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Introduction: the Gelfand–Zakharevich decomposition

Theorem: (Gelfand–Zakharevich, 1989) Let V be a linear space over C,

dim V < ∞. Then for each pair of 2-forms (b(1), b(2)), b(i) ∈
∧2 V ∗,

there exists a decomposition (i.e. V = ⊕k
j=1Vj , b

(i) =
∑k

j=1 b
(i)
j ,

b
(i)
j ∈

∧2 V ∗
j , i = 1, 2) to "irreducible blocks"(Vj , (b

(1)
j , b

(2)
j )) of the

following types:
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Introduction: the Gelfand–Zakharevich decomposition

Theorem: (Gelfand–Zakharevich, 1989) Let V be a linear space over C,

dim V < ∞. Then for each pair of 2-forms (b(1), b(2)), b(i) ∈
∧2 V ∗,

there exists a decomposition (i.e. V = ⊕k
j=1Vj , b

(i) =
∑k

j=1 b
(i)
j ,

b
(i)
j ∈

∧2 V ∗
j , i = 1, 2) to "irreducible blocks"(Vj , (b

(1)
j , b

(2)
j )) of the

following types:

1. ("Jordan block"): dim Vj = 2nj and in some basis of Vj the

matrices of the pair (b
(1)
j , b

(2)
j ) are equal

(

0 Inj

−Inj
0

)

,

(

0 Jnj
(λ)

−(Jnj
(λ))T 0

)

where Jnj
(λ) is the standard nj × nj -Jordan block with the

eigenvalue λ.
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Introduction: the Gelfand–Zakharevich decomposition

2. ("Kronecker block"): dim Vj = 2nj + 1 and in some basis of Vj

the matrices of the pair (b
(1)
j , b

(2)
j ) are equal

(

0 K1

−KT
1 0

)

,

(

0 K2

−KT
2 0

)

,

where

K1 =











1 0 0 . . . 0 0

0 1 0 . . . 0 0

. . .

0 0 0 . . . 1 0











, K2 =











0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . .

0 0 0 . . . 0 1











(nj × (nj + 1)-matrices).
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Introduction: bihamiltonian structures and integrable systems

Def: Let M be a smooth manifold and b(1), b(2) ∈ Γ (
∧2 TM). We say

that (b(1), b(2)) is a Poisson pair if bt := t(1)b(1) + t(2)b(2) is a Poisson

bivector field for any t = (t(1), t(2)) ∈ K
2, K = R, C. The whole family

B := {bt}t∈K2

is called a bihamiltonian structure (or a Poisson pencil).
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Introduction: bihamiltonian structures and integrable systems

Def: Let M be a smooth manifold and b(1), b(2) ∈ Γ (
∧2 TM). We say

that (b(1), b(2)) is a Poisson pair if bt := t(1)b(1) + t(2)b(2) is a Poisson

bivector field for any t = (t(1), t(2)) ∈ K
2, K = R, C. The whole family

B := {bt}t∈K2

is called a bihamiltonian structure (or a Poisson pencil).

Def: Let B := {bt} be a bihamiltonian structure. Put

EB(x) = {t ∈ C
2 | rank bt

x < max
t∈C2

rank bt
x}, x ∈ M

(this set is called exceptional for B at x). It is clear that either

EB(x) = {0} or EB(x) = Span{t1} ∪ · · · ∪ Span{tn},

where ti are pairwise nonproportional. We put also

ZB
x := Span(

⋃

t 6∈EB(x)

ker bt
x).
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Introduction: bihamiltonian structures and integrable systems

Main Lemma of the theory of bihamiltonian structures Let {bt} be
a bihamiltonian structure on M . Fix x ∈ M . Assume
EB(x) = Span{t1} ∪ · · · ∪ Span{tn}. Then

1. for any t ∈ C
2 and any linearly independent elements t′, t′′ ∈ C

2 we

have bt
x(ker bt′

x , ker bt′′

x ) = 0;

2. for any t ∈ C
2 and any t′ ∈ C

2 \ EB(x) we have

bt
x(ker bt′

x , ker bt′

x) = 0; in particular bt
x(ZB

x , ZB
x ) = 0.
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Introduction: bihamiltonian structures and integrable systems

Main Lemma of the theory of bihamiltonian structures Let {bt} be
a bihamiltonian structure on M . Fix x ∈ M . Assume
EB(x) = Span{t1} ∪ · · · ∪ Span{tn}. Then

1. for any t ∈ C
2 and any linearly independent elements t′, t′′ ∈ C

2 we

have bt
x(ker bt′

x , ker bt′′

x ) = 0;

2. for any t ∈ C
2 and any t′ ∈ C

2 \ EB(x) we have

bt
x(ker bt′

x , ker bt′

x) = 0; in particular bt
x(ZB

x , ZB
x ) = 0.

Corollary: Let Ii
x ⊂ ker bti

x , i = 1, . . . , n, be an isotropic subspace
with respect to the restriction of bt

x, t 6∈ EB(x), to ker bti
x . Then

ZB
x + I1

x + · · · + In
x

is also isotropic.
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Introduction: bihamiltonian structures and integrable systems

Classical ways of constructing functions in involution

First way (Uses only I1 + · · · + In.) Corresponds to the situation when
only Jordan blocks are present in the G–Z decomposition and,
moreover, they are of dimension 2 (nj = 1,Jnj

(λ) semisimple).
Classically it exploits the eigenfunctions of the so-called recursion
operator b(1) ◦ (b(2))−1.
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Introduction: bihamiltonian structures and integrable systems

Classical ways of constructing functions in involution

First way (Uses only I1 + · · · + In.) Corresponds to the situation when
only Jordan blocks are present in the G–Z decomposition and,
moreover, they are of dimension 2 (nj = 1,Jnj

(λ) semisimple).
Classically it exploits the eigenfunctions of the so-called recursion
operator b(1) ◦ (b(2))−1.

Second way (Uses only ZB.) Corresponds to the situation when only
Kronecker blocks are present in the G–Z decomposition. Exploits the
Casimir functions of Poisson bivectors of the pencil.

Third way (less classical one) (Uses the whole space
ZB + I1 + · · · + In.) Was developed by Bolsinov in the context of Lie
pencils, i.e. pencils of Lie algebras on a vector space. Bolsinov (1995)
gives conditions on a Lie pencil sufficient for the maximality of the
isotropic subspace ZB + I1 + · · · + In. However, these conditions are
not necessary and imply that only semisimple-type Jordan blocks
appear in the G–Z decomposition. . – p.8/31



The main result

Our main result gives necessary and sufficient conditions for
maximality of the isotropic subspace ZB + I1 + · · · + In.
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Our main result gives necessary and sufficient conditions for
maximality of the isotropic subspace ZB + I1 + · · · + In.

Let a pencil B of bivectors on a vector space V be given and
EB = Span{t1} ∪ . . . ∪ Span{tn}, ti being pairwise nonproportional.
Assume that for any i ∈ {1, . . . , n} a subspace Zi ⊂ ker bti is chosen.
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maximality of the isotropic subspace ZB + I1 + · · · + In.

Let a pencil B of bivectors on a vector space V be given and
EB = Span{t1} ∪ . . . ∪ Span{tn}, ti being pairwise nonproportional.
Assume that for any i ∈ {1, . . . , n} a subspace Zi ⊂ ker bti is chosen.

Fix an element t0 ∈ C
2 \ EB and introduce the subspaces
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The main result

Our main result gives necessary and sufficient conditions for
maximality of the isotropic subspace ZB + I1 + · · · + In.

Let a pencil B of bivectors on a vector space V be given and
EB = Span{t1} ∪ . . . ∪ Span{tn}, ti being pairwise nonproportional.
Assume that for any i ∈ {1, . . . , n} a subspace Zi ⊂ ker bti is chosen.

Fix an element t0 ∈ C
2 \ EB and introduce the subspaces

Z0,i := {z ∈ Zi | ∃w ∈ V ∗ : bt0(z) = bti(w)}, i = 1, . . . , n,

and the 2-forms

γi :
∧2

Z0,i → C, γi(z1, z2) := bti(w1, w2),

where wj ∈ V ∗ are any elements such that bt0(zj) = bti(wj),
j = 1, 2. Note that these forms are correctly defined. Indeed, if w′

j are

another elements with bt0(zj) = bti(w′
j), we havevj := wj −w′

j ∈ Zti

and bti(w′
1, w

′
2) = bti(w1 + v1, w2 + v2) = bti(w1, w2).
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The main result
Theorem: Let a pencil B of bivectors on V be given such that
EB = Span{t1} ∪ . . . ∪ Span{tn}, ti being pairwise nonproportional.
Let Zi ⊂ ker bti be any subspace, J i : Zi →֒ V ∗ the natural
embedding and J i : V → (Zi)∗ the dual map. Fix t0 ∈ C

2 \ EB , and
assume that Ii ⊂ Zi, i = 1, . . . , n, is a maximal isotropic subspace
with respect to ((Zi)∗, J i

∗b
t0). Then the subspace

ZB + I1 + · · · + In ⊂ V ∗

is maximal isotropic with respect to (V, bt0) if and only if the following
condition holds for any i ∈ {1, . . . , n}:

corank J i
∗b

t0 + corank bt0 =

2 dim Z0,i − dim Zi − rank γi + corank bti .
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The main result
Theorem: Let a pencil B of bivectors on V be given such that
EB = Span{t1} ∪ . . . ∪ Span{tn}, ti being pairwise nonproportional.
Let Zi ⊂ ker bti be any subspace, J i : Zi →֒ V ∗ the natural
embedding and J i : V → (Zi)∗ the dual map. Fix t0 ∈ C

2 \ EB , and
assume that Ii ⊂ Zi, i = 1, . . . , n, is a maximal isotropic subspace
with respect to ((Zi)∗, J i

∗b
t0). Then the subspace

ZB + I1 + · · · + In ⊂ V ∗

is maximal isotropic with respect to (V, bt0) if and only if the following
condition holds for any i ∈ {1, . . . , n}:

corank J i
∗b

t0 + corank bt0 =

2 dim Z0,i − dim Zi − rank γi + corank bti .

Remark: If Zi = ker bti the above conditions reduce to

corank J i
∗b

t0 + corank bt0 = 2 dim Z0,i − rank γi

and are equivalent the absence of the Jordan blocks of dimension > 4 in
the G–Z decomposition.
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Illustration: a single Jordan block

V := C
2m, [b(1)] :=

[

0 Im

−Im 0

]

, [b(2)] :=

[

0 Jm(λ)

−(Jm(λ))T 0

]

,
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Illustration: a single Jordan block

V := C
2m, [b(1)] :=

[

0 Im

−Im 0

]

, [b(2)] :=

[

0 Jm(λ)

−(Jm(λ))T 0

]

,

EB = Span{t1}, t1 = (−λ, 1), [bt1 ] =

[

0 Nm

−N
T
m 0

]

,

[bt0 ] =

[

0 rIm + sNm

−(rIm + sNm)T 0

]

,

Nm :=

















0 1 0 · · · 0

0 0 1 · · · 0

· · ·

0 0 0 · · · 1

0 0 0 · · · 0

















, r 6= 0
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Illustration: a single Jordan block

Put Z1 := Zt1 = ker bt1 = {[0, . . . , x1, x2, . . . , 0]T }. We have

[bt0 ][0, . . . , 0, x1, x2, 0, . . . , 0]T = [rx2, . . . , 0, 0, . . . ,−rx1]
T

[bt1 ][0, . . . , rx1, 0, 0, rx2, . . . , 0]T = [rx2, . . . , 0, 0, . . . ,−rx1]
T

=⇒ Z0,1 =

{

0, m = 1

Z1, m > 1

. – p.17/31



Illustration: a single Jordan block

Put Z1 := Zt1 = ker bt1 = {[0, . . . , x1, x2, . . . , 0]T }. We have

[bt0 ][0, . . . , 0, x1, x2, 0, . . . , 0]T = [rx2, . . . , 0, 0, . . . ,−rx1]
T

[bt1 ][0, . . . , rx1, 0, 0, rx2, . . . , 0]T = [rx2, . . . , 0, 0, . . . ,−rx1]
T

=⇒ Z0,1 =

{

0, m = 1

Z1, m > 1

For the 2-form γ1 :
∧2 Z0,1 → C we have γ1([x1, x2], [y1, y2]) =

[0, . . . , rx1, 0, 0, rx2, . . . , 0][bt1 ][0, . . . , ry1, 0, 0, ry2, . . . , 0]T =

[0, . . . , rx1, 0, 0, rx2, . . . , 0][ry2, . . . , 0, 0, . . . ,−ry1]
T =

=

{

r2(x1y2 − x2y1), m = 2

0, m > 2
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Corollaries

Corollary: In the hypotheses of the above theorem, the subspace

ZB + I1 + · · · + In ⊂ V ∗

is maximal isotropic with respect to (V, bt0) if one of the following
condition holds:

1. corank bt0 = dim Z0,i − dim Zi − rank γi + corank bti , i ∈
{1, . . . , n};

2. corank bt0 = corank J i
∗b

t0 − dim Zi + corank bti , i ∈ {1, . . . , n}.
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Corollaries

Corollary: In the hypotheses of the above theorem, the subspace

ZB + I1 + · · · + In ⊂ V ∗

is maximal isotropic with respect to (V, bt0) if one of the following
condition holds:

1. corank bt0 = dim Z0,i − dim Zi − rank γi + corank bti , i ∈
{1, . . . , n};

2. corank bt0 = corank J i
∗b

t0 − dim Zi + corank bti , i ∈ {1, . . . , n}.

Remark: The last condition is the above mentioned condition of
Bolsinov (1995).
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Corollaries

Corollary: In the hypotheses of the above theorem, the subspace

ZB + I1 + · · · + In ⊂ V ∗

is maximal isotropic with respect to (V, bt0) if one of the following
condition holds:

1. corank bt0 = dim Z0,i − dim Zi − rank γi + corank bti , i ∈
{1, . . . , n};

2. corank bt0 = corank J i
∗b

t0 − dim Zi + corank bti , i ∈ {1, . . . , n}.

Remark: The last condition is the above mentioned condition of
Bolsinov (1995).

Def: Let B = {bt} be a bihamiltonian structure on M . If there exists an
open dense set U ⊂ M such that the exceptional set EB(x) =: EB is
independent of x ∈ U we call B admissible.
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Corollaries

Let B = {bt} be admissible, EB = Span{t1}∪ . . .∪Span{tn}. Put

Zt := {Casimir functions of bt}, ZB := Span(
⋃

t 6∈EB

Zt).

Lemma: Fix t0 ∈ C
2 \ EB . Then Zti is a Lie algebra with respect to

the Poisson bracket {, }t0 related to bt0 .

. – p.22/31



Corollaries

Let B = {bt} be admissible, EB = Span{t1}∪ . . .∪Span{tn}. Put

Zt := {Casimir functions of bt}, ZB := Span(
⋃

t 6∈EB

Zt).

Lemma: Fix t0 ∈ C
2 \ EB . Then Zti is a Lie algebra with respect to

the Poisson bracket {, }t0 related to bt0 .

Def: Let zi ⊂ Zti , i = 1, . . . , n, be a finite-dimensional subalgebra.
Define the action ρi : zi → Vect(M) of zi on M by

ρi(z) := bt0(J i(z)),

where J i : zi →֒ Fun(M) is the natural embedding and bt0(f)
denotes the hamiltonian vector field of the function f .

. – p.23/31



Corollaries

Let B = {bt} be admissible, EB = Span{t1}∪ . . .∪Span{tn}. Put

Zt := {Casimir functions of bt}, ZB := Span(
⋃

t 6∈EB

Zt).

Lemma: Fix t0 ∈ C
2 \ EB . Then Zti is a Lie algebra with respect to

the Poisson bracket {, }t0 related to bt0 .

Def: Let zi ⊂ Zti , i = 1, . . . , n, be a finite-dimensional subalgebra.
Define the action ρi : zi → Vect(M) of zi on M by

ρi(z) := bt0(J i(z)),

where J i : zi →֒ Fun(M) is the natural embedding and bt0(f)
denotes the hamiltonian vector field of the function f .

Remark: The action ρi is hamiltonian with respect to any Poisson
structure bt, t 6∈ EB . The functions from zi can be interpreted as the
Noether integrals related to this symmetry. But ρi in general is not
hamiltonian with respect to the exceptional Poisson structures
bti , i = 1, . . . , n. The two-forms γi are related to the nonequivariance
cocycles. . – p.24/31



Corollaries

Theorem: Assume that Ii ⊂ Fun((zi)∗), i = 1, . . . , n, is a maximal
involutive set of functions with respect to ((zi)∗, J i

∗b
t0), where

J i : M → (zi)∗ is the momentum map of the action ρi. Then the set of
functions

ZB + (J1)∗I1 + · · · + (Jn)∗In ⊂ Fun(M)

is maximal involutive with respect to the Poisson bracket {, }t0 if and
only if there exists a point x ∈ M such that for any i ∈ {1, . . . , n}:

corank [J i
∗b

t0 ]J i(x) + corank bt0
x =

2 dim z0,i
x − dim zix − rank γi

x + corank bti

x ,

where

zix := {dxf | f ∈ zi}, z0,i
x := {z ∈ zix | ∃y ∈ T ∗

xM : bt0
x z = bti

x y},

and γi
x is a 2-form on z

0,i
x defined similarly to the 2-form γi on Z0,i.
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Lie pencils

Def: Let [, ](1), [, ](2) :
∧2

g → C, where g is a vector space. Assume

that for any t = (t1, t2) ∈ C
2 the bracket [, ]t := t1[, ]

(1) + t2[, ]
(2) is a

Lie bracket on g. Then we say that the family of Lie algebras
{gt}t∈C2 , gt := (g, [, ]t) is a Lie pencil.
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Lie pencils

Def: Let [, ](1), [, ](2) :
∧2

g → g, where g is a vector space. Assume

that for any t = (t1, t2) ∈ C
2 the bracket [, ]t := t1[, ]

(1) + t2[, ]
(2) is a

Lie bracket on g. Then we say that the family of Lie algebras
{gt}t∈C2 , gt := (g, [, ]t) is a Lie pencil.

Remark: Given a Lie pencil Λ = {gt}, we obtain a Poisson pencil BΛ

on g∗ consisting of the corresponding Lie-Poison structures. If Λ is such
that H2(gt, gt) = 0 (eg. gt semisimple) for some t, then BΛ is
admissible. Moreover, there exist natural finite-dimensional subalgebras
zi ⊂ Zti , i = 1, . . . , n, equal to the centres of the ”exceptional” Lie
algebras gti .

. – p.27/31



Examples

Example 1 Let D = diag(λ1, . . . , λm), where λ1 = . . . = λk = α,
λk+1 = . . . = λm = β, a [x, y]D = xDy − yDx. Consider the Lie

pencil gt := (so(m), [, ]t), [, ]t := t(1)[, ] + t(2)[, ]D. The exceptional
algebras are gt1 , gt2 , where t1 = (−α, 1), t2 = (−β, 1). The Lie
algebra gt1 is the semidirect product of so(k) and the solvable ideal
”so(m − k) × m”, similarly gt2 . We have zt1 = so(k),
zt2 = so(m − k).

so(k) m

m so(m − k)

For this pencil the Bolsinov conditions are satisfied. The corresponding
hamiltonian system is the ”n-dimensional free rigid body system” on
so(n) ∼= so(n)∗. The Ii-families of functions in involution correspond to
the Noetherian integrals of the system coming from the symmetries of
the body whose ”inertia matrix” D has the spectrum with multiplicities.
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Examples

Example 2 Let g = gl(m, C) and let

N := Nm :=

















0 1 0 · · · 0

0 0 1 · · · 0

· · ·

0 0 0 · · · 1

0 0 0 · · · 0

















be the standard nilpotent matrix. Then for any k = 1, . . . ,m − 1 we
have the Lie pencil

(g, [, ]t), [, ]t := t(1)[, ] + t(2)[, ]Nk , [X,Y ]Nk := XNkY − Y NkX.

The only exceptional algebra is gt1 = (g, [, ]Nk). For 1 < k ≤ n/2 this
pencil does not satisfy the Bolsinov condition but satisfies our more
general condition (the corresponding 2-form γ1 is nontrivial).
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Further applications

The argument translation method
Let g be a Lie algebra. Put: b(1) := bg, the Lie-Poisson structure on g∗;

b(2) := bg(a), where a ∈ g∗. Then (b(1), b(2)) is a Poisson pair and the

Poisson pencil B = {bt := t(1)b(1) + t(2)b(2)} is admissible.

ZB is generated by f1(x + λa), . . . , fm(x + λa), λ ∈ K, where
f1, . . . , fm are invariants of the coadjoint action. The families of
functions Ii come into consideration when a is a singular element.

Nonadmissible Poisson pencils...

. – p.30/31



Many thanks for your attention!
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