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Some new null solutions of the Yang-Mills equations with congruences of twisting shear-free 
and null geodesics are obtained. These are test fields. Each of them is defined on a 
Lorentzian manifold with a metric tensor adapted to the Cauchy-Riemann geometry associated 
with the congruence. Some examples of solutions on Minkowski space-time are also 
given. Among them is a solution with a congruence of twisting shear-free and null geodesics 
different from the Robinson congruence. 

I. INTRODUCTION. CAUCHY-RIEMANN 
STRUCTURES AND THE LORENTZ GEOMETRY 

Cauchy-Riemann (CR) structures are related to null 
(algebraically special) solutions of the Einstein equa- 
tions, Maxwell equations, and Yang-Mills equations.‘-“” 
The aim of this paper is to find some new null solutions of 
the Yang-Mills equations using the mathematical frame- 
work of the theory of CR structures. The work presented 
here is inspired by the paper by Tafel.3 We develop some 
of the ideas mentioned there. Our considerations are 
purely local. It follows from the context which neighbor- 
hoods are taken into account. 

A three-dimensional CR structure is defined on a real 
manifold N by a class of one-forms [ (jl,,~)] (/z is real, p is 
complex), given by the equivalence relation R, such that 
G,p)R(~‘,p’) iff 

A’=fA, (l.la) 

p’=hp + e/z, (l.lb) 

where f#O is any real function, and h#O,e are arbitrary 
complex functions on N. Additionally, it is always as- 
sumed that 

aApAji#O. (1.2) 

We will consider Yang-Mills fields in space-time, which 
is (locally) the product 

M=!RXN, (1.3) 

equipped with the metric tensor 

g=2p2(pP - ATI, (1.4) 

where p is any real function on M and r is any real 
one-form on M, such that 

anpAjiAr#o. (1.5) 

It is known that any space-time admitting null Maxwell, 
Yang-Mills, and gravitational fields is of the form (1.3) 
and (1.4).” Hence, taking into consideration all CR 
structures (iV,[(Q)]) and constructing Lorentzian 
space-times of the form (1.3) and (1.4) we can find all 
such fields. 

This work is devoted to null Yang-Mills fields admit- 
ting some additional symmetries. (The analogous prob- 
lem for null gravitational fields was investigated in Ref. 
6). 

II. NlJiL YANG-MILLS FIELDS AND SHEAR-FREE 
CONGRUENCES 

From now on we consider (M,g) of the form ( 1.3) 
and ( 1.4). Let G be a gauge group, g its Lie algebra, and 
gC its complexification. The gauge potential A is a gq: 
valued one-form on M. The most general form of A is 

A=bp+i&+cA+er, (2.1) 

where b, c, and e are gC-valued functions on M and c=C, 
e=Z 

The Yang-Mills field is said to be null iff 
- 

F=dA + AAA=;1A (q,u + q,!.~), (2.2) 

where Q, is a gC-valued function on M. Since all null 
Yang-Mills fields satisfying 

;1Adil=O (2.3) 

are known3 we will consider only those for which 

a A d;l#O. (2.4) 

This means that CR structures associated with these 
fields are nondegenerate. A physical meaning of (2.3) 
and (2.4) is as follows. Let k#O be a real vector field on 
M, such that 

a(k) =/J(k) =o. (2.5) 
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This vector field is transversal to N appearing in ( 1.3). 
Moreover, k is null in the metric ( 1.4) and it can be 
proved that it is geodesic and shear free.2*4*7 It defines a 
congruence of shear-free and null geodesics in M. The 
condition (2.4) means that this congruence is twisting. 

We say that this congruence is symmetric,2d if there 
exists a real vector field X on A4, called a symmetry of a 
congruence, such that 

LYa=ta, 
x 

(2.6a) 

L?/l=wp + 1.4, 
X 

(2.6b) 

where t is a real function and w, I are complex functions 
on M. Taking the Lie derivative with respect to X of 
(2.5) we see that 

Yk-k. 
X 

Since, in addition, 

(2.7) 

~a=2Y/so, (2.8) 
k k 

then the Lie derivative with respect to k of (2.6) leads to 

k(t)=k(w)=k(Z)=O. (2.9) 

This means that the functions t, w, and I in (2.6) are, in 
fact, defined on N. 

It is worth noting that any vector field 

k’=fk, (2.10) 

where f is a real nonvanishing function on M is a (triv- 
ial) symmetry of the congruence k. 

Ill. SYMMETRIC CAUCHY-RIEMANN STRUCTURES 

Let W,[(Ap)I) b e a nondegenerate CR structure. We 
say that this structure is symmetric if there exists a real 
vector field on N such that 

Y/z = t/l, 
x 

(3.la) 

d!p=wp + Ia, 
X 

(3.lb) 

where t is a real function and w, I are complex functions 
on N. 

Let us return to the manifold (M,g) and the congru- 
ence k considered in the previous section. Because of 
(2.7) any symmetry X of the congruence k is uniquely 
projected on_to the CR manifold N included in M. This 
projection X is a symmetry of N in the sense of (3.1) 

because of (2.9) [of course we exclude symmetries of the 
form (2. lo), which reduce to points when projected onto 
N3* 

From now on we assume that the congruence k ad- 
mits at least three (say n)3) linearly independent sym- 
metries (Xi) i= 1 2 3 I , ,.4’ such that 

vij= 1,2,...,n, [X,Xj] = s Ck$k, ck$=const. 

(3.2) 

In addition, we assume that none of these is a trivial 
symmetry in the sense of (2.10). Projections on N of 
these symmetries constitute n symmetries of the CR 
structure (N,[(@)]). It is known’ tha_t we ca_n always 
choose three of these symmetries, say, X1, X2, X3, which 
form a three-dimensional Lie algebra. It is also known8 
that a local three-dimensional Lie group so generated acts 
on N in a simply transitive fashion. This means that a 
three-dimensional group generated by the three symm-e- 
tries X1, X,, X3 on M (which are projected onto X1, X2, 
X3) has three-dimensional orbits in the space-time M. 
Choosing the r coordinate such that r is constant on these 
orbits, and forms (a$,) belonging to the class [(jl,~)], 
and defining a CR structure on N, such that 

LfR=L?R1=O, Vi= 1,2,3, (3.3) 
xi xi 

d12=iCllAEn,, (3.4) 

we can write the metric tensor ( 1.4) in the form 

g=2P[fi’iT’ - i-l(dr+ wa, + wi-l, + HQ)], 
(3.5) 

where W is a complex function and P#O,H are real func- 
tions on M. Let us recall the following.6F8 

Given a group G3 associated with three symmetries 
(Xi)i, I,*,3 of the CR structure (N,[ (A,p)]) there always 
exist forms R and fir belonging to the class [(A,,u)] and 
satisfying (3.3) and (3.4). The explicit expressions for R 
and Sz, for any Bianchi type of G3 are given in Ref. 6. 

IV. GENERAL FORM OF THE GAUGE POTENTIAL 
AND THE METRIC 

In this section G3 denotes the local nontrivial [in the 
sense of (2.10)] symmetry group of congruence k in- 
cluded in the space-time A4 given by ( 1.3). In addition, 
we assume that G3 is a local symmetry group of the null 
Yang-Mills field defined by (2.1) and (2.2). This means 
that transformations q generated by the action of G3 in M 
induce transformations q* of the gauge potential A, such 
that 

q*A=aAo-‘+o-‘da. (4.1) 
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It follows from the preceding section that Gs has three- 
dimensional orbits in M. This, together with the results of 
the paper by Hamad et al,9 means that there exists a 
gauge in which the gauge potential A is strictly invariant 
under GJ. Hence 

B=B(r), C=C(r), C=c, 

and r is given by (3.5). 

(4.10) 

Taking into account the vector field k on M defined 
by (2.5) that is connected with the r coordinate by 

L?A=O (4.2) 
xi 

for any (Xi) i= 1,2,3 satisfying (2.6) and generating G3. 
From the previous section we know that the Lorent- 

zian structure on M can be given by (3.3)-(3.5). Hence 
the null Yang-Mills field (2.1) and (2.2) satisfying (4.2) 
can be written as 

k=fd, (4.11) 

where f#O is an arbitrary real function on M, we see that 

kJA=O. (4.12) 

If we want A to generate the Yang-Mills field F given by 
(4.4) we see that 

A=BR, + BR, + Cfl + E(dr + Wa, + W-l1 T’A=kJ F=O, 
k 

(4.13) 

+ HO), (4.3) 

F=dA + AAA=&A (W-l, + <pal), (4.4) 

where B, C, E, and Q, are gc-valued functions on M, such 
that 

C=c, E=E. 

which means that the functions B, C appearing in (4.3)- 
(4.10) are constants. 

V. EQUATIONS AND SOLUTIONS 

The condition (4.2) is equivalent to 

Vi= 1,2,3 X,(B) = - Exi( IV, 
I 

Xi(E) =0, (4Sa) 
(4Sb) 

Xi(C)= -Eli. (4%) 

Since (Xi) i= 1,2,3 generates N then (4.5a) means that 

Let the space-time M be given by (1.3) with the 
metric tensor (3.3)-(3.5). Such a metric tensor is con- 
nected with the particular choice of G3 C G,,. G,, is a local 
symmetry group of congruence k included in M and G3 is 
its subgroup, which simultaneously is a symmetry group 
of a null Yang-Mills field, which can be represented by 
(4.9) with B and C constants. It is known6,a that for any 
G3 the forms R and d, satisfying (3.3) and (3.4) satisfy 
an equation 

E=E(r), (4.6) 

where r is given by (3.5). Hence we can always find a 
gauge transformation (T= a(r) such that the transformed 
gauge potential A’ has the form 

-- 
A’=B’& + B’J$ + C’fi, (4.7) 

where B’, C’ are gq=-valued functions on M and C’ = ?!‘. 
After this transformation A’ still satisfies the conditions 

Vi= 1,2,3, YA’=O, (4.8) 
Xi 

and (4.7) describes the null field (4.4). 
Thus if G3 (included in G,, n > 3 ) is a local symmetry 

group of a null gauge field A (with G, being a local sym- 
metry group of null congruence k associated with A), 
then the most general form of A may be given as 

A=BQ, + Bfl, + CSZ, (4.9) 

where B, C are gQ=-valued functions on M, such that 

dfl,=&,A~, +iPflAfll -86nA& (5.1) 

with constant quantities Q, 6 (complex), and p (real). 
Choosing the volume form on M as 

~=i~fiAAn,A~n,Adr, (5.2) 

where r is the same as in (3.5) we can see that the vac- 
uum Yang-Mills equations for the gauge field (4.3) and 
(4.4) reduce to 

[B,aq - s-D=o, (5.3a) 
- 

+=iDB-8B+ [C,B], (5.3b) 

C=i(GB - a@ + i[B,B], (5.3c) 

F=R1 A (@a, + a&), (5.3d) 

where [ , ] denotes the commutator in gc. 
We will solve these equations in the case of the gauge 

group G = SU(2). In this case the B appearing in (5.3) 
can be represented as the scalar product 

B=Be, (5.4) 
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where %C3 and e= (e1,e2,e3) constitute a basis in the 
algebra g = su(2) with the following Lie brackets: 

[Wjl =8ifk. 

The commutator [K,L] of elements K, L of the form 
(5.4) is 

[KL] = (Sfx2!)e, (5.5) 

where Se X E is a standard vector product in C3. 
In this formalism Eqs. (5.3) read as 

-- 
i[E(p - 2%) - a??]8 + i[Z(ZJ2 + 3) + aF3!3]8 

+i[ -85+/3+a13]!l3353=0, (5.6a) 

where for any .Q and B in C3, .Q.Q denotes the standard 
scalar product of these vectors, and !Z2 = RR; 

<p= [i(p - Bb)% + (1B2 - F)fG + iaBXB]e 
(5.6b) 

and 

F=RA (M, + @a,). (5.6~) 

We solve Eqs. (5.6) by considering two different cases 
characterized by 

2%x%=0 (5.7a) 

or 

13X%&O. (5.7b) 

First, we give solutions to (5.6) for which (5.7a) is 
satisfied. These solutions correspond to Abelian gauge 
fields. The condition (5.7a) shows that 

!I3 =pe%, (5.8) 

where p, 4 are constants such that PER, &[0,27r] and tt is 
a constant unit vector in R3. Using such a B we show that 
Eqs. (5.6) are equivalent to 

a=0 (5.9) 

and that the gauge fields have the form 

A=pne(e’%l, + eWi’$). (5.10) 

These gauge fields live in the space-time 

M=WXN, (5.11a) 

with the metric tensor 
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g=2~[&@ - fi(dr+ Wfl, + WCl, + Ha)]. 
(5.11b) 

Looking at the list of all CR structures admitting the 
three-dimensional symmetry group given in Ref. 6 we see 
that the solutions (5.9)-(5.11) exist only for the CR 
structures listed below. They are ordered according to the 
Bianchi type of symmetry group G3. Here, (u,z=x 
+ iy,,$ is a chart on N. Any Abelian solution of (5.6) is 

given by (5.10) and (5.11) with fi and a1 given below. 
Bianchi type Vl,: 

&=$y-‘dx+$du+iy-‘dy, 

l-l=y-‘dx-yddu. 
(5.12) 

Bianchi type VIIO: 
- 

n,=f(e’“dz-e-‘“dz-du), 
(5.13) 

n=f(du+e”dz+e-‘“da. 

Bianchi type VIII (lower sign) and IX (upper sign): 

k&u _ E 
zzhl dz 

ke - iU + iz 
+ z&&l (5.14) 

keiu - iF 
+i_dz+ke;l;izdF), 

k2 f l#O, k>O. 

Solutions of (5.6) satisfying (5.7b) generate non- 
Abelian gauge fields. It is easy to see that they are not 
gauge equivalent to any Abelian gauge field. 

Since (5.7b) is equivalent to 

8 = an + ibm, abn x m#O, (5.15) 

where a, b are real constants and n, m are constant unit 
vectors in R3, we give solutions of (5.6) and (5.7b) in 
terms of a, b, n, and m. 

Using a, b, n, and m we see that (5.6) and (5.7b) are 
equivalent to 

E(a2 - b2 + 2iabmn + a2) =0, (5.16a) 

a2 + b2=fl + aE. (5.16b) 

We find all the solutions of these equations using the 
list of all CR structures with three-dimensional symmetry 
group given in Ref. 6. They are ordered according to the 
Bianchi type of the three-dimensional symmetry group G3 
of the CR structure (it is also a symmetry group of the 
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gauge field). We use (u,z=x + iy,?) as a chart on N. Any 
solution lives in the space-time 

M=RxN, (5.17a) 

with the metric 

Bianchi type Vlr,: 

A=ane(& + El) + ibme(R1 - 6, + 4jXI) 

+ 2ub(nxm)en, 

g=2p[fhl& - n(dr + Wf3, + W& + Ha], 
(5.17b) 

where R1 and fl are given below. 
Bianchi type IV: 

f= fi, a’=(1 +h)/2, 

b2= (1 + 9h)/2, nm=O, (5.21) 

A=ane(& + c2, -2a) + ibme(R, - zn,) 

+ 2ab(ttxm)en, 

where 

flI=ecft-+i)Udz+ [(f-i)/2i](du+e(‘+fi”dz 

+ e(fFi)@ dZ), 

mn=O, a2={, b2=g, 

C&=y-‘(du+ (1 -lny>dx+idy), 

fi=2y-‘(du - lnydx). 

Biunchi types VI,,: 

(5.18) 

Solutions exist only for h < - 1. 

A=ane(& + ?& + (d - 1 )f2) + ibme(nl - 6,) 

+ 2ab(nxm)eQ 

where 

fl=f(du + e(f+i)udz+ e(f-i)u&). 

Bianchi type VIII (lower sign) and IX (upper sign): 

A= ( $?%2)cos #te(& + 6i) 

+ i( jkZZ2)sin #me($ - &) 

+ [ (k2*2)/4]sin 2$(ttXm)eS1, 

where 4 is a constant, such that 

&LO,24 sin 24#0, nx m#O, 

i-+g 

+ (5.22) 

b2= - f , 
(5.19) 

nm=O, 

( 

k& - & 
a=& du+xdz+ 

ke - i” + iz 
zz+l dg, 

1 

and k > @ for Bianchi type VIII, k>O for Bianchi type 
IX. 

f-&=y-‘dz+ [d/(d+ l)](y‘jdu-y-ldx), 

fk= - [2/(d+ l)](/du-y-‘dx). 

Bianchi type VII,,: 

VI. CONCLUSIONS AND OUTLOOK 

A=cos &te(Ri + ?&) + isin +me(R, - 5,) 

+ sin 2#(nXm)eR, 

where 4 is a constant such that +[0,2~$J], sin 2420, n 
and m are not parallel, 

R,=f(e” dz - e-” dF-- du), 
(5.20) 

We have considered twisting null solutions to the 
Yang-Mills equations with gauge group G = SU (2). We 
assumed that congruences of shear-free and null geode- 
sics associated with these solutions admitted n symme- 
tries (n>3). We applied the fact that among those n 
symmetries there always exist three symmetries that form 
three-dimensional Lie algebra. Assuming that none of 
those three symmetries is trivial [in the sense of (2. lo)] 
we have shown that there were always symmetries of the 
CR structure N defined on M by the shear-free geodetic 
and null congruence. Finally, we found all twisting null 
Yang-Mills fields with gauge group SU(2) for which G, 
generated by above-mentioned three symmetries was a 
symmetry group. We obtained Abelian solutions with G, 
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of Bianchi types Vb, VIIO, VIII, and IX. More interest- 
ing, non-Abelian solutions were obtained for G3 of Bian- 
chi types IV, VI,, (h < - 1 ), VII,, VIII, and IX. All 
these solutions can exist in any Lorentzian manifold of 
the form 

M=RxN, (6.1) 

equipped with the metric tensor 

g=2Pyn,sz, - fWr+ W& + W& +Hfi)l, 
(6.2) 

with R and a1 related to a particular Bianchi type of G3 
and O#P, W, H being absolutely arbitrary. 

The question arises as to which of the obtained solu- 
tions can live in physically interesting space-times. Even 
if we restrict this question to the Minkowski space-time 
very little is known about the answer. (This particular 
case of the question is closely related to the problem of 
the formulation of the Kerr theorem”” in terms of forms 
a and 0,. It seems to be unsolved so far). However, it is 
known that, for example, if R and R, correspond to the 
Robinson congruence” then there exist functions P, W, 
and H in (6.2) such that (6.2) is the Minkowski metric. 
In our list of solutions n and fi, related to the Robinson 
congruence are given by (i) (5.14) for k=O and k 
= fi (Bianchi type VIII) and k=O (Bianchi type IX), 
(ii) (5.19) for h= - 9, and (iii) (5.22) for k=O (Bian- 
chi type IX). This means that all these solutions can live 
in Minkowski space-time. 

Another nontrivial example of a null solution of the 
Yang-Mills equations with twisting rays that lives in 
Minkowski space-time can be obtained by using the re- 
sults of Ref. 6. It follows from that paper that solutions 
(5.12) as well as (5.19) for h= -4 can live in 
Minkowski space-time. For the non-Abelian solution 
(5.19) expressions for functions P, W, H appearing in 
(6.2) that correspond to the Minkowski metric are6 

P= 
,$I3 

cos( r/2) ’ 
WE .-.i+r+i, 

H=A($+ emi’- 1). 
(6.3) 

Here, w#O is an arbitrary constant and I(z, & are given 
by (5.19) for h= - 4. 

Expressions (5.19) for h= - 4 and (6.2) and (6.3) 
give an explicit example of a null Yang-Mills field with 
twisting rays living in Minkowski space-time. The con- 
gruence of shear-free and null geodesics appearing in this 
solution is twisting and not equivalent to the Robinson 
congruence.8 According to the results of Tafel’s paper,3 it 
seems to be the only known solution of this type. 

Besides the solutions discussed in this section we do 
not know whether other solutions from our list (5.18)- 
(5.22) can also be imbedded in Minkowski space-time. It 
is also interesting to ask whether our solutions (5.18)- 
(5.22) generate any solution to the coupled Einstein- 
Yang-Mills equations with twisting rays. 
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