30 years of bihamiltonian systems, Będlewo, August 3-8, 2008

Bihamiltonian structures from the point of view of symmetries

Andriy Panasyuk

Division of Mathematical Methods in Physics, University of Warsaw,

Warsaw, Poland, and

Pidstryhach Institute for the Applied Problems of Mathematics and Mechanics, NASU

Lviv, Ukraine

Introduction: the Gelfand–Zakharevich decomposition

Theorem: (Gelfand–Zakharevich, 1989) Let V be a linear space over \mathbb{C} , dim $V < \infty$. Then for each pair of 2-forms $(b^{(1)}, b^{(2)}), b^{(i)} \in \bigwedge^2 V^*$, there exists a decomposition (i.e. $V = \bigoplus_{j=1}^k V_j, b^{(i)} = \sum_{j=1}^k b_j^{(i)},$ $b_j^{(i)} \in \bigwedge^2 V_j^*, i = 1, 2$) to "irreducible blocks" $(V_j, (b_j^{(1)}, b_j^{(2)}))$ of the following types:

Introduction: the Gelfand–Zakharevich decomposition

Theorem: (Gelfand–Zakharevich, 1989) Let V be a linear space over \mathbb{C} , dim $V < \infty$. Then for each pair of 2-forms $(b^{(1)}, b^{(2)}), b^{(i)} \in \bigwedge^2 V^*$, there exists a decomposition (i.e. $V = \bigoplus_{j=1}^k V_j, b^{(i)} = \sum_{j=1}^k b_j^{(i)},$ $b_j^{(i)} \in \bigwedge^2 V_j^*, i = 1, 2$) to "irreducible blocks" $(V_j, (b_j^{(1)}, b_j^{(2)}))$ of the following types:

1. ("Jordan block"): dim $V_j = 2n_j$ and in some basis of V_j the matrices of the pair $(b_j^{(1)}, b_j^{(2)})$ are equal

$$\begin{pmatrix} 0 & \mathbf{I}_{n_j} \\ -\mathbf{I}_{n_j} & 0 \end{pmatrix}, \begin{pmatrix} 0 & \mathbf{J}_{n_j}(\lambda) \\ -(\mathbf{J}_{n_j}(\lambda))^T & 0 \end{pmatrix}$$

where $\mathbf{J}_{n_j}(\lambda)$ is the standard $n_j \times n_j$ -Jordan block with the eigenvalue λ .

Introduction: the Gelfand–Zakharevich decomposition

2. ("Kronecker block"): dim $V_j = 2n_j + 1$ and in some basis of V_j the matrices of the pair $(b_j^{(1)}, b_j^{(2)})$ are equal

$$\left(\begin{array}{ccc} 0 & K_1 \\ -K_1^T & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & K_2 \\ -K_2^T & 0 \end{array}\right),$$

where

$$K_{1} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ & & \dots & & \\ 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix}, K_{2} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ & & \dots & & \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

 $(n_j \times (n_j + 1)$ -matrices).

Def: Let M be a smooth manifold and $b^{(1)}, b^{(2)} \in \Gamma(\bigwedge^2 TM)$. We say that $(b^{(1)}, b^{(2)})$ is a *Poisson pair* if $b^t := t^{(1)}b^{(1)} + t^{(2)}b^{(2)}$ is a Poisson bivector field for any $t = (t^{(1)}, t^{(2)}) \in \mathbb{K}^2, \mathbb{K} = \mathbb{R}, \mathbb{C}$. The whole family

$$B := \{b^t\}_{t \in \mathbb{K}^2}$$

is called a *bihamiltonian structure* (or a *Poisson pencil*).

Def: Let M be a smooth manifold and $b^{(1)}, b^{(2)} \in \Gamma(\bigwedge^2 TM)$. We say that $(b^{(1)}, b^{(2)})$ is a *Poisson pair* if $b^t := t^{(1)}b^{(1)} + t^{(2)}b^{(2)}$ is a Poisson bivector field for any $t = (t^{(1)}, t^{(2)}) \in \mathbb{K}^2$, $\mathbb{K} = \mathbb{R}$, \mathbb{C} . The whole family

$$B := \{b^t\}_{t \in \mathbb{K}^2}$$

is called a *bihamiltonian structure* (or a *Poisson pencil*).

Def: Let $B := \{b^t\}$ be a bihamiltonian structure. Put $E_B(x) = \{t \in \mathbb{C}^2 \mid \operatorname{rank} b_x^t < \max_{t \in \mathbb{C}^2} \operatorname{rank} b_x^t\}, x \in M$

(this set is called *exceptional* for B at x). It is clear that either

 $E_B(x) = \{0\}$ or $E_B(x) = \operatorname{Span}\{t_1\} \cup \cdots \cup \operatorname{Span}\{t_n\},\$

where t_i are pairwise nonproportional. We put also

$$Z_x^B := \operatorname{Span}(\bigcup_{t \notin E_B(x)} \ker b_x^t).$$

Main Lemma of the theory of bihamiltonian structures Let $\{b^t\}$ be a bihamiltonian structure on M. Fix $x \in M$. Assume $E_B(x) = \text{Span}\{t_1\} \cup \cdots \cup \text{Span}\{t_n\}$. Then

- 1. for any $t \in \mathbb{C}^2$ and any linearly independent elements $t', t'' \in \mathbb{C}^2$ we have $b_x^t(\ker b_x^{t'}, \ker b_x^{t''}) = 0$;
- 2. for any $t \in \mathbb{C}^2$ and any $t' \in \mathbb{C}^2 \setminus E_B(x)$ we have $b_x^t(\ker b_x^{t'}, \ker b_x^{t'}) = 0$; in particular $b_x^t(Z_x^B, Z_x^B) = 0$.

Main Lemma of the theory of bihamiltonian structures Let $\{b^t\}$ be a bihamiltonian structure on M. Fix $x \in M$. Assume $E_B(x) = \text{Span}\{t_1\} \cup \cdots \cup \text{Span}\{t_n\}$. Then

- 1. for any $t \in \mathbb{C}^2$ and any linearly independent elements $t', t'' \in \mathbb{C}^2$ we have $b_x^t(\ker b_x^{t'}, \ker b_x^{t''}) = 0$;
- 2. for any $t \in \mathbb{C}^2$ and any $t' \in \mathbb{C}^2 \setminus E_B(x)$ we have $b_x^t(\ker b_x^{t'}, \ker b_x^{t'}) = 0$; in particular $b_x^t(Z_x^B, Z_x^B) = 0$.

Corollary: Let $I_x^i \subset \ker b_x^{t_i}$, i = 1, ..., n, be an isotropic subspace with respect to the restriction of b_x^t , $t \notin E_B(x)$, to $\ker b_x^{t_i}$. Then

$$Z_x^B + I_x^1 + \dots + I_x^n$$

is also isotropic.

Classical ways of constructing functions in involution

First way (Uses only $I^1 + \cdots + I^n$.) Corresponds to the situation when only Jordan blocks are present in the G–Z decomposition and, moreover, they are of dimension 2 ($n_j = 1$, $\mathbf{J}_{n_j}(\lambda)$ semisimple). Classically it exploits the eigenfunctions of the so-called recursion operator $b^{(1)} \circ (b^{(2)})^{-1}$.

Classical ways of constructing functions in involution

First way (Uses only $I^1 + \cdots + I^n$.) Corresponds to the situation when only Jordan blocks are present in the G–Z decomposition and, moreover, they are of dimension 2 ($n_j = 1, \mathbf{J}_{n_j}(\lambda)$ semisimple). Classically it exploits the eigenfunctions of the so-called recursion operator $b^{(1)} \circ (b^{(2)})^{-1}$.

Second way (Uses only Z^B .) Corresponds to the situation when only Kronecker blocks are present in the G–Z decomposition. Exploits the Casimir functions of Poisson bivectors of the pencil.

Classical ways of constructing functions in involution

First way (Uses only $I^1 + \cdots + I^n$.) Corresponds to the situation when only Jordan blocks are present in the G–Z decomposition and, moreover, they are of dimension 2 ($n_j = 1$, $\mathbf{J}_{n_j}(\lambda)$ semisimple). Classically it exploits the eigenfunctions of the so-called recursion operator $b^{(1)} \circ (b^{(2)})^{-1}$.

Second way (Uses only Z^B .) Corresponds to the situation when only Kronecker blocks are present in the G–Z decomposition. Exploits the Casimir functions of Poisson bivectors of the pencil.

Third way (less classical one) (Uses the whole space $Z^B + I^1 + \cdots + I^n$.) Was developed by Bolsinov in the context of Lie pencils, i.e. pencils of Lie algebras on a vector space. Bolsinov (1995) gives conditions on a Lie pencil sufficient for the maximality of the isotropic subspace $Z^B + I^1 + \cdots + I^n$. However, these conditions are not necessary and imply that only semisimple-type Jordan blocks appear in the G–Z decomposition.

Our main result gives necessary and sufficient conditions for *maximality* of the isotropic subspace $Z^B + I^1 + \cdots + I^n$.

Our main result gives necessary and sufficient conditions for *maximality* of the isotropic subspace $Z^B + I^1 + \cdots + I^n$.

Let a pencil B of bivectors on a vector space V be given and $E_B = \text{Span}\{t_1\} \cup \ldots \cup \text{Span}\{t_n\}, t_i$ being pairwise nonproportional. Assume that for any $i \in \{1, \ldots, n\}$ a subspace $Z^i \subset \ker b^{t_i}$ is chosen.

Our main result gives necessary and sufficient conditions for *maximality* of the isotropic subspace $Z^B + I^1 + \cdots + I^n$.

Let a pencil B of bivectors on a vector space V be given and $E_B = \text{Span}\{t_1\} \cup \ldots \cup \text{Span}\{t_n\}, t_i$ being pairwise nonproportional. Assume that for any $i \in \{1, \ldots, n\}$ a subspace $Z^i \subset \ker b^{t_i}$ is chosen. Fix an element $t_0 \in \mathbb{C}^2 \setminus E_B$ and introduce the subspaces

 $Z^{0,i} := \{ z \in Z^i \mid \exists w \in V^* \colon b^{t_0}(z) = b^{t_i}(w) \}, i = 1, \dots, n,$

⁻ Our main result gives necessary and sufficient conditions for *maximality* of the isotropic subspace $Z^B + I^1 + \cdots + I^n$.

Let a pencil B of bivectors on a vector space V be given and $E_B = \text{Span}\{t_1\} \cup \ldots \cup \text{Span}\{t_n\}, t_i$ being pairwise nonproportional. Assume that for any $i \in \{1, \ldots, n\}$ a subspace $Z^i \subset \ker b^{t_i}$ is chosen. Fix an element $t_0 \in \mathbb{C}^2 \setminus E_B$ and introduce the subspaces

 $Z^{0,i} := \{ z \in Z^i \mid \exists w \in V^* \colon b^{t_0}(z) = b^{t_i}(w) \}, i = 1, \dots, n,$

and the 2-forms

$$\gamma^{i}: \bigwedge^{2} Z^{0,i} \to \mathbb{C}, \ \gamma^{i}(z_{1}, z_{2}) := b^{t_{i}}(w_{1}, w_{2}),$$

where $w_j \in V^*$ are any elements such that $b^{t_0}(z_j) = b^{t_i}(w_j)$, j = 1, 2. Note that these forms are correctly defined. Indeed, if w'_j are another elements with $b^{t_0}(z_j) = b^{t_i}(w'_j)$, we have $v_j := w_j - w'_j \in Z^{t_i}$ and $b^{t_i}(w'_1, w'_2) = b^{t_i}(w_1 + v_1, w_2 + v_2) = b^{t_i}(w_1, w_2)$.

Theorem: Let a pencil B of bivectors on V be given such that $E_B = \operatorname{Span}\{t_1\} \cup \ldots \cup \operatorname{Span}\{t_n\}, t_i$ being pairwise nonproportional. Let $Z^i \subset \ker b^{t_i}$ be any subspace, $\mathcal{J}^i : Z^i \hookrightarrow V^*$ the natural embedding and $J^i : V \to (Z^i)^*$ the dual map. Fix $t_0 \in \mathbb{C}^2 \setminus E_B$, and assume that $I^i \subset Z^i, i = 1, \ldots, n$, is a maximal isotropic subspace with respect to $((Z^i)^*, J^i_* b^{t_0})$. Then the subspace

 $Z^B + I^1 + \dots + I^n \subset V^*$

is maximal isotropic with respect to (V, b^{t_0}) if and only if the following condition holds for any $i \in \{1, \ldots, n\}$:

 $\operatorname{corank} J_*^i b^{t_0} + \operatorname{corank} b^{t_0} = 2 \operatorname{dim} Z^{0,i} - \operatorname{dim} Z^i - \operatorname{rank} \gamma^i + \operatorname{corank} b^{t_i}.$

Theorem: Let a pencil B of bivectors on V be given such that $E_B = \operatorname{Span}\{t_1\} \cup \ldots \cup \operatorname{Span}\{t_n\}, t_i$ being pairwise nonproportional. Let $Z^i \subset \ker b^{t_i}$ be any subspace, $\mathcal{J}^i : Z^i \hookrightarrow V^*$ the natural embedding and $J^i : V \to (Z^i)^*$ the dual map. Fix $t_0 \in \mathbb{C}^2 \setminus E_B$, and assume that $I^i \subset Z^i, i = 1, \ldots, n$, is a maximal isotropic subspace with respect to $((Z^i)^*, J^i_* b^{t_0})$. Then the subspace

 $Z^B + I^1 + \dots + I^n \subset V^*$

is maximal isotropic with respect to (V, b^{t_0}) if and only if the following condition holds for any $i \in \{1, \ldots, n\}$:

 $\operatorname{corank} J_*^i b^{t_0} + \operatorname{corank} b^{t_0} = 2 \operatorname{dim} Z^{0,i} - \operatorname{dim} Z^i - \operatorname{rank} \gamma^i + \operatorname{corank} b^{t_i}.$ Remark: If $Z^i = \ker b^{t_i}$ the above conditions reduce to $\operatorname{corank} J_*^i b^{t_0} + \operatorname{corank} b^{t_0} = 2 \operatorname{dim} Z^{0,i} - \operatorname{rank} \gamma^i$ and are equivalent the absence of the lordan blocks of dimension > 4.1

and are equivalent the absence of the Jordan blocks of dimension > 4 in the G–Z decomposition.

$$V := \mathbb{C}^{2m}, [b^{(1)}] := \begin{bmatrix} 0 & \mathbf{I}_m \\ -\mathbf{I}_m & 0 \end{bmatrix}, [b^{(2)}] := \begin{bmatrix} 0 & \mathbf{J}_m(\lambda) \\ -(\mathbf{J}_m(\lambda))^T & 0 \end{bmatrix}$$

$$V := \mathbb{C}^{2m}, [b^{(1)}] := \begin{bmatrix} 0 & \mathbf{I}_m \\ -\mathbf{I}_m & 0 \end{bmatrix}, [b^{(2)}] := \begin{bmatrix} 0 & \mathbf{J}_m(\lambda) \\ -(\mathbf{J}_m(\lambda))^T & 0 \end{bmatrix},$$
$$E_B = \operatorname{Span}\{t_1\}, t_1 = (-\lambda, 1), [b^{t_1}] = \begin{bmatrix} 0 & \mathbf{N}_m \\ -\mathbf{N}_m^T & 0 \end{bmatrix},$$
$$[b^{t_0}] = \begin{bmatrix} 0 & r\mathbf{I}_m + s\mathbf{N}_m \\ -(r\mathbf{I}_m + s\mathbf{N}_m)^T & 0 \end{bmatrix},$$
$$\mathbf{N}_m := \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ & & \ddots & \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}, r \neq 0$$

Put
$$Z^1 := Z^{t_1} = \ker b^{t_1} = \{[0, \dots, x_1, x_2, \dots, 0]^T\}$$
. We have
 $[b^{t_0}][0, \dots, 0, x_1, x_2, 0, \dots, 0]^T = [rx_2, \dots, 0, 0, \dots, -rx_1]^T$
 $[b^{t_1}][0, \dots, rx_1, 0, 0, rx_2, \dots, 0]^T = [rx_2, \dots, 0, 0, \dots, -rx_1]^T$
 $\implies Z^{0,1} = \begin{cases} 0, & m = 1 \\ Z^1, & m > 1 \end{cases}$

$$\begin{array}{l} \operatorname{Put}\ Z^{1} := Z^{t_{1}} = \ker b^{t_{1}} = \{[0, \ldots, x_{1}, x_{2}, \ldots, 0]^{T}\}. \text{ We have}\\ [b^{t_{0}}][0, \ldots, 0, x_{1}, x_{2}, 0, \ldots, 0]^{T} &= [rx_{2}, \ldots, 0, 0, \ldots, -rx_{1}]^{T}\\ [b^{t_{1}}][0, \ldots, rx_{1}, 0, 0, rx_{2}, \ldots, 0]^{T} &= [rx_{2}, \ldots, 0, 0, \ldots, -rx_{1}]^{T}\\ &\Longrightarrow Z^{0,1} = \begin{cases} 0, & m = 1\\ Z^{1}, & m > 1 \end{cases}\\ \\ \operatorname{For the 2-form} \gamma^{1} : \bigwedge^{2} Z^{0,1} \to \mathbb{C} \text{ we have } \gamma^{1}([x_{1}, x_{2}], [y_{1}, y_{2}]) =\\ [0, \ldots, rx_{1}, 0, 0, rx_{2}, \ldots, 0][b^{t_{1}}][0, \ldots, ry_{1}, 0, 0, ry_{2}, \ldots, 0]^{T} &=\\ [0, \ldots, rx_{1}, 0, 0, rx_{2}, \ldots, 0][ry_{2}, \ldots, 0, 0, \ldots, -ry_{1}]^{T} &=\\ &= \begin{cases} r^{2}(x_{1}y_{2} - x_{2}y_{1}), & m = 2\\ 0, & m > 2 \end{cases} \end{array}$$

Corollary: In the hypotheses of the above theorem, the subspace

 $Z^B + I^1 + \dots + I^n \subset V^*$

is maximal isotropic with respect to (V, b^{t_0}) if one of the following condition holds:

- 1. corank $b^{t_0} = \dim Z^{0,i} \dim Z^i \operatorname{rank} \gamma^i + \operatorname{corank} b^{t_i}, i \in \{1, \dots, n\};$
- 2. corank $b^{t_0} = \operatorname{corank} J^i_* b^{t_0} \dim Z^i + \operatorname{corank} b^{t_i}, i \in \{1, \ldots, n\}.$

Corollary: In the hypotheses of the above theorem, the subspace

 $Z^B + I^1 + \dots + I^n \subset V^*$

is maximal isotropic with respect to (V, b^{t_0}) if one of the following condition holds:

- 1. corank $b^{t_0} = \dim Z^{0,i} \dim Z^i \operatorname{rank} \gamma^i + \operatorname{corank} b^{t_i}, i \in \{1, \dots, n\};$
- 2. corank $b^{t_0} = \operatorname{corank} J^i_* b^{t_0} \dim Z^i + \operatorname{corank} b^{t_i}, i \in \{1, \ldots, n\}.$

Remark: The last condition is the above mentioned condition of Bolsinov (1995).

Corollary: In the hypotheses of the above theorem, the subspace

 $Z^B + I^1 + \dots + I^n \subset V^*$

is maximal isotropic with respect to (V, b^{t_0}) if one of the following condition holds:

- 1. corank $b^{t_0} = \dim Z^{0,i} \dim Z^i \operatorname{rank} \gamma^i + \operatorname{corank} b^{t_i}, i \in \{1, \dots, n\};$
- 2. corank $b^{t_0} = \operatorname{corank} J^i_* b^{t_0} \dim Z^i + \operatorname{corank} b^{t_i}, i \in \{1, \ldots, n\}.$

Remark: The last condition is the above mentioned condition of Bolsinov (1995).

Def: Let $B = \{b^t\}$ be a bihamiltonian structure on M. If there exists an open dense set $U \subset M$ such that the exceptional set $E_B(x) =: E_B$ is *independent of* $x \in U$ we call B *admissible*.

Let $B = \{b^t\}$ be admissible, $E_B = \text{Span}\{t_1\} \cup \ldots \cup \text{Span}\{t_n\}$. Put- $\mathcal{Z}^t := \{\text{Casimir functions of } b^t\}, \ \mathcal{Z}^B := \text{Span}(\bigcup_{\substack{t \notin E_B}} \mathcal{Z}^t).$

Lemma: Fix $t_0 \in \mathbb{C}^2 \setminus E_B$. Then \mathcal{Z}^{t_i} is a Lie algebra with respect to the Poisson bracket $\{,\}^{t_0}$ related to b^{t_0} .

Let $B = \{b^t\}$ be admissible, $E_B = \text{Span}\{t_1\} \cup \ldots \cup \text{Span}\{t_n\}$. Put- $\mathcal{Z}^t := \{\text{Casimir functions of } b^t\}, \ \mathcal{Z}^B := \text{Span}(\bigcup_{t \notin E_B} \mathcal{Z}^t).$

Lemma: Fix $t_0 \in \mathbb{C}^2 \setminus E_B$. Then \mathcal{Z}^{t_i} is a Lie algebra with respect to the Poisson bracket $\{,\}^{t_0}$ related to b^{t_0} .

Def: Let $\mathfrak{z}^i \subset \mathbb{Z}^{t_i}, i = 1, \ldots, n$, be a finite-dimensional subalgebra. Define the *action* $\rho^i : \mathfrak{z}^i \to \mathcal{V}ect(M)$ of \mathfrak{z}^i on M by

$$\rho^i(z) := b^{t_0}(\mathcal{J}^i(z)),$$

where $\mathcal{J}^i : \mathfrak{z}^i \hookrightarrow \mathcal{F}un(M)$ is the natural embedding and $b^{t_0}(f)$ denotes the hamiltonian vector field of the function f.

Let $B = \{b^t\}$ be admissible, $E_B = \text{Span}\{t_1\} \cup \ldots \cup \text{Span}\{t_n\}$. Put- $\mathcal{Z}^t := \{\text{Casimir functions of } b^t\}, \ \mathcal{Z}^B := \text{Span}(\bigcup_{t \notin E_B} \mathcal{Z}^t).$

Lemma: Fix $t_0 \in \mathbb{C}^2 \setminus E_B$. Then \mathcal{Z}^{t_i} is a Lie algebra with respect to the Poisson bracket $\{,\}^{t_0}$ related to b^{t_0} .

Def: Let $\mathfrak{z}^i \subset \mathbb{Z}^{t_i}$, $i = 1, \ldots, n$, be a finite-dimensional subalgebra. Define the *action* $\rho^i : \mathfrak{z}^i \to \mathcal{V}ect(M)$ of \mathfrak{z}^i on M by

$$\rho^i(z) := b^{t_0}(\mathcal{J}^i(z)),$$

where $\mathcal{J}^i : \mathfrak{z}^i \hookrightarrow \mathcal{F}un(M)$ is the natural embedding and $b^{t_0}(f)$ denotes the hamiltonian vector field of the function f.

Remark: The action ρ^i is hamiltonian with respect to any Poisson structure $b^t, t \notin E_B$. The functions from \mathfrak{z}^i can be interpreted as the Noether integrals related to this symmetry. But ρ^i in general is not hamiltonian with respect to the exceptional Poisson structures $b^{t_i}, i = 1, \ldots, n$. The two-forms γ^i are related to the nonequivariance cocycles.

Theorem: Assume that $\mathcal{I}^i \subset \mathcal{F}un((\mathfrak{z}^i)^*), i = 1, \ldots, n$, is a maximal involutive set of functions with respect to $((\mathfrak{z}^i)^*, J^i_* b^{t_0})$, where $J^i : M \to (\mathfrak{z}^i)^*$ is the momentum map of the action ρ^i . Then the set of functions

 $\mathcal{Z}^B + (J^1)^* \mathcal{I}^1 + \dots + (J^n)^* \mathcal{I}^n \subset \mathcal{F}un(M)$

is maximal involutive with respect to the Poisson bracket $\{,\}^{t_0}$ if and only if there exists a point $x \in M$ such that for any $i \in \{1, \ldots, n\}$:

$$\operatorname{corank} \left[J_*^i b^{t_0}\right]_{J^i(x)} + \operatorname{corank} b_x^{t_0} = 2 \dim \mathfrak{z}_x^{0,i} - \dim \mathfrak{z}_x^i - \operatorname{rank} \gamma_x^i + \operatorname{corank} b_x^{t_i},$$

where

$$\mathfrak{z}_x^i := \{d_x f \mid f \in \mathfrak{z}^i\}, \ \mathfrak{z}_x^{0,i} := \{z \in \mathfrak{z}_x^i \mid \exists y \in T_x^* M \colon b_x^{t_0} z = b_x^{t_i} y\},$$

and γ_x^i is a 2-form on $\mathfrak{z}_x^{0,i}$ defined similarly to the 2-form γ^i on $Z^{0,i}$.

Lie pencils

Def: Let $[,]^{(1)}, [,]^{(2)} : \bigwedge^2 \mathfrak{g} \to \mathbb{C}$, where \mathfrak{g} is a vector space. Assume that for any $t = (t_1, t_2) \in \mathbb{C}^2$ the bracket $[,]^t := t_1[,]^{(1)} + t_2[,]^{(2)}$ is a Lie bracket on \mathfrak{g} . Then we say that the family of Lie algebras $\{\mathfrak{g}^t\}_{t\in\mathbb{C}^2}, \mathfrak{g}^t := (\mathfrak{g}, [,]^t)$ is a *Lie pencil*.

Lie pencils

Def: Let $[,]^{(1)}, [,]^{(2)} : \bigwedge^2 \mathfrak{g} \to \mathfrak{g}$, where \mathfrak{g} is a vector space. Assume that for any $t = (t_1, t_2) \in \mathbb{C}^2$ the bracket $[,]^t := t_1[,]^{(1)} + t_2[,]^{(2)}$ is a Lie bracket on \mathfrak{g} . Then we say that the family of Lie algebras $\{\mathfrak{g}^t\}_{t\in\mathbb{C}^2}, \mathfrak{g}^t := (\mathfrak{g}, [,]^t)$ is a *Lie pencil*.

Remark: Given a Lie pencil $\Lambda = \{g^t\}$, we obtain a Poisson pencil B_Λ on \mathfrak{g}^* consisting of the corresponding Lie-Poison structures. If Λ is such that $H^2(\mathfrak{g}^t, \mathfrak{g}^t) = 0$ (eg. \mathfrak{g}^t semisimple) for some t, then B_Λ is admissible. Moreover, there exist natural finite-dimensional subalgebras $\mathfrak{z}^i \subset \mathbb{Z}^{t_i}, i = 1, \ldots, n$, equal to the centres of the "exceptional" Lie algebras \mathfrak{g}^{t_i} .

Examples

Example 1 Let $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_m)$, where $\lambda_1 = \ldots = \lambda_k = \alpha$, $\lambda_{k+1} = \ldots = \lambda_m = \beta$, a $[x, y]_D = xDy - yDx$. Consider the Lie pencil $\mathfrak{g}^t := (\mathfrak{so}(m), [,]^t), [,]^t := t^{(1)}[,] + t^{(2)}[,]_D$. The exceptional algebras are $\mathfrak{g}^{t_1}, \mathfrak{g}^{t_2}$, where $t_1 = (-\alpha, 1), t_2 = (-\beta, 1)$. The Lie algebra \mathfrak{g}^{t_1} is the semidirect product of $\mathfrak{so}(k)$ and the solvable ideal " $\mathfrak{so}(m-k) \times \mathfrak{m}$ ", similarly \mathfrak{g}^{t_2} . We have $\mathfrak{z}^{t_1} = \mathfrak{so}(k), \mathfrak{z}^{t_2} = \mathfrak{so}(m-k)$.

$\mathfrak{so}(k)$	m
m	$\mathfrak{so}(m-k)$

For this pencil the Bolsinov conditions are satisfied. The corresponding hamiltonian system is the "n-dimensional free rigid body system" on $\mathfrak{so}(n) \cong \mathfrak{so}(n)^*$. The \mathcal{I}^i -families of functions in involution correspond to the Noetherian integrals of the system coming from the symmetries of the body whose "inertia matrix" D has the spectrum with multiplicities.

Examples

Example 2 Let $\mathfrak{g} = \mathfrak{gl}(m, \mathbb{C})$ and let

$$N := \mathbf{N}_m := \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ & & & \ddots & \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

be the standard nilpotent matrix. Then for any $k = 1, \ldots, m - 1$ we have the Lie pencil

 $(\mathfrak{g}, [,]^t), [,]^t := t^{(1)}[,] + t^{(2)}[,]_{N^k}, [X,Y]_{N^k} := XN^kY - YN^kX.$ The only exceptional algebra is $\mathfrak{g}^{t_1} = (\mathfrak{g}, [,]_{N^k})$. For $1 < k \leq n/2$ this pencil does not satisfy the Bolsinov condition but satisfies our more general condition (the corresponding 2-form γ^1 is nontrivial).

Further applications

The argument translation method Let \mathfrak{g} be a Lie algebra. Put: $b^{(1)} := b_{\mathfrak{g}}$, the Lie-Poisson structure on \mathfrak{g}^* ; $b^{(2)} := b_{\mathfrak{g}}(a)$, where $a \in \mathfrak{g}^*$. Then $(b^{(1)}, b^{(2)})$ is a Poisson pair and the Poisson pencil $B = \{b^t := t^{(1)}b^{(1)} + t^{(2)}b^{(2)}\}$ is admissible. \mathcal{Z}^B is generated by $f_1(x + \lambda a), \ldots, f_m(x + \lambda a), \lambda \in \mathbb{K}$, where f_1, \ldots, f_m are invariants of the coadjoint action. The families of functions \mathcal{I}_i come into consideration when a is a singular element.

Nonadmissible Poisson pencils...

Many thanks for your attention!

