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§ 1. Imfroduction. The theory of vector-valued differential forms ?)
—briefly: wector forms—found its beginning in two papers published .in
1951 [1], [2]?), each of which dealt with an application of a differe'ntla,l
concomitant of a vector form of degree one. The differential concomitant
itself was a vector form of degree two. In a paper of 1855 [3] the existence
was proved of a differential concomitant [L, M], where L and M are
vector forms of degree [ and m respectively. [L, M] is then a vector form
of degree I+m. Also, a Jacobi identity was proved for this bracket
operation, )

The present paper is the first of a series, and deals with general propertlejs
of vector forms. Contrary to the previous papers, the starting point is
‘not the veetor forms themselves. Instead, we consider the graded ring @
of C* differential forms—scalar forms—over a C* manifold. It is com-
‘mutative in the usual sense for graded rings: @, A w,=(—12y, A @,
-where ‘the subscripts indicate the degrees of the elements. The subring
@,=F of elements of degree zero consists exactly of the 0 funetions.
The vector forms come up in connection with formal derivations in @. The
mapping D; @ — @ is said to be a derivation of degree r if D(P,) C &, .,
and D(p, ap,)=Dg, r p,+(— 1)@, s Dy, and D((p—l-w).: D.(p+Dz,u. The
analysis shows that there are two special types of derivations. One of
them acts trivially on @, and its action on @; determines it completely.
The other one is determined by its operation on @, and the fact that
Dd=(—1)dD. Bvery other derivation D of degree r is the sum of ’G.WO
derivations of degree 7, one of each kind. The derivations of the first kind
{“type 1,”") of degree r are in 1—1 correspondence with the v‘ector for.ms
of degree r+1; in fact, they are given by a very simple algebraic operation

(related to interior products) between the vector form and the scalar
form. Among the derivations of the second kind (“type d,”) of degree
1 one finds the exterior differentiation d; those of type d, and degree

*) ' Supported in part by a National Science Foundation Grant at the University
of Chicago.

1)} T.e. differential forms whose values are fangent vectors.

?) The bibliography is placed at the end of §6.
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zero are Lie derivatives. More generally, the derivations of type d, of
degree r are in 1—1 correspondence with the vector r-forms, and are
differential concomitants of these with the scalar forms. They are shown
to be generated by d and the derivations of type Ty

Since derivations of type d, commute with d, they can be carried over
to the de Rham cohomology groups, but their operation there is trivial.
Their action on the Dolbeault cohomology in complex manifolds is not
trivial, however. This application will be discussed in a forthecoming paper.

The differential concomitant [L, M] is determined as follows. If d; and
dy are derivations of type d, associated with vector I- and m-forms L
and M, then dydy—(—1)"d,d, is shown to be again a derivation of
type d, of degree I--m, and therefore determines uniquely a vector
(I+m)-form, which is what we have denoted by [L, M]. The Jacobi identity
.also finds its natural place in the whole structure. Numerous other
identities are derived, all expressing relations between derivations of
the types i, and d,.

The discussion of these derivations (§4) and the deduction of the
relations between them (§ 5) is preceded first by a purely algebraic part
(§ 2), where besides the exterior algebra of sealar forms on a module over
a ring 4 with unit element we also introduce the module of vector forms.
Then follows a resume on vector fields, scalar and vector forms over a
manifold (§3), in which we deal mainly with two points of view of
characterizing these objeats; either defining them first in one point and
then over a manifold as a differentiable cross-section in the corresponding
fiber bundle; or alternatively, directly as global objects. At the end, in
§ 6, which is self-contained, we give a direct approach to vector one-
forms, with a rather simple deduction of their basic properties. The
corresponding formulas for general vector forms could have been derived
in a somewhat similar fashion, but would require much more work. As
an application of vector 1-forms we give a new proof of a theorem which,
in its broadest form, was formulated by HaanTies [4] and which was
previously discussed by Toworno [5]§ScmovTEN [6] and NwEwmvuis [1].

Further papers in the series will deal with applications of vector forms,

including complex and almost-complex structures, and some cohomology
aspects.

§ 2. Scalar and vector forms on a module, Let & be a module over
& commutative ring A with unit element. If 4 is a field, F is a vector

space. The case when 4 is not a field is essential in the following con-
siderations.

Definition. An A-scalar form w of degree q on E is an A-linear
mapping '

(2.1) w:Brn..AB—> 4
TN R,

¢ times
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or, in other words, w is defined on g-tuples of elements w,, ..., #, of B,
skew-symmetric in the arguments, A-linear in each of the arguments:
(2.2) WUy ooy Py ey ) = @Yy ..., Uy, ..., u); g€ A,

with values in 4. For ¢=0, o is simply an element of A.
The exterior product w A = of two scalar forms, w and x, of degrees ¢
and p respectively, is a scalar form of degree p+q, defined by

1
[ 2%

(2.3) oamug,... u,) = — 2 |« w(um,...,u%) 7|

plq! Yargery -+ "‘a+zz)'

L2, ..,p+gqg .
Here x = ) runs over the symmetric group &, .. In general,
M1y Bgy «es Gip tg, .

in sums like (2.3), « will always be asumed to operate on all its subscripts
by the appropriate full permutation group. We write |x] for sgn (x)

The notation p!—lq! Za ||... may seem ambiguous since no divisibility
assumptions were made for 4. It should be remarked that under the >
symbol in (2.3) there are (p+¢)!/plg! groups of terms, each consisting
of plg! terms, which are equal by virtue of the skew-symmetry properties
of w and #. The notation could therefore easily be modified to avoid the
divisions. However, our main interest will be in rings which contain the
fleld R of real numbers as a subring.

Let 8g,, denote the A-module of all scalar forms of degree p on H.
For p<0, 85, reduces to {0}, and similarly when p exceeds the minimal
number of generators of B. — If 4 is a field, and  a finite dimensional
vector space, then the minimum number of generators of E is the
dimension of # over 4. Also, S5, as the dual of E has dimension equal
to that of E.

The exterior algebra Sy of E is the direct sum

+00
(2-4) SE = @ SE.ZJ

p=—00
with multiplication defined by the exterior product. — & is a commuta-
tive, associative graded ring: graded because Sy, A Sz, C Sy ,., com-
mutative in the usual sense for graded rings because w A w=(— 1) A w;
and associative because (w A @) A g=w A (7 A o).

Definition. An A-vector form L of degree I on E is an A-linear
mapping

(2.5) L:Ean..ANE—F
e R
i times
or equivalently, L is defined on I-tuples of elements uy, ..., u; £ E, skew-

symmetric in the arguments, A-linear in each of them, with values in E.
For I=0, L is just an element of & itself.

For i=1 we bhave L: E — E, so L is an endomorphism of E. In partic-
ular, I, the identity transformation on E, is a vector 1-form.

R

1
(2‘13) = W%Ioclw(M’(N(uﬁ,...,u%),ua
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Let Vg, be the module of vector p-forms (hence Vio=E), and
(2.6) Vg= ® Vo
p=—00

We define operation of S on ¥V by an extension of the exterior multi-
plication: let L e Vg, w eS8z, then wa L e Vg4 is defined by

27) ©AL(ug,..., ) = ﬁz 1] 0 (U, .., ) L (1

AP RELY] uex,“)-

Similarly, L o wis defined as (—1)%w 4 L. Obviously, we have (z A w) A L=

=mA (@A L) — For =0, w A L is the same as w ® L, where ® is taken
over the ring A.

There is also another operation, where ¥, acts on 8g, denoted by
o~L. Let again w €85, Le Vg, then oxL €850,y

1
(28) sz(ul,...,uqH_l) = m % IO&I co(L(-u,xx, ...,u&‘), u-’"!+1""’u“l+q——1)'

For g=0, w= L is defined as zero. — Similarly, = denotes also operation
of Vz on ¥y In fact, let LeVy, Me Vem then MxLeVy

JWI?:L(ul,...,uHm_l)‘:

t+m—1°

(2.9)

25 ER u“r+m—1) *

1
= mg ]zx[ ﬂI(L(um,...,u.al), U,

Obviously, w=L and M =L have quite similar properties. When no
confusion is possible, only those for wxL will be stated.

For veVyo=E we have w=v (uy, ..., u_,)= o, Uy, ..oy Uy 4); and
for he Vg,
7
(2.10) WRR (g s Ug) = 2 0 (g, e Uy, B Uy, Uy, ey Ug).
i=1

In particular, onI=qw; MxI=mM; I~ M=M.

There are some relations between = and A. One easily shows:
S a) (0Am) =M = (0mM)An+(—1)%"D ¢ A (= M)
{ b) wr(@AM)=nA(0xM),

3

(2.11)

The operator = is neither commutative nor associative, but the following
commutative-associative rule holds, which states that the “non-associative
part” of = is commutative:

(2.12) (wmxM) =N — 0= (M #N)=(—1)"»-D@n-D {(0~N) =M — 0 =(N =M)}.
The proof goes as follows.

(o=xM)~N (v, YPR eu———| =

nt1? 1 u"‘n+m—l)’ u"‘n+n’ Tt u"‘n+m+i—2) ag
( —1)yntm—1) 3
m Z I‘xl o (M (u%’ T uv‘,,.)’ N(u“mﬂ’ ’“m»rn)’ Yot it ""u“m+n+a—2)'
@



(2.14)
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The first term is w= (M= N), and the last term equals (—1)m-Vin-1 E
times ;
(—1ymin—1)

mZla[w(N(uax,...,u,,n),JPI(u Uy, ), %

Fag1’ " n+‘m)’ Fpim+1? 712 u"‘m+m+a-3) i
3

which, by a similar computation, is found to equal (w = N) = M — o = (N = M).
This proves (2.12).
If welpy it follows from the vanishing of (2.14) that associativity

holds. In fact, only in that case w=M denotes a composite of two
mappings:

(2.15) Ea. . AEBE3 A.
Tt is then sometimes useful to write w o M for w = M, so the associativity
(2.16) woMaN=(woM)~AN =wo(M=N)

“will be obvious at one glance.

The formulas (2.11, 12, 16) also hold if w €8y, is replaced by L Veas
and ¢ by I, with /=1 in (2.16).

§ 3. Manifolds; tangent vectors; scalar and vector forms, The material
in this section is of & nature which commonly carries the label “generally
known”. However, it is not generally available in the literature3)*). We
have confined ourselves to the bare minimum of what is really needed
in the subsequent sections.

Let X be a (Hausporrr) 0% manifold, and F the commutative ring of ¥
real-valued O functions on X, with addition and multiplication defined by ‘

(31) (.f_l'g)a::fx'i_gx: (fg)x=fwgm:

where f, is the value of f at 2 € X. A subring is the field of constant
fonctions, which we identify with the field R of real numbers itself.

Definition. A tangent vector u at x, € X is a functional whose domain
is the set of real C* functions, each defined in an open neighborhood of %y,
and whose range is the set B of real numbers. The sum and product of
such functions are defined by (3.1) for all « belonging to the domains of
both f and g. The conditions that % should satisfy are:

a) w(k)=0, keR,
(3.2) b) u(f+g)=u(f) +u(g),
©)  w(fg) = fou(g) +guulf)-
The following well-knownJlemma holds:

Lemma (3.1). Let &, be a family of 0™ functions defined on open’

%) Our set-up is related to e.g. that of CEEvarzrY [7], Ch. ITI, and of SPENCER .
[8], but ours is more general in some respects. i

*) The reader is also referred to [14], § 1, which came out a few days after
the presentation of this paper; especially for Proposition (3.4) and for the defi-
nition of d in §4 (Added in proof).
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neighborhoods of #,, which includes the ¢ functions on X, and which
contains with any f, g also their sum and product. Let % be any mapping
w: &, — B satisfying (3.2) for all f, g € #,,. Then for all f,g € #,, the
following properties hold: '

a) If { vanishes in an open set U 5 =, then u(f)=0;

b) If f is constant in an open set U > z,, then u(f)=0;

c) If f equals g in an open set U3 x,, then u(f)=wu(g).

Proof. Statements b) and ¢) follow easily from a). In order to
prove a), take any function ¢ € F C #, with ¢, =0, and ¢,=1 outside
U. Then f=g¢f. Consequently, using (3.2¢) we have

(3.3) u(f) = w(pf) = @a, u{) + fou(®) =0, QE.D.

Lemma (3.2). The set of tangent vectors at a point x, is a vector
space of dimension equal to that of X.

Proof. et U be an open star-shaped coordinate neighborhood of ,
with % coordinates (z%,...,2"), and let x, have coordinates (0, ..., 0).
Let f be a C= function defined in an open neighborhood of %); one may
then assume that U is contained in this domain. Define £, in U by

Pl ot - 1 i—1 N
fi(ml,_,,,x")=f(x,...,xi,0,...,0) Qj{zy ,o,..A,O); o0,

. ; of (x4, ....440,...,0
fi(xl,---,xq'_l, O’xz—{-l"“,xn):(,( 3 ))’ 0;
o=

(3.4)
dut
thenf;,¢=1,...,n are O functions in {7, and one has f,=f, + > filat,.. ™)t
i=1
Then w(f,)=0, because f, is a constant; furthermore, because of the

choice of coordinates, zj=0. Hence, by (3.2b, o):

(8.5) u(f) = ﬁlfi (@b ... 2 u(2l) = i (ﬂ

. % (%),

Thus « is a linear combination of (%) . The coefficients w(zf); t=1,...,n,
0
are called the components of w with respect to the coordinate system

(2%, ..., 2"). Furthermore, the (3%‘>o themselves satisfy (3.2). The set

© T, (X) of tangent vectors at =z, is a vector space over the field R of real

numbers, with

(3.6) (ou+bo)(fy=au(f) +bv(f}; a,beR.

The operators 33—[1’ ""Sz_n form a basis for T, (X), and 7, (X) iz of the

same dimengion as X. This proves Lemma (3.2).

To(X) is called the tangent space to X at . The union 7(X)= U T,(X)

weX

with the natural differentiable structure is called the fangent bundle of X,

Definition. A (contravariant) vector field w over X is a mapping
u: X —T(X) with w, € T,(X) such that, whenever f € F, the function
[u, f] defined by [u, f],=u,(f), belongs to F.

If » is a vector field and ¢ & F, then the vector field gu is defined by
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[pu.fl=p[u, f], or equivalently, by (pu),=@u,. The sum u+v of two
vector fields is defined by ( +v),=u, +v,. Let ¥, denote the set of vector
fields over X, then ¥, is a module over ¥, and simultaneously, an infinite
dimensional vector space over E.

Definition. A derivation D on a commutative ring A relative to a

subring K is a mapping D: 4 — A, which satisfies
D(K)={0},

(3.7 D(a,+ay)=Da, + Da,,
D(aya,) =a,Da,+a,Da.

Proposition (3.3). The derivations on the ring F of real valued
O functions over X, relative to R, are the vector felds over X.

Proof. It is obvious from the definition of ¥, that every vector field
% is a derivation. Conversely, let » be a derivation, then denote by u, the
functional on F which assigns to f € F the real number (f)y. From the
product definition in F and (3.7) it follows that the conditions (3.2) are
satisfied for all fe F. If g is a C* function whose domain I/ containg x
as an interior point, then there is a function g € F which in a small neigh-
borhood ¥, ¥ C U, of 2 agrees with g, for J=go; with g e F, |V =1,
@|X — U=0 satisfies. If § and 7 are two extensions of g in a neighborhood
of «, then by Lemma (3.1) u,(§)=u,(g). In defining wu,(g9) =wu,(§) we then
have obtained an operator u, which satisfies all conditions for a tangent
vector. Thus w, represents a unique tangent vector at z. The mapping
% — u, is a vector field over X because for every f € F we have (uf)i=u,(f),
and uf was given to be a = function. This completes the proof.

The remarks of § 2 on scalar and vector forms on a module B over a
ring 4 can be applied either to the tangent space T,(X), which is a vector
space over the field B of real numbers, or to the set ¥, of all vector fields
over X, which is a module over the ring F of C* functions. The vector
space of R-scalar g-forms on 7,(X) is denoted by Tf4X), and the vector
space of E-vector I-forms on 7,(X) by ¥%(X). The unions "(X)= U THX)

zeX

and VYX)= U VL(X) are the bundles of scalar and vector forms on T(X)

zeX
The module of F-scalar g-forms on ¥, is denoted by @,; and the module
of F-vector {-forms on ¥, by ¥,. — The elements of THX)=T}(X) are
called the covectors at .
Let u be a tangent vector at z; f a C* function defined in an open
neighborhood of #. Then u acts on | as u(f), and this operation is R-linear

in % and in f. Therefore f also acts on T(X), and this linear functional is
denoted by df,, as follows:

(3.8) Afo(w) =u(f).
df, is a covector at . If, in particular, z%, ..., 2* are coordinates in a
neighborhood of =z, then dal, ..., da" are covectors at x; and because

dx (%) = 'b%c (@') = &}, they are linearly independent. Since dim 7%(X) =
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=dim 7',(X) it follows that da?, ..., da® form s basis of T%(X). Using the
definition (3.8) in (3.2, 5) one finds

a) dk=190, keR,

b) d(f+g) = df+dg,
(3.9) c) d(fg) = fdg+gdf,
) df=3 Lo

2

Definition. A scalar g-form w over X is a mapping w: X — T*¢(X)
with -w, e T(X), such that, whenever wu,...,u, €%, the- function
@(Uy, ..., u,) defined by o(uy, ..., %), =wy{ty, ..., %,,), belongs to F.

From the definition of w(uy, ..., u,) follows that

{3.10) Uy, eny Plhys ey Ug) = PO(Uy, ooy Ugy .y Uy), @ € F.

Consequently, w is an F-scalar ¢-form on the module ¥, hence w e @,.

Proposition (3.4). The module @, of F-scalar g¢-forms on ¥,
consists of all scalar ¢-forms over X.

Proof. If w e @, we have to show that w is a scalar g-form over X. Let
Uy, ooy Ug € Py, then (ug, ..., u,) € F. Define w, by wy(uy, ..., %)=
=o(ty, ..., %), We have to show that if u/ € ¥, is such that uj,=u,,
then @, (Uy,...; Ugsee s Ug) = Wyy (U, .0, Ui, .., Ug), OF equivalently, that if w,, =0,
then w,(uy, ..., %, ..., #,)=0. Let v/, ..., %, be 0% vegtor ﬁelds_(_)ver v,
V open, Vs, and let v, ..., v, be a basis for T'(X), y € ¥. Then
W=y + ... +y, over V. Take p e F, with =1, and ¢=0 outside V.

K
Then w,=(1—¢*u;+ 3 ww;, over all of X, where in V y,=oy/, v;=ov],
i=1

and outside ¥V 4;,=0, 9;,=0; hence y; € F'; v; € ¥, The fact that u,=0
implies 9, =0,7=1, ..., n. Since w,(w,, ..., P, ..., %) = Qo (ty, ..., Uy, ..., %,)
for all ¢ € F it follows

O (U e ooy Ugs ooy Ug) = (1= @2) g (g, oevy Uy, oo, Uy) +

3.12 i
(3.12) + 2 Wi Wy (U oy Uiy Uy Uy s tty) = 0, QE.D.
i=1

Definition. A wvector l-form L over X is a mapping L: X — V¥X)
with L, € Vi(X), and L(w,, ..., w) € ¥, foruy, ..., u} € ¥, where L(u,,...,w)
is defined by L(uy, ..., w)y=Ly(tyg, ..., %)

The proof of the following proposition is a copy of the one above.

Proposition (3.5). The module ¥, of all F-vector I-forms on P2
consists of all vector I-forms over X.

§ 4. Derivations on the ring of scalar forms, The graded ring @ of
scalar forms on X is commutative; i.e.
(4.1) maw={(~1"wrn, wed,ncd,

The subring @,=F consists of the (™ scalar functions over X. Each @, is
a module over F.
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Definition. The mapping D: @ — @ is called a dertvation of degree
r on @, (relative to R) if
a) Dk=0, keR,
b) D9, Co,,,
¢) D(p+y) = De+ Dy,
'd) D(@Aw)=Drrw+(—1"mrDo; ned,wed,

The following lemma states that all derivations are “ocal’ operators.

(4.2)

Lemma (4.1). Let D be a derivation on @, and let ¢, p € @, have
the property that ¢|U=y|U, where U is an open set of X. Then for xc U/
one has (Dg),=(Dy),.

Proof. Let y=g—v; then y|U=0. Choose z € U, then z has an open

. neighborhood ¥ with ¥ C U, and there is a p € F with 9|V =0, o/l X-U=1
Then y=py, and therefore

(4.3) (Dx)e= (Do), A xﬁem(Dx) =(De)y A Y-

(Dy), vanishes if we can prove that (Dp), vanishes. There is a o € F
with 6|X—¥V =1 and ¢,=0. Then p=op, and
(4.4) (De)o=es(Da)y+ (Delao, =0,  Q.E.D.

Lemma (4.2). Every derivation D on @ is determined by its action
on @,=F and @; alone.

Proof. Since scalar forms that are equal on an open set have the
same derivative on that set, one can confine oneself to an arbitrarily
small open neighborhood of the point z at which one wants to prove
that D, on forms restricted to U, evaluated at z, is determined by D on
the (-forms and 1-forms restricted to U. Let U be so smsall that there
are n 1-forms w?, ..., w* over U, such that w}, ..., w} form a basis in each
TH(X),y e U. Every C* form ¢ of degree p over U is then uniquely
representable as

(4.5) =

ey

where the a; , are €™ functions on U. — Applying D we find

wB AL A @

&,y

(Po=, 3, (Prrotn rob s

f<. <y

(4£.6) 3 » ) ) ) )
2 + 2 2(=1yTgq . wha..ADwYA... Aab.

G, =1 £}
The left-hand side indicates the operation of D on an arbitrary element
of @,; the right-side is determined by the operation of D on @, and P,
Since the open set U was a neighborhood of x, and z was an arbitrary
point of X, the lemma is proved for all x € X.

Lemma (4.3). Every mapping D: ®,® @, — & satisfying (4.2ac)

and (4.2d) for p+g<1 can be uniquely extended to @ so that D is a
derivation of degree » on @.

—
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" Proof. The argument in the proof of Lemma (4.1) shows that D is
a ‘local’ operator on @; ® @;,. Let x be any point € X, and U an open
neighborhood of z such that there are forms o', ..., @" over U, as in the
proof of the previous lemma. Every ¢ over U then has a local decom-
position (4.5); and (4.6) defines a derivative Dy, which is a € form
over U. Dg is defined with respect to the forms w?, ..., »"; and it is not
yet clear that other forms w'l, ..., @™ defined over an open set ¥ would
have given the same Dy over UN V. To show this, we remark that on

”
UNV there are C* functions of with /= Y alw'". Then we have
i=1

A4 7 — g, N 1,
<7 = ) %,..5, o SR WA LA™
Faeennip=1 a,<...<7

The actual computation to show that De computed from (4.7) is the same
as that of (4.5) is a simple and straightforward application of (4.2) for
p+q<1. Thus D¢ is globally defined, and Dp £ @,,,; Q.E.D.

Corollary of Lemma (4.3). There are np non-trivial derivations
on @ of degree r< —2. — All derivations of degree —1 vanish on F.

For, if rg—2, then DP,C &,={0}, and DD, C P, ,={0}; hence
D®={0}, And if r= —1, then D®, Co_,={0}.

Proposition (4.4). Every derivation D of degree r, r > —1, which
acts trivially on F is of the form D: ¢ - px L, where L is a vector form
over X of degree r+1, uniquely determined by .D. Conversely, every
mapping D: ¢ - ¢=L, where L is a vector (r+1)-form over X, is a
derivation of degree r acting trivially on F.

‘Definition. Under the conditions of Proposition (4.4), D is called
a derivation of type i,, and is denoted by .

Proof of Proposition (4.4). If D acts trivially on F, one has

{4.8) (D(g))s=0u D)y @ € F, yed,

An argument similar to that in the proof of Proposition (3.4} then shows
that (Dy), depends on y,, but not on the continuation of y over X. Let
U be an open set, and let i, ..., @2 be a bagis of T7(X), x € U. Let
Uy --n» Upp DE & dual basis of T,(X); i.e. wi(uy)=8i; then (Do), for each

t=1,...,n, is an (r+1)-form on 7,(X); and L,= Zuw® (Do), gives

a vector (r+1)-form L, on T,(X) which by (4.8) is mdependent of the
bases o' and . We have (Dw),=wixL, — Let g e ®,; then ¢ hasa
local decomposition (4.5), and (Dg), is given according to (4.6):

(4.9) e Zq 721 1) g e 0BA A (Y RL) A A0 =p,R L,
Conversely, (2.11a) shows that the mapping ¢ — @ =x L satisfies the con-
ditions (4.2), and by definition acts trivially on F.

The set of derivations that are not of type i, is not empty, because
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the exterior derivative d is a derivation, but does not vanish on F. ! we only have to show: 1) The formula (4.11) for @ e F' agrees with
We defined d on F in § 3, and some of its properties are listed in (3.9). Dop=dp=L; which is obvious; 2) The formula (4.11) really defines a
The operation of d on @, then is determined by the condition ddf=0, derivation; 8) Dd=(—1ydD, which follows because by (4.11) both sides
because the operation of d on any 1-form ¢ — Za datis by (4.6)dp = Zdag\dm } equal (—1) d(dw = L). Remains the proof that (4.11) defines a derivation.

Conditi 4.2 bviously satisfied; (4.2d) foll thus:
The verification that dg does not depend on the coordinates is obv1ous ! ore 10ns»( a0} gre phviowsly, fatisfied; (4.2d} follows u?
" 14 th Di{wam) =d(izwam+(—1)~"2paim)+(—1) i ([dwam+(—1)"0 Adn) =
o= Z“@by Y, then (4.13) _dszer(—1)f@de,«nT(—l)fﬂwAdan+(—1)«f+'medn_
= — 1)2
(4.10) d<p~2d(mw )Ad? —ZdamAb,dJ‘and Ady Dorn+(-1y"waDa, Q.E.D.

Proposition (4.8). Every mapping D: F — &, which 1) is trivial

The first term equals Y da; a do (by (3.9d)), and the second term vanishes
because

i, i ;
5a2 A(zy_zd(’“‘ dy') - 3 5 ddy = d (da') = 0

Thus & is well-defined on @, @,. A computation similar to (4.13) below,
with D=dd, i;=d, r=1 shows that dd is a derivation. Since ddg=0, dd
vanishes on all of ®. — The derivation d is of type d,, in the fol-
lowing sense:

Definition. A derivation D of degrée r on @ is of type d, if

Dd=(—1ydD.

Proposition (4.5). Every derivation D on @ of type d, is determined
uniquely by its action on F. With every derivation D of degree r of type
d, there is associated a vector form L of degree 7, and

(#.11) Do=[L,o] =doxL+(—1yd(@xL) = (i;d—(—1)"1di,) o

Conversely, every mapping D: @ — & of the form (4.11) is a derivation
of type d,.

Remark. The derivation of type d, associated with L € ¥, is denoted
by d;.

Proof of the proposition. Let w € ®;, and let 21, ..., 2" be local
coordinates. Then, by the assumption that D, of degree r, be of type d,,
we find

(412) Do = ¥ Deadai+ 3 a; Ddat = 2 Da,adei+(—1) 3 a; dD.

The right-hand side is determined by the action of D on g, 2%, which
are real-valued C* functions. This proves the first statement. The second
statement (not including (4.11)) will be proved without using that D
is of type d,. Let uy, ..., u, € ¥, and ¢ € F, then the mapping on F of
@ = Doluy, ..., u,), in virtue of the definition of a derivation of degree 7,
(cf. (4.2)) satisfies the conditions for a derivation v: F — F ; of. Proposition
(3.3). Hence Dg(u,, ..., u,)=v(p)=dp(v), where v € ¥, depends on the
choice of w,, ..., u, € ¥,. Since D is an F-scalar r-form, it follows that
v=L(uy, ..., u,), where L is an F-vector »-form on ¥,; i.e. by Proposition
(3.5) L is a vector r-form over X; and we have Dp=dp=L. — In order
to verify (4.11) we remark that, because of the statements just proved

. ,‘

on R, 2) is linear, and 3) satisfies D(py) =Dy +yDg, is uniquely extend-
able to a derivation of type d, on the whole of .

Proof. The proof of the second statement of Proposition (4.5) shows
precisely that Dp=dp=L. The extension to the whole of @ is defined
by (4.11). According to Proposition (4.5) the extension is unique.

Remark. The derivations of type d, include the following operations.

a) r=0; L=v, a vector field. Then d,w=[v, ®] is the Lie derivative of
o with respect to v;

b) r=1; L=I, the identity transformation on ¥,. Then

(4.14) dro=doxl—d{w=I) = (g+1) dw —qdw = dw.

¢) r=1; L=p, a projection operator: p o p—=p; then dow=[p, ]
denotes a ‘“‘partial” exterior derivative of w with respect to the decom-
position of T'(X) defined by p (cf. SeENCcER [9]) ¥)

Remark. The expression [L, w]*) is a scalar form, hence a tensor
field, which is determined by the tensor fields L and w. [L, w], depends
only on the “germs” of L and w at z; i.e. it depends on the behavior
of L and w in an arbitrarily small neighborhood of z. Therefore [L, o]
is called a differential concomitant %) of L and .

Proposition (4.7). Every derivation D on & has a unique decom-
pogition in a sum of two derivations; one of type ¢, and one of type d,-

Proof. According to Proposition (4.6) the action of Don F determmes
a derivation dy. The action of D--dy on F (which is trivial) and on @,
determines a derivation ¢, (Proposition (4.4)). Then D and iy +dy act
in the same way on @, and @,, and by Lemma, (4.3) this means D=1, +d,,;
Q.E.D.

The main results of this section are summarized in the following theorem.

Theorem I. The derivations on the graded ring @ of C* scalar
forms over a 0™ manifold X are all locally defined; i.e. the derivative of

¢) The double notation [L, w], dw was adopted because the latter stresses the
operator character of L on o, while the former indicates that [L, w] is an object
determined by L and w alone. It may seem surprising that square brackets are also
used for [L, M] in § 5, but, in fact, it is convenient in view of the formal analogies
of identities in § 5, of. Theorem II.

*) An exposition on differential concomitants was given by Scmovrex [10].

*) See also [14], § 2 (Added in proof).
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w at any point x is determined by the behavior of w in the neighborhood
of z. Bach derivation D of degree 7 that acts trivially on @,= F is uniquely
determined by a vector form L of degree r+1 over X, and Duw=ao = L.
Each derivation D of degree » which commutes with d: Dd=(—1ydD,
is uniquely determined by a vector form L of degree 7, and (4.11) holds.
Every derivation of degree r is the sum of two derivations of degree r,
one of each of the kinds mentioned.
(To be continued)

MATHEMATICS

THEORY OF VECTOR-VALUED DIFFERENTIAL FORMS
PART I (CONTINUED).
DERIVATIONS IN THE GRADED RING OF DIFFERENTIAL FORMS

BY

ALFRED FROLICHER anp ALBERT NIJENHUIS *)

(Communicated by Prof. J. A. SCHOUTEN at the meeting of March 24, 1956)

§ 5. The identities for scalar and vector forms. In §4 the vector
forms have been identified as the objects determining derivations on the
graded ring of scalar forms. The further development of the general
theory follows a rather standard pattern, and might therefore be of little
value by itself. It appears, however, that from a different point of view
the identities thus arising are of value. The expression [L, »] was found
to be a differential concomitant of L and w. Similarly, the standard
development of the derivations leads to another differential concomitant,
[L, M], of two vector forms. By writing in terms of [L, »] and [L, M]
all identities for derivations one obtains identities for those differential
concomitants. A direct, computational deduction of those identities
would have been a more laborious and less enlightening exercise than
the study of derivations. — The following properties of [L, w] are already
known from the previous discussion:

8) [Looan]=[Lo]ra+(—1)wa[La], (Le¥,
(5.1) b) d[L,®] = (-1} [L,do] lwed,
Let 2 (27]) denote the set of derivations of type 4, (type d,) of degree
r, and let
2,=9: e ¢, 9= @ g,
(5.2) n ==t
D=0 G¢ D=9 & g
r=0

Proposition (5.1). Under the multiplication wD defined by (wD)p=
=w A Do, 9 is a graded module over the graded ring @: ,92,CD,,,
Restricted to 2* one has 0% C 2, but on 99, wPs C G¢ only if w is
closed, ie. if dw=0. In fact:

Sa’) Wiy = aaz
(b) de=dw1«L+(_1)q+l—l ideL'

*) Supported in part by a National Science Foundation Grant at the University
of Chicago. :

(5.3)

23 Indagationes
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Proof. The full statement is contained in (5.3). (5.3a) is equivalent
to (2.11b), and (5.3b) follows from (4.11) by a most elementary com-
putation.

In bracket notation, (5.3b) signifies

(5.4) [wAL 7] =wA[L 7]+ (-1 dwA (= L).
Proposition (5.2). The commutator of two derivations:
(5.5) [Dy, Dy] = Dy Dy—(—1)"" D, Dy; D,e2,, Dye 2,

is again a derivation, and [D,, D,] € &,,,,. The subsets &' and P¢ are
closed under the formation of commutators. The commutators of &' and
2% are linear under multiplication by any elements of @; in fact:

a)  [ig ty) = tam ,— (= D)V D4
(5.6) b) iz, 1] = o [Eg, t5] — (= 1) D=0 ({0} ip
o) [wdz, dy] = w [dg, dy] — (= 1) 2" (dy o) d;.

Proof. The fact that [D;, D,] € 2 follows by an elementary computa-
tion almost identical with (4.13), replacing ¢, and d by D, and D,, and
changing signs where necessary. The fact that 2 and 9 are closed
under commutator operations is equivalent with the fact that D,.F = {0},
D,F = {0} implies the same for [Dy, D,]; and that [d, D,]=0, [d, D,]=0
implies [d, [Dy, D,]]=0. Relation (a) follows from (2.12), and (5.6b, ¢)
are direct applications of the product rule (4.2d).

The following proposition is a corollary of the Propositions (5.2) and
(4.5). _

Proposition (5.3). Given any two vector forms Le ¥, M e ¥,
there exists a vector form [L, M] e ¥, which is uniquely determined
by the condition

(5.7 [dr, dy] = dizan-

The vector form [L, M] is a differential concomitant of L and M, and -

satisfies the following rules:

a‘) [ﬂ-/[: L] = (_1)lm+1 [L7 -M]: _
(5.8) b) [L’ [-M-’ ]l — (- l)lm [iM: [L7 w]] = [[L’ M]7 o],
o) [I,M]=0.

The last formula follows from dy; 3= [d, dy]=0.
Proposition (5.4). The commutator [iy,d;] has the following
decomposition into parts in @¢ and 9%:

(5.9) [iag, dz] = dpapr+ (—1) bz
Its equivalent for the differential concomitants [L, o] and [L, M] is

(5.10) [L, 0] x M —(— 1y [L, o x M] = [Lx M, 0] +(— 1Y o= [M, L].

——

(5.17) %

T S
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Proof. Let [iy, d;]=dy+iy. Since iy acts trivially on F, X can be
determined by having [iy, d;] act on ¢ € F. We find:

S Uiy dpl @ = iy dy @ = ty(dp=L) = (dp~L)x M =
¢ =dp~(LaM) = dpxyp.

Hence X =L =M. The operator iy=[i,, dpl—~dy y is of type i,, and it
is determined by its action on @,. Since (¢x @); depends on ,, but not
on the continuation of the field @ we may assume that (locally) w=dp,
@ € F. Then we have

(5.11)

fiyw =iy dyde—(~ Dm0y dg—dy s gy dp =
=ty (=1)'d(dp~L) — (= 1) "V d, @ —(—1)+7=1 §(dp = (L% M)

(5.12) = (=Diyddyg~(—1)*""1diy d,p— (1m0t g, Ay p =

= (—DHdyde—(~ 1y™dy dy @) =
=(~Ddurne=(— Dy, 1y dep = (— l)zi[M.L] w.
This completes the proof of (5.9). Formula (6.10) follows trivially.

Proposition (5.5). The differential concomitant [L, M] comprises
the following special cases:

1) ¥ L, Me¥, [L, M] is the usual bracket of vector fields;

2) If Le¥, [L, M] is the Lie derivative of M with respect to L.

Proof. (1) Let ¢ € F; then [L, ¢]=L(p), and by (5.8b) we have

(5.13) LM (9))— M(L{g))= [L, M](gp),

but this is exactly the usual defining equation for the bracket of two
vector fields. — (2) Let w e @, then by (5.105) we have

(5.14) [L,oxM] = [L: 0] xM+w=[L, M],

where in the first two terms both brackets are Lie derivatives with
respect to L. Then, by virtue of the product rule for Lie derivatives the
lagt term must be the third term in the product rule.

Proposition (5.6). The bracket [L, M) satisfies the identity

(6.18) [waL, Ml=wA[L, M]+(—1)"*dpa (M ~L)—(—1)o+am [} o] A L.

Proof. (5.15) follows from (5.6¢) by applying (5.8b, 7, 9). The left-
hand side is:
(5.16) S [wdy, dy] = [doyap+(— 1)ttt baoazs Ba] =

¢ o= d[wAL.M]'_"(— DI dyr qwagy+ (— 1)rtidm=1 Udanz, a1
and the right-hand side of (5.6¢) equals
b, in— (1) [} o] @y, = Aoz, + (— 1)7im=1 TdwaLL, 31—
_ ( _ 1)(l+q)m d[M.w]AL+ ( _ 1)1m+am+l+q+m id[M.w]AL'

Equating the subscripts of d gives (5.15); and equating the subscripts
of ¢ gives (5.15) with dw instead of w.

Remark. [L, M] defined by (5.7) is (I+m)!fllm! times the expression
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denoted by the same symbol in [3] (6.1). Since the bracket [L, M] was
defined in terms of components ¢) we will now express the components
of [L, M] in terms of those of L and M. L, as a vector I-form, has
components Lz ,;: M has components M%, , , and [L, M B s, are
the components of [L, M]. Let 2* be any one of the local coordinate

* functions, then L™ =,,[L,2*] is a scalar l-form whose components
(LPM,.., satisfy (L%, ,=1Lj ;. Equation (5.8b) then gives

(5.18) [L7 Jk[(x)] - ( _ l)lm [Jl,_[’ L(x)] j— [L, ﬂ,j](x).

Writing dM™ out in components we find (m-1)3, M . and thus
[L, M™] has components

[l I * T
ﬂ {(bz M ../zm) LE,...AIJ —-m (b[lll Iul‘flﬂz-nllm) L}.,...Z,] +

Ttm! [,
(5.19) +(=1imdu, (M, L, )} =
1 ! . . .
\ = % {L‘{}.,.,.Al blrl JIV,...MM] +m ﬂITIll:---Hm bl‘x Lll‘--@}'
Hence we find
l Uors ” - x
(5.20) (L, M15, gty = % Lty et M= M iy it Ly —

ULz, a0, My, w3, LF )k

This establishes the relation with [3] (6.1).
Let D,, D,, Dy be derivations of degrees 7, ry, 7, respectively; then the
Jacobi identity follows by simply writing out the left side of

(5.21)  (=1)" [Dy, [Dg Dol + (-1)" [ Dy, [Dy, Dy 1]+ (-1)" [Dg, [ Dy, D, 1] = 0.

and verifying the cancellation of all terms.
Proposition (5.7). The following identities are consequences of the
Jacobi identity (5.21), where Le ¥, M e ¥,, N e ¥,:
- b ([LAN, M]+(~ 1)V [L,MaN]~[L, M] =N =
G224 = (21D Da[N, M)+ (— 1) M R[N, 1)
(5.28) (=1L, [M, N1+ (—1y"[M, [N, L]]+(—1)™[N, [L, M]]=0.
Proof. Take in (5.21) the derivations dj, dy, iy, then the first term
in (5.21) becomes, using (5.7, 9):

(.90 § (70 s Wy )] = (=) 002 [y, gy (= 1) . ] =

Similarly, the second term of (5.21) becomes

(= 1) [dag, (i, dp)] = (= 1)™ digg, g+ (= D)™™ Gy i+

+ (= 1)ntmtig

(5.25)
iz, w0

8) For the details of the component notation used here we refer to ScEouTEN [11].

4 .
) 2 = ( - 1)(l+m) e ik, d[L.M'XN] T ( - l)m(l+m dLx [, 3] + ( — 1)m(l+n)+l q’[[N.M].L] 2
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The third term is different:

((— 1ymn=1) [y [z, dp]] = (— 1)min=0 [, dizan] =
= (T LMD diy, apymgy + (= 1)+ Uar, o -

The sum of the left-hand terms vanishes; hence the sum of the terms
on the right with 7., and the sum of the terms with d,, will vanish. This
gives (5.23) and (5.22) respectively.

Remark. (5.23) could have been obtained more easily by applying
(5.21) to dy, dy, dy; but in the present computation, {5.23) came along
free with (5.22). — If one applies (5.21) to ¢, %3, iy one finds an obvious
algebraic identity of no interest whatever. If one takes dy, iy, Ty, ONe
finds simultaneously this same algebraic identity and (5.22).

The main results derived in this section are symmarized below.

(‘5.26)

Theorem II. To any scalar form o and any vector form I over
X there exists a differential concomitant [L, @], which is a scalar form:
and to any two vector forms L, M there is a differential concomitant
[L, M] which is a vector form. The two differential concomitants satisfy
identities, most of which are quite similar:

a) three a-product rules (5.1a), (5.4), (5.15)

b) two x-product rules (5.10), (5.22);

¢} two Jacobi identities (5.8b), (5.23);

d) two exterior differentiation formulag (5.1b), (5.8¢), which are
equivalent,

So far no mention has been made of the mappings from ¥ into @ and
conversely. The mapping f: @ — ¥ sends @, into ¥,,,, by w — I A @,

3

. and the mapping y: ¥ — @ sends ¥,,, back into D,, by contraction.

Let o', ..., 0" and u, ..., u, be dual bases of T%(X) and T,(X), then
y(l)= 3 o' o Lxw;, which does not depend on the particular choieelof

im=1

o', u;. For brevity, y(L) will be denoted by L. In index notation,
Ez,.,.z,=L§fz,“.Aq- One easily sees that y o f=(n—g) times the identity
on @, Hence, for g<n, P= 7Tl_—q i oy is a projection operator in ¥, i
ie. PoP=P on ¥,,. This gives a direct sum decomposition of ¥,,,;
one summand consisting of all vector forms of the form I o @ ; the other
summand consisting of the vector forms L with L—=0.

Identities relating e.g. [L, o] to [L, I a w] can easily be derived from
(5.4), ete. The deduction of an identity relating [L, M] to L, M, L, M:

(5.27)  [LyM] = (=1} [L, H]~(— )™~V (dLx M—d{LxM))
from (5.10) and (5.22) involves much more work. The simplest proof of
(6.27) comes from (5.20). Tt is left to the reader.

. § 6. Vector I-forms; Haantjes’ Theorem. This section gives a
“direct” approach to the simplest non-trivial case of vector forms. It
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can be read inpendently by any reader who is familiar with the basic
properties of Lie derivatives 7). Formula (6.4) below is very suitable as
an independent definition8) of [%,k]. We first derive (6.4) from the
identities of §5, and then proceed without further reference to § 5.

Let b, k& be two vector forms of degree one over X ; then %.w and k-u
are tangent vectors for any v that is a tangent vector. The differential

concomitant [, k] is then determined by (5.10), with L=h, M =, where.

o i8 a scalar one-form:

wolh kl=dwoh)rk—({dorh)xk—d(w ok o h)+

(6.1) +d(wok);‘\h—d(thOk)'i'dwx(hOk)'

Evaluation of this expression on two vector fields u, v gives

gw([h, EJ(u, v)) =d(w o k)(ku, v)+d(w o h)(w, kv) —dew(hu,lv) +
A d(w o k)(hu,v)+d(w o k)(u, hv) —dw(ku, hv)—

(6.2) <
e —d{wokoh)(u,v)—d(wohok)(u,v).

The following formula is also a special case of (5.10), now for L=u € ¥j-
M=ve¥, where df(u) has been replaced by u-f:

(6.3) dw(u, v)=u-w(®)—v- o) — o[y, v]).

This formula is applied to (6.2) by taking for @ in (6.3) successively
woh, wok, ete. A simple computation gives then

§ [%, k](w, v)=[hu, kv]+ [ku, ho]—k[hu, v]—hlku, v]—

—k[u, hv]—hlu, kv]+ khiw, v]+hk[u, v].
This formula is now taken as a definition of [k, k] for this section.
[k, B)(u, ») is obviously a functional of the fields %, k, %, v, and satisfies
§a) [h, Elv, w)=—[h, k](x, v)
(b) [k, hY(u, v]= [k, k], v).
The algebraic dependence of [k, k](u, ¥) on v follows from the subsequent
computation; the statement for u follows by interchange of variables
(6.5a). Let. [v, ] be the Lie derivative of % with respect to v, then we
find from (6.4):
(6.6) [, k)%, ©) = [hw, k1o + [ku, hlo—k[u, hlv—h [u, kv,

and this contains v in undifferentiated form.

Let kol be the vector l-form defined by (k o l)u==klu, then the
following identity holds:
& { [h, & o 1w, v)+ [k o1, k](w, v)~ [A, E](u, v)— [k, B)(w, lv)=
©D = ALk, (u, 0]+ kb, 1w, ).

"} Cf. eg.[11], Ch. IT §10; Ch. VIII. — The only coordinate-free treatment
of Lie derivatives known to the authors is Parats [12].

%) In fact, this is the most practical definition for [k, k] as it is used in e.g. the
theory of homogeneous almost-complex structures; of. [13].

(6.4)

(6.5)
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Although it is a special case of (5.22) the proof here is so much more
elementary that we reproduce it separately. — We first rearrange the
terms in (6.4) with the product rule for Lie derivatives, and find

(6.8) [h, kY (u, v)= [k, kJo— [hv, klu—hlu, klo+h [v, ku.

Then we have

gmkommM=M%HM+MMJp—MuMM—MMJh—
(6.9) —hfu, kliv—hk[u, Lo+ kv, kllu+hk[v, iu,
) [k, b o U](u, v)= [ku, h]lv+ Alku, Ilo— [kv.hu—hlkv, I} u—

Z ~k [w, Rllv—khlu, IJo+Elv, hllu+ kv, L,

and therefore

[k, & 0 1)(u, v)+ [k o 1, k)(u, v) — [h, E)(bu, v)— [h, k](u, l) =
(6.10) =k([hw, IJv— [hv, 1Ju—hlu, Iv+ 2, 1)+
) +h(—E[w, o+ kv, Lu+ [kw, Lo — [k, 1u) =
=k[h, I)(u, v)+ bk, I}(u, v);

which completes the proof.
The special case A=k is of importance. We define H =4[k, 2]; then

(6.11) H(u, v)=[hu, hv]+kh[u, v]—h[hw, v]—hlu, ho].

This expression is needed in the following theorem, which was brought
into its present form by Haawrsms [4]. It was first formulated by
Towovo [5] for Riemannian spaces ¥, of dimension 3, and then generalized
by ScmevTex [6] for ¥,. The metric was eliminated, and H of (6.11) was
introduced by N1vEwmuis [1]. HaaNTIES' improvement [4] consists of
the introduction of a neater condition (6.12) and the inclusion of one case

of multiple eigenvalues of . Here we present a shorter and simpler proof
of HaaNTIES’ version:

Theorem TII. Let % take the diagonal form on a set of real eigen-
vectors at every point; and let the multiplicity of each eigenvalue 4 be
constant. Let §; denote the field of eigenplanes of % belonging to 4 (the
eigenplane of 1 is the vector space of eigenvectors belonging to 1); then
every 8; and every direct sum S3+8,+ ... +8, is locally integrable
(i.e. tangent to a family of surfaces of the same dimension) if and only
if for all 4 and

(6.12) H (u, v) = hhH (u, v)+ H(hu, hv)—hH{hu, v)—hH (u, hv)=0.
Our new proof goes as follows. Let w belong to 4, » to i, then

H(u, v)=[Au, po]+hhu, v]—h[iu, v] —hlu, po]=
(6.13) =(h 0 h—Ah— uh+Au)[u, v]+ (A— p)o(d) -u + (A—pul(p)-v=
L= (b= — @) [, v]+ (A - p)(e(2) - u+u(y) -v).
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Since (h—A)u=0, (h—u)v=0, one easily finds by a similar computation
(6.14) H (u, v)=(h— A (h— p)[u, v].
Because of the diagonalizability of & we know, for every vector w,
that (A—Afw=0, k>0 implies (h—A)w=0, w €8;. Therefore, for A=y,
u, v €8, it follows that [u,v] €S, if and only if #(u, v)=0. And for

Ap, w eS8y, vel,, we know that [, v] € S;+8, if and only if #(u,v)=0
But:

[u,0]€8; for all w eS8, ves,;
is precisely the integrability condition for the planes S;; and
[u, v] €8;+8, for all wes,, v €S,

in addition to the previous condition, is precisely the necessary and
sufficient condition that also the planes S, +8, are integrable.
Furthermore, §; 4 ... +8;, is integrable for all A,, ..., 4, if and only
if 8,48, for all 4, p is integrable. Finally, 5#(u, v) vanishes for all U, v
if and only if 5 (u, v) vanishes for all « €8, vel,, where 2 and u run
independently through all eigenvalues of A. This completes the proof.
Let p be a field of projection operators in the tangent bundle, and
g=I—p the complementary projection. Then p and g define a decom-
position of the tangent bundle, which is called an Xmin X, by SomouTEN
[11], or an almost-product structure by SeencEr [9). The differential

concomitant [p, p]=Jq, ¢] is called the torsion. Using (6.8) and p o g=0
one finds :

#lp-pl(w,v) = [pu, plv—plu, plo=
(6.15) =plpu, plv+glpu, plo—plpu, plo—plgu, plu=
=q[pu, pv]—gplpu, v]+plqu, gv=
=q[pu, pv]+plgu, qv].

This relation will be used later on. The integrability of the invariant
planes of p and g can immediately be expressed as g o [p, p]=0 and
P o [p, p]=0 respectively [3]. :
: : The Institute for Advanced Study
The University of Chicago
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