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This is an analytical study of the simple classical generalization

of the Euler top problem: the Zhukovski–Volterra (ZV) system

describing the free motion of a gyrostat (a rigid body carrying a

rotator inside), which was first investigated by N. Zhukovski [2]

and, independently, by V. Volterra [1] (1899).

In contrast to the Euler top, the equations of motion of ZV are

not homogeneous, which makes their integration technically more

complicated.

We revise the solutions for the angular momentum first obtained

by Volterra and present alternative solutions based on an algebraic

parametrization of the invariant curves (Proposition 3).

This also enables us to derive an effective description of the motion

of the body in space. The proposed construction is completely

explicit and requires resolving three quartic algebraic equations.
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Equations of motion. The evolution of the angular velocity

ω of the gyrostat is described by the equations

d

dt
(Jω) = (Jω + d)× ω,

where J is the tensor of inertia and d is a constant vector charac-

terizing the motion of the rotator. Let M = Jω + d ∈ R3 be the

vector of the angular momentum. By setting

ω = aM − g, g = (g1, g2, g3)
T , a = J−1 = diag(a1, a2, a3).

one can rewrite the above system in the form

Ṁ = M × (aM − g) (1)

It possesses 2 first integrals

f1(M) = M 2
1 + M 2

2 + M 2
3 = k2, (2)

f2(M) = a1M
2
1 + a2M

2
2 + a3M

2
3 − 2M1g1 − 2M2g2 − 2M3g3 = l

k, l = const.

The complex invariant manifold S = {f1(M) = k2, f2(M) = l}
∈ C3 is isomorphic to the plane elliptic curve

E =
{
w2 = P4(z)

}
, P4 =

∣∣∣∣∣∣∣∣∣

z − a1 0 0 g1

0 z − a2 0 g2

0 0 z − a3 g3

g1 g2 g3 l − k2z

∣∣∣∣∣∣∣∣∣
(3)

= −k2(z − λ1)(z − λ2)(z − λ3)(z − λ4),

the roots λ1, . . . , λ4 being dependent on the parameters ai, gi and

the constants of motion k, l.

This indicates that the generic solution of (1) is given in terms

of elliptic functions of E.
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• Volterra’s solution of the ZV system (1891)

Theorem 1. The explicit complex solution of the ZV equations

(2) with the constants of motion k, l has the form

Mi(t) =

∑3
α=1 Aiαµασα(u) + Ai4µ4σ(u)∑3
α=1 A4αµασα(u) + A44µ4σ(u)

, (4)

i = 1, 2, 3, u = δt + u0,

where σα(u), σ(u) are the Weierstrass sigma-functions with quasi-

periods 2ω1, 2ω3 associated with the curve E, and Aiα, µα are

constants depending on the initial conditions:

Aiα =
gi

(ai − λα)
√

∆α

, A4α =

√−k√
∆α

, α = 1, 2, 3, 4, (5)

∆α =

3∑
i=1

g2
i

(ai − λα)2
− k. (6)

Remark. It follows that Mi are elliptic functions of u with the min-

imal periods 4ω1, 4ω3 and that they have the same poles q1, . . . , q4

in the corresponding parallelogram of periods.

The solution (4) does not provide the information about position

of poles qi and zeros p
(j)
i of Mi(t) in the parallelogram of periods.

Objectives:

• To express the momenta Mi in terms of the coordinates

z, w on E ;

• To solve the Poisson equations, describing the motion of

the top in space γ̇ = γ × ω ≡ γ × aM̄(t), where γ be a unit

vector fixed in space.
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Relation between generic solutions of the ZV system

and of the Euler top.

The classical Euler equations, describing the free rotation of a

rigid body with the inertia tensor J are

˙̄M = M̄ × aM̄ , a = J−1 = diag(a1, a2, a3), (7)

where M̄ = (M̄1, M̄2, M̄3)
T = Jω ∈ R3 be the vector of the

angular momentum. They have two independent integrals

〈M̄, aM̄〉 = l , 〈M̄, M̄〉 = k2 , l, k = const .

Proposition 2. Let M(t) be a solution of the ZV system with

constants of motion k, l and the corresponding roots λ1, . . . , λ4

defined in (3), and let M̄(t) be the solution of the Euler equa-

tions (7) with the parameters aα = λα and k = 1, l = λ4. Then

these solutions are related by the projective transformations

Mi = gi

∑3
α=1

M̄α

(ai − λα)
√

∆α

+
1

(ai − λ4)
√−∆4∑3

α=1 M̄α/
√

∆α + 1/
√−∆4

, (8)

where ∆i are defined in (6).
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Alternative parametrization of the ZV solution

Proposition 3. 1). The components of momenta Mi has the

following natural parametrization in terms of the coordi-

nates z, w on the elliptic curve E = {w2 = P4(z)}:

Mi =
αiw + Ui (z)

w + U0(z)
, Ui = ui2z

2 + ui1z + ui0, (9)

where αi, uij are certain constants depending only on the

values of the integrals (2);

2). The evolution of z is described by the quadrature

dz√
−k(z − λ1)(z − λ2)(z − λ3)(z − λ4)

= dt. (10)

The right hand sides of (9) have precisely 4 simple zeros and

poles on the curve E , as required by the structure of the Volterra

solution (4).
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Proposition 4. The momenta M̄i of the Euler top system (7)

admit the following rational parameterizations in terms of the

coordinates z, w on the degree 4 curve E

M̄i =
k

2w
√−(ai − aj)(ai − ak)

[
(aj + ak − ai − c)z2

+ 2z(cai − ajak) + c(a2a3 − a1a3 − a1a2) + a1a2a3] . (11)

(i, j, k) = a cyclic permutation of (1, 2, 3),

w =
√
−k(z − a1)(z − a2)(z − a3)(z − c), c = l/k2.

• Real part of the above parametrization:

Figure 1: The curve E as a 2-fold ramified covering of C = {z} and the ovals R, which
correspond to 2 real trajectories M̄(t) ∈ R3 for the case a1 < c < a2 < a3.
The white dots on the ovals stand for pairs of real zeros of M̄2(z) and M̄3(z). The
component M1(z) does not have real zeros.

Using this parametrization and Proposition 2 one obtain explicit

expressions for the coefficients ui2, ui1, ui0 in the parametrization

(9) for the momenta Mi of the ZV system.
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Determination of the motion of the gyrostat in space

Let us choose a fixed in space orthonormal frame O e1e2, e3 such

that the third axis is directed along the constant momentum vector

M of the gyrostat, and θ, ψ, φ be the Euler angles of nutation,

precession, and rotation with respect to this frame.

Then, according to the definition of the angles,

M1 = −|M | sin θ sin φ, M2 = |M | sin θ cos φ, M3 = |M | cos θ.

These expressions allow to determine trigonometric functions of θ

and ψ in terms of Mi and, in view of the solution (4), as functions

of time t.

Next, as follows from the Euler kinematical equations

ψ̇ =
−ω1 cos φ + ω2 sin φ

sin θ
≡ −k

ω1M1 + ω2M2

M 2
1 + M 2

2

.

Setting here ωi = aiMi − gi, i = 1, 2 and fixing the value l of the

energy integral in (2), we obtain

ψ̇ = −k
l − a3k

2 + g1M1 + g2M2 + 2g3M3

k2 −M 2
3

− ka3.

This form suggests introducing new angle ψ̃ = ψ + ka3t. In view

of the relation (10) between dt and dz, we then get

dψ̃ = −l − a3k
2 + g1M1 + g2M2 + 2g3M3

(k −M3)(k + M3)

dz√
P4(z)

. (12)
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Now, in view of the parametrization (9) for Mi in terms of z, w,

we see that (12) is a meromorphic differential of the third kind

on the elliptic curve E with 4 pairs of simple poles D±
1 , . . . ,D±

4

given by equations M3 = ±k. That is, their z-coordinates are the

solutions of

(α3 ∓ k)
√

P4(z) = U3(z)∓ kU0(z), (13)

which is equivalent to a quartic equation.

Proposition 5. The residues of dψ̃ at D±
i equal ±√−1.

• The final step: Consider the Abel map

A : E 7→ C, A(P ) =

∫ P

P0

dz√
P4(z)

, P0 = (λ4, 0)

and set u = A(z, w), d±i = A(D±
i ).

Integrating the meromorphic differential (12), we express the

new angle ψ̃ as the following function of u and t:

ψ̃ =
√−1 log

σ(u− d+
1 ) · · · σ(u− d+

4 )

σ(u− d−1 ) · · · σ(u− d−4 )
+ V u + C,

where V, C are certain constants and u = kt + u0.

As a result, for the original precession angle ψ we obtain

e
√−1ψ =

σ(u− d−1 ) · · · σ(u− d−4 )

σ(u− d+
1 ) · · · σ(u− d+

4 )
e(V−ka3)u+C. (14)

This allows to express cos ψ, sin ψ as meromorphic functions

of the complex variable u.

Jointly with the expressions for cos φ, sin φ, cos θ, sin θ, they give

the components of the unit vectors e1, e2, e3 in the body as func-

tions of time t. Thus we obtain a complete analytic description of

the motion of the gyrostat in space.
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[1] Volterra V. Sur la théorie des variations des latitudes. Acta

Math. 22 (1899), 201–357

[2] Zhykovsky N. E. On the motion of a rigid body with cavities

filled with a homogeneous fluid. Collected works, 1, Moscow-

Leningrad, Gostekhisdat, 1949 (Russian)

9


