′, z̄′) of PP ′.
NFEE′ ∩ N̄FEE′ = NFEĒ′ ∩ N̄FEĒ′ = NFĒE′ ∩ N̄FĒE′ = NFĒĒ′ ∩ N̄FĒĒ′

= (1 − |ε|)( ˜̃k − z ˜̃m − z̄ ˜̃p + zz̄ ˜̃n),

NF ′EE′ ∩ N̄F ′EE′ = NF ′EĒ′ ∩ N̄F ′EĒ′ = NF ′ĒE′ ∩ N̄F ′ĒE′ = NF ′ĒĒ′ ∩ N̄F ′ĒĒ′

= (1 − |ε|)( ˜̃k − z′ ˜̃p − z̄′ ˜̃m + z′z̄′ ˜̃n).

Here( ˜̃m, ˜̃p, ˜̃n,
˜̃
k) are horizontal lifts of null tetrad(m, p, n, k) to PP ′.

Note that the real indices of all of the natural maximal totally null bundles onP, P ′

and PP ′ are either 0 or 1. Thus, the twistor bundles get naturally equipped with either
Hermitian or optical geometries. We do not see possibilities for distinguishingr-optical
geometries withr > 1 on P, P ′ andPP ′.

7.2. Euclidean and neutral signature

These cases are characterized by|ε| = 1. It follows from section 7.1 that the real indices
of all the natural maximal totally null bundles are equal to zero. This, in particular, means
that NE and NĒ define almost complex structuresJE and JĒ on P. These structures
are almost Hermitian in any metric̃g. Similarly, we have two natural almost Hermitian
structures(JE′ , g̃′) and (JĒ′ , g̃′) on P ′, and eight almost Hermitian structures(JFEE′ , ˜̃g),
(JFEĒ′ , ˜̃g), (JFĒE′ , ˜̃g), (JFĒĒ′ , ˜̃g), (JF ′EE′ , ˜̃g), (JF ′EĒ′ , ˜̃g), (JF ′ĒE′ , ˜̃g), (JF ′ĒĒ′ , ˜̃g) on
PP ′. Integrability conditions of these almost Hermitian structures are equivalent to
conditions (13) for the correspondingN s. Most of them have already been studied in
section 6. The integrability conditions for the remaining two structures(JFEĒ′ , ˜̃g) and
(JF ′ĒE′ , ˜̃g) follow from the expressions of appendix C. In particular, looking at (C3) and
the primed counterpart of (C2) we find that

d3 ∧ 3 ∧ F ′ ∧ E′ ∧ Ē ≡ 0,

dF ′ ∧ 3 ∧ F ′ ∧ E′ ∧ Ē ≡ 0.

On the other hand (C8) and the primed counterpart of (C1) show that

dE′ ∧ 3 ∧ F ′ ∧ E′ ∧ Ē ≡ 0,

dĒ ∧ 3 ∧ F ′ ∧ E′ ∧ Ē ≡ 0

if and only if the Weyl geometry is self-dual and satisfies the Einstein–Weyl equations.
Thus we find that(JF ′ĒE′ , ˜̃g) is integrable only for such Weyl geometries. An analogous
result also holds for(JFEĒ′ , ˜̃g). This leads to the following theorem.
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Theorem 7.1. Let M be a four-dimensional real manifold equipped with a Euclidean or
a neutral signature Weyl geometry(g, A). Let P (respectively,P ′) be a corresponding
twistor bundle of all self-dual (respectively, anti-self-dual) maximal totally null spaces over
M. Let PP ′ be a fibre product of the bundlesP andP ′.

(i) There are two natural almost Hermitian structuresJE andJĒ on P. JE is integrable
if and only if the Weyl geometry is anti-self-dual.JĒ is never integrable.

(ii) There are two natural almost Hermitian structuresJE′ andJĒ′ on P ′. J ′
E is integrable

if and only if the Weyl geometry is self-dual.JĒ′ is never integrable.
(iii) There are eight natural almost Hermitian structures(JFEE′ , ˜̃g), (JFEĒ′ , ˜̃g), (JFĒE′ , ˜̃g),

(JFĒĒ′ , ˜̃g), (JF ′EE′ , ˜̃g), (JF ′EĒ′ , ˜̃g), (JF ′ĒE′ , ˜̃g), (JF ′ĒĒ′ , ˜̃g) on PP ′.

(a) (JFEE′ , ˜̃g) is integrable if and only if the Weyl geometry is anti-self-dual and
satisfies the Einstein–Weyl equations. These integrability conditions are also
equivalent to the integrability of(JFEĒ′ , ˜̃g).

(b) (JF ′EE′ , ˜̃g) is integrable if and only if the Weyl geometry is self-dual and satisfies
the Einstein–Weyl equations. These integrability conditions are also equivalent to
the integrability of(JFĒE′ , ˜̃g).

(c) (JFĒE′ , ˜̃g), (JFĒĒ′ , ˜̃g), (JF ′EĒ′ , ˜̃g), (JF ′ĒĒ′ , ˜̃g) are never integrable.

Note that there are no restrictions on the potentialA in this theorem. This is a
generalization of the classical Atiyah–Hitchin–Singer theorem [1]. It is interesting that
in a purely Euclidean case (ε = −1, A = 0) we have a holomorphic interpretation of the
self-dual Einstein equations.

In section 6, theorem 6.1, we interpreted an invariant equation

dE ∧ 3 ∧ F ′ ∧ E = 0 (79)

onPP ′ as a necessary and sufficient condition for the Weyl geometry to satisfy the Einstein–
Weyl equations. In the present real case we can reformulate this fact in holomorphic
language.

Given an almost complex structureJ on PP ′ we can decompose the complexification
T(PP ′)C of its tangent bundle onto the eigenspaces ofJ . The +i, −i eigenspaces are
denoted, respectively, by T(1,0) and T(0,1). One easily finds that T(0,1) is the same as the
maximal totally null bundleN representingJ . The above decomposition of T(PP ′)C

induces an analogous decomposition of the complexification T∗(PP ′)C of the cotangent
space. We denote by T∗(1,0) the annihilator of T(0,1) and by T∗(0,1) the annihilator of T(1,0).
In an analogous way T∗(u,w) denotes an exterior product ofu copies of T∗(1,0) andw copies
of T∗(0,1) bundles. It is well known that we have the following decomposition of the bundle
32 of all complex-valued 2-forms onPP ′:

32 = T∗(2,0) ⊕ T∗(1,1) ⊕ T∗(0,2). (80)

Consider now a natural almost complex structureJF ′EE′ on PP ′ and its corresponding
decomposition of32. We analyse the differential dE of the spin connection 1-form from
the point of view of this decomposition. To do this we consider a setW of 2-forms over
PP ′ defined by

W = {w ∈ 0(32) s.t. w = � ∧ E + t dE},
where� and t are, respectively, any complex-valued 1-form and function onPP ′. We
decomposeW according to (80).
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Theorem 7.2. A real Euclidean- or a neutral-signature four-dimensional Weyl geometry
(M, g, A) satisfies the Einstein–Weyl equations if and only if

W ∩ 0(T∗(0,2)) = {0}.
Proof. Observe that sections of T∗(2,0) and T∗(1,1) are in the ideal generated by the forms
(3, F ′, E, E′). On the other hand the set of sections of T∗(0,2) has zero intersection with
this ideal. Thus in the decomposition of the sections of T∗(0,2) onto a basis corresponding
to (F, F ′, 3, T , E, Ē, E′, Ē′) there are no forms3, F ′, E, E′. Now the proof follows
directly from the differential ofE given by (C1) (see appendix C).

We close this section by considering a Weyl geometry which is not anti-self-dual. Fibres
of its twistor bundleP have a discrete number of distinguished points. To see this consider
such points in a fibreπ−1(x), x ∈ M, in which the expression dE ∧ E ∧ F ∧ B vanishes.
Due to

dE ∧ E ∧ F ∧ B = [−90 + 491z − 692z
2 + 493z

3 − 94z
4]P ∧ K ∧ E ∧ F ∧ B (81)

we find that in the not anti-self-dual case there are at most fourzs, corresponding to four
points at the fibreπ−1(x), in which the right-hand side of (81) is zero. These four points
correspond to four maximal totally null self-dual planes atx. Thus, in a generic case, at
every point ofM we have four distinguished almost Hermitian structures. It further follows
from reality conditions for9µ that in the not anti-self-dual case these four structures grouped
in pairs of mutually conjugated structures. These two pairs may coincide in particular cases
and, together with the additional two pairs associated with similar considerations onP ′,
may be used to classify Weyl geometries. An interesting fact is that in the non-half-flat case
these distinguished almost Hermitian structures are the only ones that may be integrable on
M [2]. A less well known fact is that in a purely Euclidean case (ε = −1, A = 0), if the
Einstein equations are satisfied, then any of the distinguished almost Hermitian structures
is integrable [4, 7, 12].

7.3. Lorentzian signature

Due to the conditionε = 0 the fibres ofNFEE′ ∩ N̄FEE′ , NFEĒ′ ∩ N̄FEĒ′ , NFĒE′ ∩ N̄FĒE′

andNFĒĒ′ ∩ N̄FĒĒ′ are all one-dimensional and, at every pointp ∈ PP ′, are spanned by
a real vector

κ = ˜̃
k − z ˜̃m − z̄ ˜̃p + zz̄ ˜̃n.

The fibres ofNF ′EE′ ∩ N̄F ′EE′ , NF ′EĒ′ ∩ N̄F ′EĒ′ , NF ′ĒE′ ∩ N̄F ′ĒE′ , NF ′ĒĒ′ ∩ N̄F ′ĒĒ′ are
spanned by a real vector

κ ′ = (
˜̃
k − z′ ˜̃p − z̄′ ˜̃m + z′z̄′ ˜̃n).

These two real vectors are null and, together with their corresponding maximal totally
null spaces, define eight distinguished optical geometriesOFEE′ , OFĒE′ , OFEĒ′ , OFĒĒ′ ,
OF ′EE′ , OF ′ĒE′ , OF ′EĒ′ , OF ′ĒĒ′ on PP ′. According to section 2 any seven-dimensional
submanifold ofPP ′ transversal toκ is equipped with four CR structures that correspond
to OFEE′ , OFĒE′ , OFEĒ′ , OFĒĒ′ . Another four families of CR structures are associated
with the seven-dimensional submanifolds ofPP ′ transversal toκ ′. To get a Lorentzian
version of theorem 7.1 we still need to note that ifε = 0 then9 ′

µ = 9̄µ andφ′
a = φ̄a for

all µ = 0, 1, 2, 3, 4 and alla = 0, 1, 2. Thus in this case (anti)-self-duality of the Weyl
tensor is equivalent to conformal flatness of the metric and (anti)-self-duality ofF means
that F ≡ 0.



A284 P Nurowski

Theorem 7.3. Let M be a four-dimensional real manifold equipped with a Lorentzian
Weyl geometry(g, A). Let P (respectively,P ′) be the corresponding twistor bundle of all
self-dual (respectively, anti-self-dual) maximal totally null spaces overM. Let PP ′ be a
fibre product of bundlesP andP ′.

(i) There are eight natural almost optical geometriesOFEE′ , OFEĒ′ , OFĒE′ , OFĒĒ′ , OF ′EE′ ,
OF ′EĒ′ , OF ′ĒE′ , OF ′ĒĒ′ on PP ′.

(ii) The following conditions are equivalent:

(a) OFEE′ (respectively,OF ′EE′ ) is integrable;
(b) there exists a unique integrable seven-dimensional CR structure obtained fromPP ′

by identifying points lying on the same integral curve ofκ (respectively,κ ′) and
associated withOFEE′ (respectively,OF ′EE′ );

(c) the Weyl geometry is conformally flat and satisfies the Einstein–Weyl equations.

(iii) The following conditions are equivalent:

(a) OFEĒ′ (respectively,OF ′ĒE′ ) is integrable;
(b) there exists a unique integrable seven-dimensional CR structure obtained fromPP ′

by identifying points lying on the same integral curve ofκ (respectively,κ ′) and
associated withOFEĒ′ (respectively,OF ′ĒE′ );

(c) the Weyl geometry is conformally flat, has zero scalar curvatureR and a potential
A such that dA ≡ 0.

(iv) OFĒE′ , OFĒĒ′ , OF ′EĒ′ andOFĒĒ′ are never integrable.

Only point (iiic) of the theorem requires justification. It is, however, easy to see that
this follows from the differentials of the basis 1-forms given in appendix C and from
formula (C8) withε = 0.

To find a passage from the above results to the description of the original Penrose bundle
given in section 2 we proceed as follows.

First, we note thatP defined as a bundle of all self-dual totally null 2-planes inM is
naturally isomorphic to the Penrose bundle of all real null directions inM. This is due to
the fact that in the case of a Lorentzian metric any two-dimensional totally null plane in
M is in one-to-one correspondence with a null direction.

Second, we note that the natural field of real null directionsκ can be naturally pushed
forward fromPP ′ to P by means of projection pr∗. This defines a field of real directions
XL = pr∗κ on P which is null in any metricg̃. UsingXL we define a field of directions of
a real 1-form3L = g̃(XL). Now, we can takeEL = E and define 1-formsFL (complex)
andT (real) byg̃ = hh̄ELĒL +3LT +FLF̄L. It is easy to see that the forms(3L, FL, EL)

are precisely given up to transformations (3)–(5). The above information is sufficient to
reconstruct onP all the structures of section 2. In particular, the annihilatorNFE of
(3L, FL, EL) defines an almost optical geometryOFE on P. Similarly the annihilators
NF̄E , NFĒ andNF̄ Ē of, respectively,(3L, F̄L, EL), (3L, FL, ĒL) and(3L, F̄L, ĒL) define
optical geometriesOF̄E , OFĒ andOF̄ Ē . Their integrability conditions are summarized in
the following theorem.

Theorem 7.4. There are four natural optical geometriesOFE , OF̄E , OFĒ andOF̄ Ē on a six-
dimensional Penrose twistor bundle of all null directions over a four-dimensional manifold
M equipped with a Lorentzian Weyl geometry(g, A).

(i) The following conditions are equivalent:

(a) OFE or OF̄ Ē is integrable;
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(b) a five-dimensional manifold of lines of a congruence generated byXL is naturally
equipped with an integrable CR structure;

(c) the metricg is conformally flat.
(ii) OF̄E andOFĒ are never integrable.

We failed to find a geometrical interpretation of the following theorem.

Theorem 7.5. A Lorentzian four-dimensional Weyl geometry satisfies the Einstein–Weyl
equations if the forms(EL, F̄L, 3L) satisfy an invariant equation

dE ∧ F̄L ∧ 3L ∧ EL = 0

everywhere onP.
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Appendix A

In this appendix we present formulae which give decompositions of certain Weyl-geometric
objects onto the Levi-Civita andA-dependent parts.

For the Riemann tensor 2-forms�ij we have

�ij = ωij + 1
2gijF + DA[j ∧ θi] + 1

2A[j θi] ∧ A − 1
4A2θi ∧ θj , (A1)

whereωij denote curvature 2-forms of the Levi-Civita connectionγij ,

DAi = Ai;j θj = dAi − Ajγ
j
i θi = gikθ

k (A2)

andA2 = gijAiAj . From these equations one easily gets curvature coefficients

Rijkl = rijkl + 1
2gijFkl + (Aj ;[kgl]i − Ai;[kgl]j ) + 1

2(Ajgi[kAl] − Aigj [kAl]) − 1
2A2gi[kgl]j .

(A3)

Here rijkl are the usual components of the curvature tensor for the Levi-Civita connection
γ i

j .
The Ricci tensor and Ricci scalar decompositions read, respectively,

Rjl = rjl + 1
2Fj l − Aj ;l − 1

2gikAi;kgjl + 1
2AjAl − 1

2A2gjl, (A4)

R = r − 3gjlAj ;l − 3
2A2. (A5)

Here quantitiesrij and r denote, respectively, the Ricci tensor and Ricci scalar of the
Levi-Civita connection associated withg.

The symmetric part of the Ricci tensor decomposes according to

R(jl) = rjl − A(j ;l) − 1
2gikAi;kgjl + 1

2AjAl − 1
2A2gjl. (A6)
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Sij has the following decomposition into the Levi-Civita (sij ) and theA-dependent (σij )
part:

Sij = sij + σij , (A7)

where

sij = rij − 1
4rgij (A8)

and

σij = −A(i;j) + 1
4gklAk;lgij + 1

2AiAj − 1
8A2gij . (A9)

Decomposition ofCijkl is given by

Cijkl = wijkl + fijkl, (A10)

where the Levi-Civita (wijkl) andA-dependent (fijkl) parts read, respectively,

wijkl = rijkl + 1
3rgi[kgl]j + rj [kgl]i + ri[lgk]j , (A11)

fijkl = 1
2(Fj [kgl]i + Fi[lgk]j ) + 1

2gijFkl . (A12)

Returning to the curvature forms�ij we decompose it into antisymmetric and symmetric
parts. We note that�[ij ] can be further decomposed into a part�U

[ij ] with coefficients
having all the symmetries of the usual (i.e. Levi-Civita connection) Riemann tensor and the
remaining part�NU

[ij ] . Explicitly we have

�ij = �U
[ij ] + �NU

[ij ] + �(ij), (A13)

where

�(ij) = 1
2gijF , (A14)

�NU
[ij ] = − 1

4(θi ∧ Fj − θj ∧ Fi ), (A15)

�U
[ij ] = wij + 1

12Rθi ∧ θj + 1
2(θi ∧ Sj − θj ∧ Si), (A16)

andFi = θkFki , Si = θkSki .

Appendix B

Given a Weyl geometry(M, g, A) consider null cotetrad (26). Then the decomposition of
the antisymmetric part of the curvature 2-forms�[ij ] onto basis of self-dual and anti-self-
dual 2-forms read as follows:

�[14] = 9 ′
0M ∧ K + (

9 ′
1 + 1

4φ′
2

)
(N ∧ K + M ∧ P) + (

9 ′
2 + 1

12R + 1
2φ′

1

)
N ∧ P

+ 1
2S44P ∧ K + 1

2S41(N ∧ K − M ∧ P) + 1
2S11N ∧ M

�[23] = (−9 ′
2 + 1

12R + 1
2φ′

1

)
M ∧ K + (−9 ′

3 + 1
4φ′

0

)
(N ∧ K + M ∧ P) − 9 ′

4N ∧ P

− 1
2S22P ∧ K − 1

2S32(N ∧ K − M ∧ P) − 1
2S33N ∧ M

1
2(�[34] + �[12]) = (

9 ′
1 − 1

4φ′
2

)
M ∧ K + (

9 ′
2 − 1

24R
)
(N ∧ K + M ∧ P)

+(
9 ′

3 + 1
4φ′

0

)
N ∧ P + 1

2S42P ∧ K

+ 1
4(S12 + S34)(N ∧ K − M ∧ P) + 1

2S31N ∧ M

(B1)
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�[24] = 90P ∧ K + (
91 + 1

4φ2
)
(N ∧ K − M ∧ P) + (

92 + 1
12R + 1

2φ1
)
N ∧ M

+ 1
2S44M ∧ K + 1

2S42(N ∧ K + M ∧ P) + 1
2S22N ∧ P

�[13] = (−92 + 1
12R + 1

2φ1
)
P ∧ K + (−93 + 1

4φ0
)
(N ∧ K − M ∧ P) − 94N ∧ M

− 1
2S11M ∧ K − 1

2S31(N ∧ K + M ∧ P) − 1
2S33N ∧ P

1
2(�[34] − �[12]) = (

91 − 1
4φ2

)
P ∧ K + (

92 − 1
24R

)
(N ∧ K − M ∧ P)

+(
93 + 1

4φ0
)
N ∧ M + 1

2S41M ∧ K

+ 1
4(S12 + S34)(N ∧ K + M ∧ P) + 1

2S32N ∧ P.

(B2)

Appendix C

In this appendix we give differentials of basis 1-forms(E, Ē, E′, Ē′, F, F ′, 3, T ) on PP ′.
For a given Weyl geometry(M, g, A) we use a null cotetrad (26) and represent the basis
1-forms onPP ′ according to (55).

Let

2γ = 0211 + 0341 + 2z0131 − z′(0213 + 0343) − 2zz′0133,

2ω = 0214 + 0344 + z(20134 − 0211 − 0341) − z′(0212 + 0342)

+zz′(0213 + 0343 − 20132) − 2z20131 + 2z2z′0133,

28 = 1
2S44 − z′S24 − zS14 + zz′(S12 + S34) + 1

2z′ 2S22 + 1
2z2S11

−z′ 2zS23 − z2z′S13 + 1
2z2z′ 2S33,

49 = 90 − 491z + 692z
2 − 493z

3 + 94z
4,

4φ = −φ2 + 2zφ1 − z2φ0,

2a = A1z + A2z
′ − A3zz

′ − A4.

Applying transformations (56) we also get the quantitiesγ ′, ω′, 9 ′ andφ′†.
Vanishing of some of the above coefficients has a well defined meaning in terms of

the Weyl geometry onM. Note, for example, that8 ≡ 0 means that the Weyl geometry
satisfies the Einstein–Weyl equations,9 ≡ 0 means that the Weyl geometry is anti-self-dual,
φ′ ≡ 0 means that curvatureF of A is self-dual.

Using the above quantities and denoting their derivatives alongz or z′ by a subscriptz
or z′ respectively, we find that the differentials of the basis 1-forms read as follows:

dE = 2γE ∧ F − 2γz′3 ∧ E − 2ωz′E ∧ F ′ + 2ωE ∧ K + 28K ∧ F + 49K ∧ F ′

+8z′z′3 ∧ F ′ + [
1
39zz + 1

12R + φz

]
3 ∧ F

+[9z + φ][K ∧ 3 − F ∧ F ′] + 8z′[K ∧ 3 + F ∧ F ′], (C1)

dF = E ∧ K + [γz′ − 2γ ′
z − ω′

zz′ − azz′]F dz3 + γ ′
z′F

′ ∧ 3

+[ω′
z′ + γ ′]K ∧ 3 + [γ ′ + ωz′ + az′]F ′ ∧ F + [ω − ω′ + a]F ∧ K, (C2)

d3 = F ∧ E′ + F ′ ∧ E + [γ − ω′
z − az]3 ∧ F

+[γ ′ − ωz′ − az′]3 ∧ F ′ + [ω + ω′ + a]3 ∧ K, (C3)

† Note that these transformations do not affect8 anda.
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dK = γzz′F ∧ 3 + γ ′
zz′F

′ ∧ 3 + [γz′ + γ ′
z + azz′]3 ∧ K + [ω′

z − ωz − 2γ − az]K ∧ F

+[γ ′
z + azz′ − γz′ + ω′

zz′ − ømzz′]F ∧ F ′ + [ωz′ − ω′
z′ − 2γ ′ − az′]K ∧ F ′.

(C4)

Differentials ofE′ andF ′ are obtained from the above equations by means of transformations
(56).

To calculate differentials of̄E andĒ′ we need to know what the reality conditions are
for the null cotetrad (26) onM. If we assume the reality conditions (75) then we find that

F̄ = (1 − εzz̄)F ′ − εz̄z′F − εz̄3 + (z̄ − z′ + εz̄(zz′ − ε))K, (C5)

3̄ = (1 − |ε| + εz̄z̄′)3 + ((1 − |ε| + εz̄z̄′)z − z̄′)F ′ + ((1 − |ε| + εz̄z̄′)z′ − z̄)F

+[(z′ − z̄)(z̄′ − z) − ε(ε − z̄z̄)(ε − zz′)]K, (C6)

K̄ = (1 − |ε| + εzz′)K − εz′F − εzF ′ − ε3. (C7)

The corresponding formula for̄F ′ may be obtained from̄F by applying (56).
Now, using the above expressions and (C1), (76) we easily get formulae for dĒ and

dĒ′. These, in particular, imply that

dĒ ∧ Ē ∧ 3 ∧ F ′ ∧ E′

= {
(1 − |ε|)[49̄ + 2(9̄z̄ + φ̄)(z̄ − z′) + (

1
39̄z̄z̄ + 1

12R + φ̄z̄

)
(z̄ − z′)2

]
+ε

[ − 28̄ + 28̄z̄′z′(ε − z′z̄′) − 8̄z̄′z̄′(ε − z′z̄′)2
]}

K ∧ F ∧ Ē ∧ 3 ∧ F ′ ∧ Ē′.
(C8)

As usual, the primed counterpart of (C8) is obtained by applying (56).

Appendix D

Differentials of the basis 1-forms onP are obtained by using their representation (26), (43).

dF = E ∧ K + [0212 + z(0132 − 0213) − z20133]F ∧ P

+[0213 − 0231 + z0133]F ∧ B + [0214 + z(0134 − 0211) − z20131]F ∧ K

+[0234 − z0231]B ∧ K + [0232 − z0233]B ∧ P

dB = E ∧ P + [−0434 + z(0431 − 0314) + z20311]B ∧ K

+[−0431 + 0413 − z0311]B ∧ F + [−0432 + z(0433 − 0312) + z20313]B ∧ P

+[−0412 + z0413]F ∧ P + [−0414 + z0411]F ∧ K

dE = [0213 + 0343 + 2z0133]E ∧ B

+[0341 + 0211 + 2z0131]E ∧ F

+[0212 + 0342 + z(20132 − 0213 − 0343) − 2z20133]E ∧ P

+[0214 + 0344 + z(20134 − 0211 − 0341) − 2z20131]E ∧ K

+[
1
2S44 − zS41 + 1

2z2S11
]
K ∧ F

+[90 − 491z + 692z
2 − 493z

3 + 94z
4]K ∧ P

+[
92 + 1

12R + 1
2φ1 − z(293 + 1

2φ0) + z294
]
K ∧ P

+[
1
2S22 − zS32 + 1

2z2S33
]
P ∧ B

+[ − 91 − 1
4φ2 + z

(
392 + 1

2φ1
)

−z2
(
393 + 1

4φ0
) − z394

]
(P ∧ F − K ∧ B)
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+[
1
2S42 − 1

2z(S12 + S34) + 1
2z2S31

]
(P ∧ F + K ∧ B)

dK = 0313B ∧ F + 0323B ∧ P + [0321 − 0312 + z0313]F ∧ P

+[0341 − 0314]F ∧ K + [0343 − z0313]B ∧ K

+[−0324 + 0342 + z(−0312 + 0321 − 0343) + z20313)]P ∧ K

dP = [−0132 + 0123]P ∧ B + [0121 − z0131]P ∧ F

+0131B ∧ F + 0141K ∧ F + [0134 − 0143 − z0131]B ∧ K

+[0124 − 0142 + z(0143 − 0134 − 0121) + z20131]P ∧ K.

The complex conjugate of dE is easily calculable using (75) and (76).
Finally, differentials of the basis 1-forms onP ′ follow from the above by applying (56).

Appendix E

In this appendix we study the properties of the basis 1-forms onPP ′ from the point of
view of the Weyl transformations

(g, A) → (ĝ, Â) = (e2ϕg, A − 2dϕ). (∗)

We start with the local representation (55) of the forms. Then we note thatE has the
following decomposition onto the Levi-Civita andA-dependent part†.

E = ELC + EA,

where

ELC = dz − γ 3
2 + z(γ 1

1 − γ 4
4 ) + z2γ 2

3 ,

and

EA = 1
2(A2 − zA3)3 + 1

2(zA1 + z′A2 − zz′A3 − A4)F.

We now represent the Weyl transformations as transformations that change coefficients of
the metric and do not affect the null cotetrad. Thus we have

(gij , Ai) → (ĝij , Âi) = (e2ϕgij , Ai − 2ϕ|i ),

where the subscript|i means a derivative along the null tetrad vectorei . Now, it is easy to
see that under the above transformations the formsELC andEA transform as follows.

ÊLC = ELC + (ϕ|2 − zϕ|3)3 + (zϕ|1 + z′ϕ|2 − zz′ϕ|3 − ϕ|4)F,

ÊA = EA − (ϕ|2 − zϕ|3)3 − (zϕ|1 + z′ϕ|2 − zz′ϕ|3 − ϕ|4)F.

This shows thatE is invariant under the Weyl transformations. The same is also true forF ,
F ′ and3. This, in particular, implies the invariance of the (anti)-self-duality equations (67)
under the Weyl transformations. The invariance of the Einstein–Weyl equations (68) under
these transformations also follows.

Finally, we comment on the purely Riemannian case. In this case we have a given
metric g and A = 0. Since our twistor bundles are constructed out of null objects then
it is reasonable to ask how the constructions change under the conformal transformations
g → ĝ = e2ϕg of the metric. It follows from the above transformations ofELC and from the
conformal invariance of3, F andF ′ that although the twistor bundles for any metric from
a given conformal class are the same, the horizontal spaces for different base metrics are
different. This difference is not essential for the system of (anti)-self-duality equations (61),

† Analogous formulae may also be obtained forE′.
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(62), (67) which is invariant under the conformal transformations, but it is essential for the
Einstein equations (68). In this latter case, we need to pick up a particular metric onM and
then use it to define the formsE, 3, F ′. Using them we can encode the Einstein equations
for g in PP ′.
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