

Bihamiltonian structures from the point of view of symmetries

Andriy Panasyuk

Division of Mathematical Methods in Physics, University of Warsaw,
Warsaw, Poland, and
Pidstryhach Institute for the Applied Problems of Mathematics and Mechanics, NASU

Introduction: the Gelfand-Zakharevich decomposition

Theorem: (Gelfand-Zakharevich, 1989) Let V be a linear space over \mathbb{C}, $\operatorname{dim} V<\infty$. Then for each pair of 2-forms $\left(b^{(1)}, b^{(2)}\right), b^{(i)} \in \Lambda^{2} V^{*}$, there exists a decomposition (i.e. $V=\oplus_{j=1}^{k} V_{j}, b^{(i)}=\sum_{j=1}^{k} b_{j}^{(i)}$, $\left.b_{j}^{(i)} \in \Lambda^{2} V_{j}^{*}, i=1,2\right)$ to "irreducible blocks" $\left(V_{j},\left(b_{j}^{(1)}, b_{j}^{(2)}\right)\right)$ of the following types:

Introduction: the Gelfand-Zakharevich decomposition

Theorem: (Gelfand-Zakharevich, 1989) Let V be a linear space over \mathbb{C}, $\operatorname{dim} V<\infty$. Then for each pair of 2-forms $\left(b^{(1)}, b^{(2)}\right), b^{(i)} \in \bigwedge^{2} V^{*}$, there exists a decomposition (i.e. $V=\oplus_{j=1}^{k} V_{j}, b^{(i)}=\sum_{j=1}^{k} b_{j}^{(i)}$, $\left.b_{j}^{(i)} \in \bigwedge^{2} V_{j}^{*}, i=1,2\right)$ to "irreducible blocks" $\left(V_{j},\left(b_{j}^{(1)}, b_{j}^{(2)}\right)\right)$ of the following types:

1. ("Jordan block"): $\operatorname{dim} V_{j}=2 n_{j}$ and in some basis of V_{j} the matrices of the pair $\left(b_{j}^{(1)}, b_{j}^{(2)}\right)$ are equal

$$
\left(\begin{array}{cc}
0 & \mathbf{I}_{n_{j}} \\
-\mathbf{I}_{n_{j}} & 0
\end{array}\right),\left(\begin{array}{cc}
0 & \mathbf{J}_{n_{j}}(\lambda) \\
-\left(\mathbf{J}_{n_{j}}(\lambda)\right)^{T} & 0
\end{array}\right)
$$

where $\mathbf{J}_{n_{j}}(\lambda)$ is the standard $n_{j} \times n_{j}$-Jordan block with the eigenvalue λ.

Introduction: the Gelfand-Zakharevich decomposition

2. ("Kronecker block"): $\operatorname{dim} V_{j}=2 n_{j}+1$ and in some basis of V_{j} the matrices of the pair $\left(b_{j}^{(1)}, b_{j}^{(2)}\right)$ are equal

$$
\left(\begin{array}{cc}
0 & K_{1} \\
-K_{1}^{T} & 0
\end{array}\right),\left(\begin{array}{cc}
0 & K_{2} \\
-K_{2}^{T} & 0
\end{array}\right)
$$

where
$K_{1}=\left(\begin{array}{llllll}1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 1 & 0 & \ldots & 0 & 0 \\ & & & \ldots & & \\ 0 & 0 & 0 & \ldots & 1 & 0\end{array}\right), K_{2}=\left(\begin{array}{cccccc}0 & 1 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 1 & \ldots & 0 & 0 \\ & & & \ldots & & \\ 0 & 0 & 0 & \ldots & 0 & 1\end{array}\right)$
$\left(n_{j} \times\left(n_{j}+1\right)\right.$-matrices $)$.

Introduction: bihamiltonian structures and integrable systems

Def: Let M be a smooth manifold and $b^{(1)}, b^{(2)} \in \Gamma\left(\bigwedge^{2} T M\right)$. We say that $\left(b^{(1)}, b^{(2)}\right)$ is a Poisson pair if $b^{t}:=t^{(1)} b^{(1)}+t^{(2)} b^{(2)}$ is a Poisson bivector field for any $t=\left(t^{(1)}, t^{(2)}\right) \in \mathbb{K}^{2}, \mathbb{K}=\mathbb{R}, \mathbb{C}$. The whole family

$$
B:=\left\{b^{t}\right\}_{t \in \mathbb{K}^{2}}
$$

is called a bihamiltonian structure (or a Poisson penci).

Introduction: bihamiltonian structures and integrable systems

Def: Let M be a smooth manifold and $b^{(1)}, b^{(2)} \in \Gamma\left(\bigwedge^{2} T M\right)$. We say that $\left(b^{(1)}, b^{(2)}\right)$ is a Poisson pair if $b^{t}:=t^{(1)} b^{(1)}+t^{(2)} b^{(2)}$ is a Poisson bivector field for any $t=\left(t^{(1)}, t^{(2)}\right) \in \mathbb{K}^{2}, \mathbb{K}=\mathbb{R}, \mathbb{C}$. The whole family

$$
B:=\left\{b^{t}\right\}_{t \in \mathbb{K}^{2}}
$$

is called a bihamiltonian structure (or a Poisson penci).
Def: Let $B:=\left\{b^{t}\right\}$ be a bihamiltonian structure. Put

$$
E_{B}(x)=\left\{t \in \mathbb{C}^{2} \mid \operatorname{rank} b_{x}^{t}<\max _{t \in \mathbb{C}^{2}} \operatorname{rank} b_{x}^{t}\right\}, x \in M
$$

(this set is called exceptional for B at x). It is clear that either

$$
E_{B}(x)=\{0\} \text { or } E_{B}(x)=\operatorname{Span}\left\{t_{1}\right\} \cup \cdots \cup \operatorname{Span}\left\{t_{n}\right\}
$$

where t_{i} are pairwise nonproportional. We put also

$$
Z_{x}^{B}:=\operatorname{Span}\left(\bigcup_{t \notin E_{B}(x)} \operatorname{ker} b_{x}^{t}\right)
$$

Introduction: bihamiltonian structures and integrable systems

Main Lemma of the theory of bihamiltonian structures Let $\left\{b^{t}\right\}$ be a bihamiltonian structure on M. Fix $x \in M$. Assume $E_{B}(x)=\operatorname{Span}\left\{t_{1}\right\} \cup \cdots \cup \operatorname{Span}\left\{t_{n}\right\}$. Then

1. for any $t \in \mathbb{C}^{2}$ and any linearly independent elements $t^{\prime}, t^{\prime \prime} \in \mathbb{C}^{2}$ we have $b_{x}^{t}\left(\operatorname{ker} b_{x}^{t^{\prime}}, \operatorname{ker} b_{x}^{t^{\prime \prime}}\right)=0$;
2. for any $t \in \mathbb{C}^{2}$ and any $t^{\prime} \in \mathbb{C}^{2} \backslash E_{B}(x)$ we have $b_{x}^{t}\left(\operatorname{ker} b_{x}^{t^{\prime}}, \operatorname{ker} b_{x}^{t^{\prime}}\right)=0$; in particular $b_{x}^{t}\left(Z_{x}^{B}, Z_{x}^{B}\right)=0$.

Introduction: bihamiltonian structures and integrable systems

Main Lemma of the theory of bihamiltonian structures Let $\left\{b^{t}\right\}$ be a bihamiltonian structure on M. Fix $x \in M$. Assume $E_{B}(x)=\operatorname{Span}\left\{t_{1}\right\} \cup \cdots \cup \operatorname{Span}\left\{t_{n}\right\}$. Then

1. for any $t \in \mathbb{C}^{2}$ and any linearly independent elements $t^{\prime}, t^{\prime \prime} \in \mathbb{C}^{2}$ we have $b_{x}^{t}\left(\operatorname{ker} b_{x}^{t^{\prime}}, \operatorname{ker} b_{x}^{t^{\prime \prime}}\right)=0$;
2. for any $t \in \mathbb{C}^{2}$ and any $t^{\prime} \in \mathbb{C}^{2} \backslash E_{B}(x)$ we have $b_{x}^{t}\left(\operatorname{ker} b_{x}^{t^{\prime}}, \operatorname{ker} b_{x}^{t^{\prime}}\right)=0$; in particular $b_{x}^{t}\left(Z_{x}^{B}, Z_{x}^{B}\right)=0$.

Corollary: Let $I_{x}^{i} \subset \operatorname{ker} b_{x}^{t_{i}}, i=1, \ldots, n$, be an isotropic subspace with respect to the restriction of $b_{x}^{t}, t \notin E_{B}(x)$, to $\operatorname{ker} b_{x}^{t_{i}}$. Then

$$
Z_{x}^{B}+I_{x}^{1}+\cdots+I_{x}^{n}
$$

is also isotropic.

Introduction: bihamiltonian structures and integrable systems

Classical ways of constructing functions in involution

First way (Uses only $I^{1}+\cdots+I^{n}$.) Corresponds to the situation when only Jordan blocks are present in the G-Z decomposition and, moreover, they are of dimension $2\left(n_{j}=1, \mathbf{J}_{n_{j}}(\lambda)\right.$ semisimple).
Classically it exploits the eigenfunctions of the so-called recursion operator $b^{(1)} \circ\left(b^{(2)}\right)^{-1}$.

Introduction: bihamiltonian structures and integrable systems

Classical ways of constructing functions in involution

First way (Uses only $I^{1}+\cdots+I^{n}$.) Corresponds to the situation when only Jordan blocks are present in the G-Z decomposition and, moreover, they are of dimension $2\left(n_{j}=1, \mathbf{J}_{n_{j}}(\lambda)\right.$ semisimple).
Classically it exploits the eigenfunctions of the so-called recursion operator $b^{(1)} \circ\left(b^{(2)}\right)^{-1}$.
Second way (Uses only Z^{B}.) Corresponds to the situation when only Kronecker blocks are present in the G-Z decomposition. Exploits the Casimir functions of Poisson bivectors of the pencil.

Introduction: bihamiltonian structures and integrable systems

Classical ways of constructing functions in involution

First way (Uses only $I^{1}+\cdots+I^{n}$.) Corresponds to the situation when only Jordan blocks are present in the G-Z decomposition and, moreover, they are of dimension $2\left(n_{j}=1, \mathbf{J}_{n_{j}}(\lambda)\right.$ semisimple).
Classically it exploits the eigenfunctions of the so-called recursion operator $b^{(1)} \circ\left(b^{(2)}\right)^{-1}$.
Second way (Uses only Z^{B}.) Corresponds to the situation when only Kronecker blocks are present in the G-Z decomposition. Exploits the Casimir functions of Poisson bivectors of the pencil.
Third way (less classical one) (Uses the whole space $Z^{B}+I^{1}+\cdots+I^{n}$.) Was developed by Bolsinov in the context of Lie pencils, i.e. pencils of Lie algebras on a vector space. Bolsinov (1995) gives conditions on a Lie pencil sufficient for the maximality of the isotropic subspace $Z^{B}+I^{1}+\cdots+I^{n}$. However, these conditions are not necessary and imply that only semisimple-type Jordan blocks appear in the G-Z decomposition.

The main result

Our main result gives necessary and sufficient conditions for maximality of the isotropic subspace $Z^{B}+I^{1}+\cdots+I^{n}$.

The main result

Our main result gives necessary and sufficient conditions for maximality of the isotropic subspace $Z^{B}+I^{1}+\cdots+I^{n}$.

Let a pencil B of bivectors on a vector space V be given and $E_{B}=\operatorname{Span}\left\{t_{1}\right\} \cup \ldots \cup \operatorname{Span}\left\{t_{n}\right\}, t_{i}$ being pairwise nonproportional. Assume that for any $i \in\{1, \ldots, n\}$ a subspace $Z^{i} \subset \operatorname{ker} b^{t_{i}}$ is chosen.

The main result

Our main result gives necessary and sufficient conditions for maximality of the isotropic subspace $Z^{B}+I^{1}+\cdots+I^{n}$.

Let a pencil B of bivectors on a vector space V be given and $E_{B}=\operatorname{Span}\left\{t_{1}\right\} \cup \ldots \cup \operatorname{Span}\left\{t_{n}\right\}, t_{i}$ being pairwise nonproportional. Assume that for any $i \in\{1, \ldots, n\}$ a subspace $Z^{i} \subset \operatorname{ker} b^{t_{i}}$ is chosen.
Fix an element $t_{0} \in \mathbb{C}^{2} \backslash E_{B}$ and introduce the subspaces

$$
Z^{0, i}:=\left\{z \in Z^{i} \mid \exists w \in V^{*}: b^{t_{0}}(z)=b^{t_{i}}(w)\right\}, i=1, \ldots, n
$$

The main result

Our main result gives necessary and sufficient conditions for maximality of the isotropic subspace $Z^{B}+I^{1}+\cdots+I^{n}$.

Let a pencil B of bivectors on a vector space V be given and $E_{B}=\operatorname{Span}\left\{t_{1}\right\} \cup \ldots \cup \operatorname{Span}\left\{t_{n}\right\}, t_{i}$ being pairwise nonproportional. Assume that for any $i \in\{1, \ldots, n\}$ a subspace $Z^{i} \subset \operatorname{ker} b^{t_{i}}$ is chosen.
Fix an element $t_{0} \in \mathbb{C}^{2} \backslash E_{B}$ and introduce the subspaces

$$
Z^{0, i}:=\left\{z \in Z^{i} \mid \exists w \in V^{*}: b^{t_{0}}(z)=b^{t_{i}}(w)\right\}, i=1, \ldots, n
$$

and the 2-forms

$$
\gamma^{i}: \bigwedge^{2} Z^{0, i} \rightarrow \mathbb{C}, \quad \gamma^{i}\left(z_{1}, z_{2}\right):=b^{t_{i}}\left(w_{1}, w_{2}\right)
$$

where $w_{j} \in V^{*}$ are any elements such that $b^{t_{0}}\left(z_{j}\right)=b^{t_{i}}\left(w_{j}\right)$,
$j=1,2$. Note that these forms are correctly defined. Indeed, if w_{j}^{\prime} are another elements with $b^{t_{0}}\left(z_{j}\right)=b^{t_{i}}\left(w_{j}^{\prime}\right)$, we have $v_{j}:=w_{j}-w_{j}^{\prime} \in Z^{t_{i}}$ and $b^{t_{i}}\left(w_{1}^{\prime}, w_{2}^{\prime}\right)=b^{t_{i}}\left(w_{1}+v_{1}, w_{2}+v_{2}\right)=b^{t_{i}}\left(w_{1}, w_{2}\right)$.

The main result

Theorem: Let a pencil B of bivectors on V be given such that $E_{B}=\operatorname{Span}\left\{t_{1}\right\} \cup \ldots \cup \operatorname{Span}\left\{t_{n}\right\}, t_{i}$ being pairwise nonproportional. Let $Z^{i} \subset \operatorname{ker} b^{t_{i}}$ be any subspace, $\mathcal{J}^{i}: Z^{i} \hookrightarrow V^{*}$ the natural embedding and $J^{i}: V \rightarrow\left(Z^{i}\right)^{*}$ the dual map. Fix $t_{0} \in \mathbb{C}^{2} \backslash E_{B}$, and assume that $I^{i} \subset Z^{i}, i=1, \ldots, n$, is a maximal isotropic subspace with respect to $\left(\left(Z^{i}\right)^{*}, J_{*}^{i} b^{t_{0}}\right)$. Then the subspace

$$
Z^{B}+I^{1}+\cdots+I^{n} \subset V^{*}
$$

is maximal isotropic with respect to ($V, b^{t_{0}}$) if and only if the following condition holds for any $i \in\{1, \ldots, n\}$:

$$
\begin{aligned}
\operatorname{corank} J_{*}^{i} b^{t_{0}}+\operatorname{corank} b^{t_{0}} & = \\
2 \operatorname{dim} Z^{0, i} & -\operatorname{dim} Z^{i}-\operatorname{rank} \gamma^{i}+\operatorname{corank} b^{t_{i}}
\end{aligned}
$$

The main result

Theorem: Let a pencil B of bivectors on V be given such that $E_{B}=\operatorname{Span}\left\{t_{1}\right\} \cup \ldots \cup \operatorname{Span}\left\{t_{n}\right\}, t_{i}$ being pairwise nonproportional. Let $Z^{i} \subset \operatorname{ker} b^{t_{i}}$ be any subspace, $\mathcal{J}^{i}: Z^{i} \hookrightarrow V^{*}$ the natural embedding and $J^{i}: V \rightarrow\left(Z^{i}\right)^{*}$ the dual map. Fix $t_{0} \in \mathbb{C}^{2} \backslash E_{B}$, and assume that $I^{i} \subset Z^{i}, i=1, \ldots, n$, is a maximal isotropic subspace with respect to $\left(\left(Z^{i}\right)^{*}, J_{*}^{i} b^{t_{0}}\right)$. Then the subspace

$$
Z^{B}+I^{1}+\cdots+I^{n} \subset V^{*}
$$

is maximal isotropic with respect to ($V, b^{t_{0}}$) if and only if the following condition holds for any $i \in\{1, \ldots, n\}$:

$$
\begin{aligned}
\operatorname{corank} J_{*}^{i} b^{t_{0}}+\operatorname{corank} b^{t_{0}} & = \\
2 \operatorname{dim} Z^{0, i} & -\operatorname{dim} Z^{i}-\operatorname{rank} \gamma^{i}+\operatorname{corank} b^{t_{i}}
\end{aligned}
$$

Remark: If $Z^{i}=\operatorname{ker} b^{t_{i}}$ the above conditions reduce to

$$
\operatorname{corank} J_{*}^{i} b^{t_{0}}+\operatorname{corank} b^{t_{0}}=2 \operatorname{dim} Z^{0, i}-\operatorname{rank} \gamma^{i}
$$

and are equivalent the absence of the Jordan blocks of dimension >4 in the G-Z decomposition.

Illustration: a single Jordan block

$$
V:=\mathbb{C}^{2 m},\left[b^{(1)}\right]:=\left[\begin{array}{cc}
0 & \mathbf{I}_{m} \\
-\mathbf{I}_{m} & 0
\end{array}\right],\left[b^{(2)}\right]:=\left[\begin{array}{cc}
0 & \mathbf{J}_{m}(\lambda) \\
-\left(\mathbf{J}_{m}(\lambda)\right)^{T} & 0
\end{array}\right]
$$

Illustration: a single Jordan block

$$
\begin{aligned}
& V:=\mathbb{C}^{2 m},\left[b^{(1)}\right]:=\left[\begin{array}{cc}
0 & \mathbf{I}_{m} \\
-\mathbf{I}_{m} & 0
\end{array}\right],\left[b^{(2)}\right]:=\left[\begin{array}{cc}
0 & \mathbf{J}_{m}(\lambda) \\
-\left(\mathbf{J}_{m}(\lambda)\right)^{T} & 0
\end{array}\right] \\
& E_{B}=\operatorname{Span}\left\{t_{1}\right\}, t_{1}=(-\lambda, 1),\left[b^{t_{1}}\right]=\left[\begin{array}{cc}
0 & \mathbf{N}_{m} \\
-\mathbf{N}_{m}^{T} & 0
\end{array}\right] \\
& {\left[b^{t_{0}}\right]=\left[\begin{array}{c}
0 \\
-\left(r \mathbf{I}_{m}+s \mathbf{N}_{m}\right)^{T} \\
r \mathbf{I}_{m}+s \mathbf{N}_{m} \\
-
\end{array}\right],} \\
& \mathbf{N}_{m}:=\left[\begin{array}{lllll}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right], r \neq 0
\end{aligned}
$$

Illustration: a single Jordan block

$$
\begin{aligned}
& \text { Put } Z^{1}:=Z^{t_{1}}=\operatorname{ker} b^{t_{1}}=\left\{\left[0, \ldots, x_{1}, x_{2}, \ldots, 0\right]^{T}\right\} \text {. We have } \\
& \begin{aligned}
& {\left[b^{t_{0}}\right]\left[0, \ldots, 0, x_{1}, x_{2}, 0, \ldots, 0\right]^{T} }=\left[r x_{2}, \ldots, 0,0, \ldots,-r x_{1}\right]^{T} \\
& {\left[b^{t_{1}}\right]\left[0, \ldots, r x_{1}, 0,0, r x_{2}, \ldots, 0\right]^{T}=} {\left[r x_{2}, \ldots, 0,0, \ldots,-r x_{1}\right]^{T} } \\
& \Longrightarrow Z^{0,1}= \begin{cases}0, & m=1 \\
Z^{1}, & m>1\end{cases}
\end{aligned} .
\end{aligned}
$$

Illustration: a single Jordan block

$$
\begin{aligned}
& \text { Put } Z^{1}:=Z^{t_{1}}=\operatorname{ker} b^{t_{1}}=\left\{\left[0, \ldots, x_{1}, x_{2}, \ldots, 0\right]^{T}\right\} \text {. We have } \\
& \begin{aligned}
& {\left[b^{t_{0}}\right]\left[0, \ldots, 0, x_{1}, x_{2}, 0, \ldots, 0\right]^{T} }=\left[r x_{2}, \ldots, 0,0, \ldots,-r x_{1}\right]^{T} \\
& {\left[b^{t_{1}}\right]\left[0, \ldots, r x_{1}, 0,0, r x_{2}, \ldots, 0\right]^{T} }=\left[r x_{2}, \ldots, 0,0, \ldots,-r x_{1}\right]^{T} \\
& \Longrightarrow Z^{0,1}= \begin{cases}0, & m=1 \\
Z^{1}, & m>1\end{cases}
\end{aligned} .
\end{aligned}
$$

For the 2-form $\gamma^{1}: \bigwedge^{2} Z^{0,1} \rightarrow \mathbb{C}$ we have $\gamma^{1}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=$

$$
\begin{gathered}
{\left[0, \ldots, r x_{1}, 0,0, r x_{2}, \ldots, 0\right]\left[b^{t_{1}}\right]\left[0, \ldots, r y_{1}, 0,0, r y_{2}, \ldots, 0\right]^{T}=} \\
{\left[0, \ldots, r x_{1}, 0,0, r x_{2}, \ldots, 0\right]\left[r y_{2}, \ldots, 0,0, \ldots,-r y_{1}\right]^{T}=} \\
= \begin{cases}r^{2}\left(x_{1} y_{2}-x_{2} y_{1}\right), & m=2 \\
0, & m>2\end{cases}
\end{gathered}
$$

Corollaries

Corollary: In the hypotheses of the above theorem, the subspace

$$
Z^{B}+I^{1}+\cdots+I^{n} \subset V^{*}
$$

is maximal isotropic with respect to $\left(V, b^{t_{0}}\right)$ if one of the following condition holds:

1. $\operatorname{corank} b^{t_{0}}=\operatorname{dim} Z^{0, i}-\operatorname{dim} Z^{i}-\operatorname{rank} \gamma^{i}+\operatorname{corank} b^{t_{i}}, i \in$ $\{1, \ldots, n\}$;
2. $\operatorname{corank} b^{t_{0}}=\operatorname{corank} J_{*}^{i} b^{t_{0}}-\operatorname{dim} Z^{i}+\operatorname{corank} b^{t_{i}}, i \in\{1, \ldots, n\}$.

Corollaries

Corollary: In the hypotheses of the above theorem, the subspace

$$
Z^{B}+I^{1}+\cdots+I^{n} \subset V^{*}
$$

is maximal isotropic with respect to $\left(V, b^{t_{0}}\right)$ if one of the following condition holds:

1. $\operatorname{corank} b^{t_{0}}=\operatorname{dim} Z^{0, i}-\operatorname{dim} Z^{i}-\operatorname{rank} \gamma^{i}+\operatorname{corank} b^{t_{i}}, i \in$ $\{1, \ldots, n\}$;
2. $\operatorname{corank} b^{t_{0}}=\operatorname{corank} J_{*}^{i} b^{t_{0}}-\operatorname{dim} Z^{i}+\operatorname{corank} b^{t_{i}}, i \in\{1, \ldots, n\}$.

Remark: The last condition is the above mentioned condition of Bolsinov (1995).

Corollaries

Corollary: In the hypotheses of the above theorem, the subspace

$$
Z^{B}+I^{1}+\cdots+I^{n} \subset V^{*}
$$

is maximal isotropic with respect to $\left(V, b^{t_{0}}\right)$ if one of the following condition holds:

1. $\operatorname{corank} b^{t_{0}}=\operatorname{dim} Z^{0, i}-\operatorname{dim} Z^{i}-\operatorname{rank} \gamma^{i}+\operatorname{corank} b^{t_{i}}, i \in$ $\{1, \ldots, n\}$;
2. $\operatorname{corank} b^{t_{0}}=\operatorname{corank} J_{*}^{i} b^{t_{0}}-\operatorname{dim} Z^{i}+\operatorname{corank} b^{t_{i}}, i \in\{1, \ldots, n\}$.

Remark: The last condition is the above mentioned condition of Bolsinov (1995).

Def: Let $B=\left\{b^{t}\right\}$ be a bihamiltonian structure on M. If there exists an open dense set $U \subset M$ such that the exceptional set $E_{B}(x)=: E_{B}$ is independent of $x \in U$ we call B admissible.

Corollaries

Let $B=\left\{b^{t}\right\}$ be admissible, $E_{B}=\operatorname{Span}\left\{t_{1}\right\} \cup \ldots \cup \operatorname{Span}\left\{t_{n}\right\}$. Put

$$
\mathcal{Z}^{t}:=\left\{\text { Casimir functions of } b^{t}\right\}, \mathcal{Z}^{B}:=\operatorname{Span}\left(\bigcup_{t \notin E_{B}} \mathcal{Z}^{t}\right)
$$

Lemma: Fix $t_{0} \in \mathbb{C}^{2} \backslash E_{B}$. Then $\mathcal{Z}^{t_{i}}$ is a Lie algebra with respect to the Poisson bracket $\{,\}^{t_{0}}$ related to $b^{t_{0}}$.

Corollaries

Let $B=\left\{b^{t}\right\}$ be admissible, $E_{B}=\operatorname{Span}\left\{t_{1}\right\} \cup \ldots \cup \operatorname{Span}\left\{t_{n}\right\}$. Put

$$
\mathcal{Z}^{t}:=\left\{\text { Casimir functions of } b^{t}\right\}, \mathcal{Z}^{B}:=\operatorname{Span}\left(\bigcup_{t \notin E_{B}} \mathcal{Z}^{t}\right)
$$

Lemma: Fix $t_{0} \in \mathbb{C}^{2} \backslash E_{B}$. Then $\mathcal{Z}^{t_{i}}$ is a Lie algebra with respect to the Poisson bracket $\{,\}^{t_{0}}$ related to $b^{t_{0}}$.
Def: Let ${ }^{i} \subset \mathcal{Z}^{t_{i}}, i=1, \ldots, n$, be a finite-dimensional subalgebra. Define the action $\rho^{i}: \mathfrak{z}^{i} \rightarrow \mathcal{V} \operatorname{ect}(M)$ of \mathfrak{z}^{i} on M by

$$
\rho^{i}(z):=b^{t_{0}}\left(\mathcal{J}^{i}(z)\right),
$$

where $\mathcal{J}^{i}: \mathfrak{z}^{i} \hookrightarrow \mathcal{F}$ un (M) is the natural embedding and $b^{t_{0}}(f)$ denotes the hamiltonian vector field of the function f.

Corollaries

Let $B=\left\{b^{t}\right\}$ be admissible, $E_{B}=\operatorname{Span}\left\{t_{1}\right\} \cup \ldots \cup \operatorname{Span}\left\{t_{n}\right\}$. Put

$$
\mathcal{Z}^{t}:=\left\{\text { Casimir functions of } b^{t}\right\}, \mathcal{Z}^{B}:=\operatorname{Span}\left(\bigcup_{t \notin E_{B}} \mathcal{Z}^{t}\right)
$$

Lemma: Fix $t_{0} \in \mathbb{C}^{2} \backslash E_{B}$. Then $\mathcal{Z}^{t_{i}}$ is a Lie algebra with respect to the Poisson bracket $\{,\}^{t_{0}}$ related to $b^{t_{0}}$.
Def: Let $\mathfrak{z}^{i} \subset \mathcal{Z}^{t_{i}}, i=1, \ldots, n$, be a finite-dimensional subalgebra. Define the action $\rho^{i}: \mathfrak{z}^{i} \rightarrow \mathcal{V}$ ect (M) of \mathfrak{z}^{i} on M by

$$
\rho^{i}(z):=b^{t_{0}}\left(\mathcal{J}^{i}(z)\right),
$$

where $\mathcal{J}^{i}: \mathfrak{z}^{i} \hookrightarrow \mathcal{F}$ un (M) is the natural embedding and $b^{t_{0}}(f)$ denotes the hamiltonian vector field of the function f.
Remark: The action ρ^{i} is hamiltonian with respect to any Poisson structure $b^{t}, t \notin E_{B}$. The functions from \mathfrak{z}^{i} can be interpreted as the Noether integrals related to this symmetry. But ρ^{i} in general is not hamiltonian with respect to the exceptional Poisson structures $b^{t_{i}}, i=1, \ldots, n$. The two-forms γ^{i} are related to the nonequivariance cocycles.

Corollaries

Theorem: Assume that $\mathcal{I}^{i} \subset \mathcal{F} u n\left(\left(\mathfrak{z}^{i}\right)^{*}\right), i=1, \ldots, n$, is a maximal involutive set of functions with respect to $\left(\left(\mathfrak{z}^{i}\right)^{*}, J_{*}^{i} b^{t_{0}}\right)$, where $J^{i}: M \rightarrow\left(\mathfrak{z}^{i}\right)^{*}$ is the momentum map of the action ρ^{i}. Then the set of functions

$$
\mathcal{Z}^{B}+\left(J^{1}\right)^{*} \mathcal{I}^{1}+\cdots+\left(J^{n}\right)^{*} \mathcal{I}^{n} \subset \mathcal{F} u n(M)
$$

is maximal involutive with respect to the Poisson bracket $\{,\}^{t_{0}}$ if and only if there exists a point $x \in M$ such that for any $i \in\{1, \ldots, n\}$:
$\operatorname{corank}\left[J_{*}^{i} b^{t_{0}}\right]_{J^{i}(x)}+\operatorname{corank} b_{x}^{t_{0}}=$

$$
2 \operatorname{dim} \mathfrak{z}_{x}^{0, i}-\operatorname{dim} \mathfrak{z}_{x}^{i}-\operatorname{rank} \gamma_{x}^{i}+\operatorname{corank} b_{x}^{t_{i}}
$$

where

$$
\mathfrak{z}_{x}^{i}:=\left\{d_{x} f \mid f \in \mathfrak{z}^{i}\right\}, \mathfrak{z}_{x}^{0, i}:=\left\{z \in \mathfrak{z}_{x}^{i} \mid \exists y \in T_{x}^{*} M: b_{x}^{t_{0}} z=b_{x}^{t_{i}} y\right\}
$$

and γ_{x}^{i} is a 2-form on $\mathfrak{z}_{x}^{0, i}$ defined similarly to the 2-form γ^{i} on $Z^{0, i}$.

Lie pencils

Def: Let $[,]^{(1)},[,]^{(2)}: \bigwedge^{2} \mathfrak{g} \rightarrow \mathbb{C}$, where \mathfrak{g} is a vector space. Assume that for any $t=\left(t_{1}, t_{2}\right) \in \mathbb{C}^{2}$ the bracket $[,]^{t}:=t_{1}[,]^{(1)}+t_{2}[,]^{(2)}$ is a Lie bracket on \mathfrak{g}. Then we say that the family of Lie algebras $\left\{\mathfrak{g}^{t}\right\}_{t \in \mathbb{C}^{2}}, \mathfrak{g}^{t}:=\left(\mathfrak{g},[,]^{t}\right)$ is a Lie pencil.

Lie pencils

Def: Let $[,]^{(1)},[,]^{(2)}: \bigwedge^{2} \mathfrak{g} \rightarrow \mathfrak{g}$, where \mathfrak{g} is a vector space. Assume that for any $t=\left(t_{1}, t_{2}\right) \in \mathbb{C}^{2}$ the bracket $[,]^{t}:=t_{1}[,]^{(1)}+t_{2}[,]^{(2)}$ is a Lie bracket on \mathfrak{g}. Then we say that the family of Lie algebras $\left\{\mathfrak{g}^{t}\right\}_{t \in \mathbb{C}^{2}, \mathfrak{g}^{t}}:=\left(\mathfrak{g},[,]^{t}\right)$ is a Lie pencil.

Remark: Given a Lie pencil $\Lambda=\left\{\mathfrak{g}^{t}\right\}$, we obtain a Poisson pencil B_{Λ} on \mathfrak{g}^{*} consisting of the corresponding Lie-Poison structures. If Λ is such that $H^{2}\left(\mathfrak{g}^{t}, \mathfrak{g}^{t}\right)=0$ (eg. \mathfrak{g}^{t} semisimple) for some t, then B_{Λ} is admissible. Moreover, there exist natural finite-dimensional subalgebras $\mathfrak{z}^{i} \subset \mathcal{Z}^{t_{i}}, i=1, \ldots, n$, equal to the centres of the "exceptional" Lie algebras $\mathfrak{g}^{t_{i}}$.

Examples

Example 1 Let $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$, where $\lambda_{1}=\ldots=\lambda_{k}=\alpha$, $\lambda_{k+1}=\ldots=\lambda_{m}=\beta$, a $[x, y]_{D}=x D y-y D x$. Consider the Lie pencil $\mathfrak{g}^{t}:=\left(\mathfrak{s o}(m),[,]^{t}\right),[,]^{t}:=t^{(1)}[]+,t^{(2)}[,]_{D}$. The exceptional algebras are $\mathfrak{g}^{t_{1}}, \mathfrak{g}^{t_{2}}$, where $t_{1}=(-\alpha, 1), t_{2}=(-\beta, 1)$. The Lie algebra $\mathfrak{g}^{t_{1}}$ is the semidirect product of $\mathfrak{s o}(k)$ and the solvable ideal $" \mathfrak{s o}(m-k) \times \mathfrak{m}^{\prime}$, similarly $\mathfrak{g}^{t_{2}}$. We have $\mathfrak{z}^{t_{1}}=\mathfrak{s o}(k)$, $\mathfrak{z}^{t_{2}}=\mathfrak{s o}(m-k)$.

$\mathfrak{s o}(k)$	\mathfrak{m}
\mathfrak{m}	$\mathfrak{s o}(m-k)$

For this pencil the Bolsinov conditions are satisfied. The corresponding hamiltonian system is the " n -dimensional free rigid body system" on $\mathfrak{s o}(n) \cong \mathfrak{s o}(n)^{*}$. The \mathcal{I}^{i}-families of functions in involution correspond to the Noetherian integrals of the system coming from the symmetries of the body whose "inertia matrix" D has the spectrum with multiplicities.

Examples

Example 2 Let $\mathfrak{g}=\mathfrak{g l}(m, \mathbb{C})$ and let

$$
N:=\mathbf{N}_{m}:=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
& & & \cdots & \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

be the standard nilpotent matrix. Then for any $k=1, \ldots, m-1$ we have the Lie pencil

$$
\left(\mathfrak{g},[,]^{t}\right),[,]^{t}:=t^{(1)}[,]+t^{(2)}[,]_{N^{k}},[X, Y]_{N^{k}}:=X N^{k} Y-Y N^{k} X
$$

The only exceptional algebra is $\mathfrak{g}^{t_{1}}=\left(\mathfrak{g},[,]_{N^{k}}\right)$. For $1<k \leq n / 2$ this pencil does not satisfy the Bolsinov condition but satisfies our more general condition (the corresponding 2 -form γ^{1} is nontrivial).

Further applications

The argument translation method
Let \mathfrak{g} be a Lie algebra. Put: $b^{(1)}:=b_{\mathfrak{g}}$, the Lie-Poisson structure on \mathfrak{g}^{*}; $b^{(2)}:=b_{\mathfrak{g}}(a)$, where $a \in \mathfrak{g}^{*}$. Then $\left(b^{(1)}, b^{(2)}\right)$ is a Poisson pair and the Poisson pencil $B=\left\{b^{t}:=t^{(1)} b^{(1)}+t^{(2)} b^{(2)}\right\}$ is admissible.
\mathcal{Z}^{B} is generated by $f_{1}(x+\lambda a), \ldots, f_{m}(x+\lambda a), \lambda \in \mathbb{K}$, where f_{1}, \ldots, f_{m} are invariants of the coadjoint action. The families of functions \mathcal{I}_{i} come into consideration when a is a singular element.

Nonadmissible Poisson pencils...

Many thanks for your attention!

