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Introduction

he Hamilton-Jacobi (HJ) theory is one of the most
powerful methods of integration by quadratures a wide
class of systems described by nonlinear ordinary
differential equations.
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Introduction

The Hamilton-Jacobi (HJ) theory is one of the most
powerful methods of integration by quadratures a wide
class of systems described by nonlinear ordinary
differential equations.

There are some milestones of that theory in the works

of Stackel, Levi-Civita, Eisenhart, Woodhouse,

Klanins, Miller, Benenti, Rauch-Wojciechowski and

others.

The first constructive theory of separated coordinates
was made by Sklyanin. He adapted the method of Lax
representation and r-matrix theory to derive separated
coordinates. In that approach involutive functions
appear as coefficients of characteristic equation

m (spectral curve) of Lax matrix.
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Introduction

ecently, a modern geometric theory of separability
on bi-Poisson manifolds was constructed (Magri,
Falqui, Pedroni), related to the so-called
Gel'fand-Zakharevich (GZ) bi-Hamiltonian systems.
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In that approach constants of motion are closely
related to Casimirs of Poisson pencil and further to so
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Introduction

Recently, a modern geometric theory of separabillity
on bi-Poisson manifolds was constructed (Magri,
Falqui, Pedroni), related to the so-called
Gel'fand-Zakharevich (GZ) bi-Hamiltonian systems.
In that approach constants of motion are closely
related to Casimirs of Poisson pencil and further to so
called separation curve or more generally separatin
relations.

Content:

1. Separation relations

2. Classification

3. Bi-hamiltonian extension

3. Generalized Stackel transform

4. Multi-times reciprocal transformations
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Separation relations

t us consider Liouville integrable system on 2n
mensional phase space M, given in canonical
representation:

M > u=(q,...,qn,p1,...pn)’ and n functions H;(q, p) in
Involution with respect to the canonical Poisson tensor
-

{Hi,Hj}ﬁ = W(de',de) =< dHZ',T('de >= 0, 1,7 =1,...,n,

where < -, - > Is the duality map between 7'M and
T*M.
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Separation relations

t us consider Liouville integrable system on 2n
mensional phase space M, given in canonical
representation:

M > u=(q,...,qn,p1,....,pn) " and n functions H;(q,p) in
Involution with respect to the canonical Poisson tensor
-

{HZ', Hj}ﬁ = W(de',de) =< dHZ',Wde >= (), 1,1 =1,...,n,
where < -, - > Is the duality map between 7'M and

T*M.

Functions H; generate n Hamiltonian dynamic systems

u, =mdH; = Xy, 1=1,..,n,

where Xy are called the Hamiltonian vector fields.
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Separation relations

he Hamilton-Jacobi method of solution is related with
earization of equations through a canonical
ansformation
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Separation relations

he Hamilton-Jacobi method of solution is related with
earization of equations through a canonical
transformation

(Q7p) — (b7 a’)) A; = Hz 7/ — 1, ey 1.

In order to find the conjugate coordinates b; It Is
necessary to construct a generating function W (q, a)

such that
4 oW

b = —, pj=—.
J 8aj’ pj aqj'

. Bi-hamiltonian prooertv and related class of separation re lations — p. 5/34



Separation relations

he Hamilton-Jacobi method of solution is related with
earization of equations through a canonical
transformation

(q7p) — (b7 a’)) A; = Hz 7/ — 1, ey 1.

In order to find the conjugate coordinates b; It Is
necessary to construct a generating function W (q, a)

such that
i oW

_%’ pj:(?—qj'

W(q,a) Is a complete integral of related
Hamilton-Jacobi equations (HJ)

oW oW
H; sy = oo, — | = ay, 1=1,...,n.
Z<Q1 o (‘Mn)

b
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Separation relations

(b, a) representation the t;—dynamic Is trivial
(aj)e, =0, (bj)e, = 04
hence,

oW

bj(qy&) — %
J

=t; +const;, j=1,...,n.

are implicit solutions known as the inversion Jacobi
problem.
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Separation relations

(b, a) representation the t;—dynamic Is trivial
(aj)e, =0, (bj)e, = 04
hence,

oW

bj(qya) — %
J

=t; +const;, j=1,...,n.

are implicit solutions known as the inversion Jacobi
problem.

Where are the difficulties?
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Separation relations

(b, a) representation the t;—dynamic Is trivial
(aj)e, =0, (bj)e, = 04
hence,

oW

bi(q,a) = P
j

=tj +const;, g=1,..,n.

are implicit solutions known as the inversion Jacobi
problem.

Where are the difficulties?

(A, ). distinguished canonical coordinates in which
there exist n relations:
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Separation relations

ey
0, 2=1,...,n, a; € R, det [ %] =0,
da;

each containing one pair of canonical coordinates.
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Separation relations

a )
gpi()\i,ui;al, ...,an) = 0, 1=1,....n, a; € R, det [8901 # 0,
g

each containing one pair of canonical coordinates.
If the functions ;()\;, a) are solutions of a system of »
decuple ODE'’s

dWZ ()\Za CZ)
d\;

L ()\i,,uz-: ,al,...,an):(), izl,...,n,
then the function W (X, a) = > Wi(\;, a) IS an
additively separable solution of the above system and

simultaneously it is a solution of all Hamilton-Jacobi
equations.
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Separation relations

olving separation relations
a; = HZ()‘v :u)

we get Poisson-commute Hamiltonians H,.
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Separation relations

olving separation relations
a; = HZ()‘v :LL)

we get Poisson-commute Hamiltonians H,.
Consider a generic case of separation relations linear
N H;:

> SE(Ni ) Hy = (s i), i=1,....n,
k=1

called generalized Stackel separation relations, while
S = (S¥) is generalized Stackel matrix.
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Separation relations

olving separation relations

5 — HZ(Aa :u)

we get Poisson-commute Hamiltonians H,.
Consider a generic case of separation relations linear
N H;:

> SE i) Hy = (N, i), i=1,....n,
k=1

called generalized Stackel separation relations, while
S = (S¥) is generalized Stackel matrix.
If additionally S¥ = S* and v; = ) then separation

conditions can be represented by »n copies of some
- curve:
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Separation relations

k=1

(A, ) plane, called a separation curve.
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Separation relations

k=1

In (\, 1) plane, called a separation curve.
Degenerations: assume that in (\, ) coordinates H;
separates, I.e. H; = Hy1 + H» 1, then we get separation
relations for two sub-systems

Z fljk()‘a :u)Hl,k — ¢1()\7 :u)
k=1

ST PEO ) H = o(A 1), ni+na =n.
k=1
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Separation relations

k=1

In (\, 1) plane, called a separation curve.
Degenerations: assume that in (\, ) coordinates H;
separates, I.e. H; = Hy1 + H» 1, then we get separation
relations for two sub-systems

Z fljk()‘a :u)Hl,k — ¢1()\7 :u)
k=1

ST PEO ) H = o(A 1), ni+na =n.
k=1

In order to get the bi-Hamiltonian extension we further
- restrict to:
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Separation relations

n
D uARH =0\ ), af, i €N,
k=1

with the following normalization:
oy >al>...>a, =00 =0.
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Separation relations

n
D uARH =0\ ), af, i €N,
k=1

with the following normalization:
oy >ab>...>a, =0,5, =0.

For further purpose let us collect terms from the |.h.s.
In the following form

Zluak)‘ﬁkH(k)()\) — w()‘nu)? m < n, O‘kaﬁk € N,
k=1
where
H® () :Z)\"’“_iHi(k), N+ ...+ n,m=n
i=1
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classification

he form of separation relations allow us to classify
lated Stackel systems. Actually, a given class of
Stackel separable systems can be represented by a
fixed Stackel matrix S.
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classification

he form of separation relations allow us to classify
related Stackel systems. Actually, a given class of
Stackel separable systems can be represented by a
fixed Stackel matrix S.

For separation curves under consideration S Is
uniquelly determined by fixed sequences:

(0517 ey A —1, 0)7 (617 "'7677?/—17 0)7 (nla 7nm)

and an appropriate type of admissible functions .
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classification

he form of separation relations allow us to classify
related Stackel systems. Actually, a given class of
Stackel separable systems can be represented by a
fixed Stackel matrix S.

For separation curves under consideration S Is
uniquelly determined by fixed sequences:

(0517 ey A —1, 0)7 (ﬁla "'7677?/—17 0)7 (n17 7nm)

and an appropriate type of admissible functions .
Example 1. m =1:(0), (0), (n) and functions ) being
guadratic in momenta (Benenti class):

SNTH; = f ) 4 A0
1=1
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classification

xample 2. m =1:(0),(0), (n) and functions ¢ being
ponential in momenta

n

> NH; = fi(A) exp(ap) + fa(A) exp(—bp) +v(A).
i—1

(periodic Toda lattice, KdV dressing chain,
Rujsenaar-Schneider system,...).
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classification

xample 2. m =1:(0),(0), (n) and functions ¢ being
ponential in momenta

> NH; = fi(N) explap) + fa(A) exp(—bu) +v(A).
i1

(periodic Toda lattice, KdV dressing chain,
Rujsenaar-Schneider system,...).

Example 3. m =2:(1,0),(0,0), (n1,n2) and functions
being qubic iIn momenta

p(3 A HYY £ 3T HE = 1By (V20
1=1 1=1

stationary Businesq hierarchy - (n; =n — 2,1y = 2),
- dynamic on loop algebra s((3) - (n; = 2.ny = 4)

n
separation re ations —=n. 12/34



classification

xample 4. Systems from classes with 1 < m < n,
«; = 0 and ¢ quadratic iIn momenta

n

S NH; = () + AN
1=1
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Bi-hamiltonian representation
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Bi-hamiltonian representation

tackel Hamiltonians fulfil the following quasi-
-Hamiltonian representation (Tondo,Falqui,Pedroni):

n
WldHi:ZFijﬂ'()de, 1 =1,....n,
j=1

where

0o I, 0 Ay .
0_<_[n 0 )7 7-‘-1_<_A/\n 0 )7 An:dzag()\l,...,)\n),

are compatible Poisson tensors and
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Bi-hamiltonian representation

tackel Hamiltonians fulfil the following quasi-
-Hamiltonian representation (Tondo,Falqui,Pedroni):

n
WldHiZZFijﬂ'Qde, 1 =1,....n,
j=1

where

0o I, 0 Ay .
0_<_[n 0 )7 7-‘-1_<_A/\n 0 )7 An:dzag()\l,...,)\n),

are compatible Poisson tensors and
Fz'j — (S_lAnS)z'j,

- where S! = 2\
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Bi-hamiltonian representation

have a better control of functions F;; we will find it
another representation.
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Bi-hamiltonian representation

have a better control of functions F;; we will find it
another representation.
Observation.

Fij = (J_lAnJ)ij — T

where W = det S, Wy,; = det Uy; and Uy; IS matrix S with

the k-th column replaced by that (p 2 5
M%é)\gﬂ-l)T.
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Bi-hamiltonian representation

0 have a better control of functions £;; we will find it
another representation.
Observation.

W )

Fij = (7 ApJ)ij =

where W = det S, Wy, = det Uy; and Uy; IS matrix .S with
the k-th column replaced by that (&2 %1
Now, the important question is: which F;; # 0. In other

words, for which ¢, j determinant 1/;; has no repeating
columns.
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Bi-hamiltonian representation

Irst, for the following separation curve

Zluak)‘ﬁkH(k)()\) — w()‘nu)? m < n, O‘kaﬁk € N,

k=1
where
n
HE (N :Z)\”k_iﬂi(k), ni+ ...+ n, =n
1=1

we rewrite the quasi-bi-Hamiltonian chain in the form

7T1dH ZZFk-lﬂodHl k=1,...m, 1=1,...,ng
[=1 7=1
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Bi-hamiltonian representation

simple inspection shows that

kk k.l
Frig=1  F1#0.

Hence, a quasi-bi-Hamiltonian representation takes
the form

mdH® = modHY), + ZFff rodHY.
[=1
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Bi-hamiltonian representation

simple inspection shows that

k.k k.l
F. 4l = =1, FZ-,1 = 0.

Hence, a quasi-bi-Hamiltonian representation takes
the form

mdH® = 7o dHY) + ZF,f{ rodHY.
[=1

Bihamiltonian extension:
M — M, dimM = 2n,dimM = 2n + m, wWith additional
coordinates ¢;,: =1,....m
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Bi-hamiltonian representation

simple inspection shows that

k.k k.l
F. 4l = =1, FZ-,1 = 0.

Hence, a quasi-bi-Hamiltonian representation takes
the form

mdH® = 7o dHY) + ZF,f{ rodHY.
[=1

Bihamiltonian extension:
M — M, dimM = 2n,dimM = 2n + m, wWith additional
coordinates ¢;,: =1,....m

Then we extend Hamiltonians:

Bi-hamiltonian oropertv and related class of separation re lations

—n. 17/34



Bi-hamiltonian representation

AP O = B O e) = B Oy =S FE OV o
[=1
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Bi-hamiltonian representation

H i) = b pe) = HP o) = 3 F () ar
=1

separation relations for h,g’“) are given by

Zﬂak)‘ﬂkh(k) ()‘) — w()‘a :u)v m < n, ag, O € N,
k=1

where
Nk
PO ) =" am i B = g =
1=0

l Bi-hamiltonian oropertv and related class of separation re lations — n. 18/34



Bi-hamiltonian representation

n M Poisson tensors 7y and m; will be denoted by 11,
d I, p, respectively. Both are degenerated with
mmon Casimirsc¢;,: =1, ..., m

B 7'('()‘0 B 7T1‘0
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Bi-hamiltonian representation

n M Poisson tensors 7y and m; will be denoted by 11,
d I, p, respectively. Both are degenerated with
common CasimirS c;,i = 1,...,m

B 7'('()‘0 B 7T1‘O

Quasi-bi-Hamiltonian representation on M:

m
M pdhl” = Modnl + 3" Ff Mgan’,  Fyl = —on.
[=1
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Bi-hamiltonian representation

n M Poisson tensors 7y and m; will be denoted by 11,
d I, p, respectively. Both are degenerated with
common CasimirsS¢;,i = 1,...,m

B WQ‘O B 7r1‘0

Quasi-bi-Hamiltonian representation on M:

M pdhl” = Modnl + 3" Ff Mgan’,  Fyl = —on.
[=1

Let us introduce the following bivector

. D

. k_ ]‘ Bi-hamiltonian oropertv and related class of separation re |lat

ations —n. 19/34



Bi-hamiltonian representation

heorem.
. Bivector I1; 1s Poisson.
2. Poisson bivectors I1; and I1; are compatible.

3. R ()\) are Casimir functions of the Poisson pencil

[T\ = II; — AIp: functions hgk) form bi-Hamiltonian
chains with respect to 11, I1;.

. Bi-hamiltonian oropertv and related class of separation re lations — n. 20/34



Bi-hamiltonian representation

heorem.
. Bivector I1; 1s Poisson.
2. Poisson bivectors I1; and I1; are compatible.

3. R ()\) are Casimir functions of the Poisson pencil

[T\ = II; — AIp: functions hgk) form bi-Hamiltonian
chains with respect to 11, I1;.

Example. n =2, Benenti class.
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Bi-hamiltonian representation

heorem.
. Bivector I1; 1s Poisson.
2. Poisson bivectors I1; and I1; are compatible.

3. R ()\) are Casimir functions of the Poisson pencil

[T\ = II; — AIp: functions hgk) form bi-Hamiltonian
chains with respect to 11, I1;.

Example. n =2, Benenti class.
Separation curve for the Henon-Helles system:

1
NH| + Hy = §Au2 + 1
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Bi-hamiltonian representation

heorem.
. Bivector I1; 1s Poisson.
2. Poisson bivectors I1; and I1; are compatible.

3. R ()\) are Casimir functions of the Poisson pencil

[T\ = II; — AIp: functions hgk) form bi-Hamiltonian
chains with respect to 11, I1;.

Example. n =2, Benenti class.
Separation curve for the Henon-Helles system:

1
ANH{ + Hy = 5)\,[12 -+ )\4.

The transformation to cartesian coordinates (¢, p)
takes the form:
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Bi-hamiltonian representation
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Bi-hamiltonian representation

=M+ =2V -A\N2

Al A2
oA N /——)\1)\2< HL [ )

M A2 T a2 )\U M2 T a2 )\
1 1 1
Hi==pi+=p5+ (") + =¢'(¢°)?,
9 9 9
1 1 1 1
oy — 22 by o oo o102, 2092
2 = 54 P1p2 2qp2+16(Q) +4(Q)(Q),
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Bi-hamiltonian representation

¢t =M+ =2V A2

Al A2
oA N /—_Aw( HL )

M a2 Tz N M a2 T Az
1 1 1
Hi==pi+=p5+ (") + =¢'(¢°)?,
2 9 9
1 1 1 1
7, — 2.2 Lo Lo L 1y2) 242
2 = 54 P1p2 2QP2+16(Q) +4(Q)(Q),

The quasi-bi-Hamiltonian chain is
mdH, = modH,+1 — pymodHy, 1r=1,2,
where p; = -\ — Ao = —¢!, p2 = M A2 = —1(¢*)? and
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Bi-hamiltonian representation

( 0 0 g
0 0 3¢°
—q! —%q2 0
\ -3¢ 0 5po

I Bi-hamiltonian oropertv and related class of separation re

latio

ns —on. 22/34



A\ o\
0 0 A
0 0 0

r

)\
\ 0 X 0 0

Bi-hamiltonian representation

/ 0 0 ql %qz\
B 0 0 3¢ 0
—qg' =3 0 Ipo
\ 12 0 ipm o0 )

In M > (¢!, ¢%, p1,p2, ) the extended Hamiltonians

1

ho=c, hi=H—cq', hy=Hy— ~c(¢*)

4

form one bi-Hamiltonian chain

[Ipdhg = 0

Hodhl = X1 = Hldho
[Todho = Xo = I11dhq

Bi-hamil]onian oroZértv and related class of separation re latio
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Bi-hamiltonian representation

I — T . ‘ modhq
—(modhy)T | 0

and separation curve takes the form

1
A+ hiA + hg = §>\u2 + 04
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Bi-hamiltonian representation

I — T . ‘ modhq
—(modhy)T | 0

and separation curve takes the form

1
A+ hiA + hg = §>\u2 + 04

Example. n =2, non-Benenti class.
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Bi-hamiltonian representation

I — T . ‘ modhq
—(modh)T | 0

and separation curve takes the form

1
A2+ A+ hy = §Au2 + 24
Example. n =2, non-Benenti class.

Separation curve:

1
HVN? 4 g = A AL
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Bi-hamiltonian representation

uasi-bi-Hamiltonian chain takes the form

mdH" = Fi modH] + F{PmgdH | k= 1,2.

k.1 1 k.2 1
F1,1 = — Pkt Pk—1P2P1 F1,1 = —Pk-1P1 -
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Bi-hamiltonian representation

uasi-bi-Hamiltonian chain takes the form

mdH" = Fi modH] + F{PmgdH | k= 1,2.

k.1 1 k.2 1
F1,1 = — Pkt Pk—1P2P1 F1,1 = —Pk-1P1 -

In extended phase space M > (¢!, ¢%, p1, p2, 1, ¢2)

h(()l): C1,

11 11 1 11 1
p_ 22 2, 22 02 12, L2 Ll o990 L
1= g APt Ty @)+ (@) el + g og (@) = e
h(()2) — C2,
B2 _ q2 1 L q2 , (@) ((12)4 (qz‘

_ A2 2 _ = _ 42

B -hamilton ertv and related class of s lations — n. 24/34



Bi-hamiltonian representation

m rodh{"  wodh{?
—(mdh{™HT
—(mdh{)T
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Bi-hamiltonian representation

m rodh\"  wodh{?
—(mdh{™HT ;
—(mdh{HT
Two bi-Hamiltonian sub-chains are
Todhl =0 Todhl? =0
Modh\t) = Ty dn" Modh'? = T,dn!?
0 = Iy dh{V 0 =TI dhs ,
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Bi-hamiltonian representation

m rodh\" modht?

Two bi-Hamiltonian sub-chains are

Todhl =0 Todhl? =0
Modh\t) = Ty dn" Modh'? = T,dn!?
0 = Iy dh{V 0 =TI dhs ,

Separation curve for extended system Is

1
A (eh 4+ b)) 4+ eox + plP) = VP
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Generalized Stackel transform
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Generalized Stackel transform

onsider Liouville integrable system with » involutive
amiltonians H; which depend linearly on & <n
rameters aq, ..., a;:

k
Hi:H’i,O—'_Z&jH’i,ja 1=1,...,n.
j=1
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Generalized Stackel transform

onsider Liouville integrable system with » involutive
amiltonians H; which depend linearly on & <n
parameters oy, ..., ay:

k
Hi:Hi,O—'_ZajHi,j) 1=1,...,n.
j=1

Let us define n new Hamiltonians H; in the following
way:
from (1,2,...,n) fix a k-tuple (sq,...,s;), then
k
Hoo+ Y HgHgj=d;, i=1,...k,
j=1

k
ﬁi:Hi,0+Zﬁsti,ja Z'#Sj for 17=1,... k.
1=1
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Generalized Stackel transform

otice that new Hamiltonians are of the form:

k
Z@H,J, i=1,....n.
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Generalized Stackel transform

otice that new Hamiltonians are of the form:

k
g ajH;;, 1=1,...,n.

We shall refer to the above transformation from H;, to
H;, as to the k-parameter generalized Stackel
transform generated by H,,, .., H; (Btaszak,Sergeyev).
One-parameter case was considered by Hieterinta,

Grammaticos, Dorizi, Ramani and by Boyer, Kalnins,
Miller.
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Generalized Stackel transform

otice that new Hamiltonians are of the form:

k
g ajH;;, 1=1,...,n.

We shall refer to the above transformation from H;, to
H;, as to the k-parameter generalized Stackel
transform generated by H,,, .., H; (Btaszak,Sergeyev).
One-parameter case was considered by Hieterinta,
Grammaticos, Dorizi, Ramani and by Boyer, Kalnins,
Miller.

Theorem. Hamiltonians H;,i = 1....,n form Liouville
Integrable systems.
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Multi-times reciprocal transformations
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Multi-times reciprocal transformations

ssume that H,, i = 1,....n, are related to H;,
i = 1,...,n, through the k-parameter Stackel transform
generated by H,,,..., Hy, .
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Multi-times reciprocal transformations

ssume that H,, i = 1,....n, are related to H;,

i =1,...,n, through the k-parameter Stackel transform
generated by H,,... H,,.

Consider simultaneously the equations of motion for

the Hamiltonians H, with the times ¢, and for H,, with
the times ¢, :

da’/dts, = (Xp,)’, b=1,...,dimM, i=1,... k,
da’/dis, = (Xz ), b=1,....dmM, i=1,..k

where z° are local coordinates on M
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Multi-times reciprocal transformations

heorem. (Btaszak,Sergeyev)
onsider the equations of motion for H,,, i =1,... k,
restricted onto the common level surface N4 of H, :

Ng ={xr € M|H;,(x,1,...,a) =q;, i=1,...,k}.

Then the reciprocal transformation
k
dls, == Hgdts,, i=1..k
j=1

Is well defined on these restricted equations of motion

and sends them into the equations of motion for 4,
i =1,..., k, restricted onto the common level surface

N, of H,,, where
No ={{x € M|Hg,(x,01,...,05) =3, 1=1,...,k},
moreover Nr\/ p— Nf\'/- Bi-hamiltonian propertv and related class of separation re lations — n. 29/34



Stackel equivalent separable systems
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Stackel equivalent separable systems

eparation relations under consideration are as
llows

Z:uak)‘ﬁkH(k)()‘) — %D(Aaﬂ)? m < n, ag, O € N,
k=1

where

n,
HE () :Z)\”k_iHi(k), N+ ...+ n,m=n
1=1
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Stackel equivalent separable systems

eparation relations under consideration are as
llows

ZluakAﬁkH(k)(A) — w(Anu)? m < n, O‘kaﬁk c N,
k=1

where

i,
HE(\) = Z)\”’“_iHi(k), N+ ...+ n,m=n
i=1

The classes for which oy > as > ... > «,, Will be called

seed classes.

Theorem. Any separable system under consideration

belongs either to some seed class or Is Stackel

equivalent to an appropriate system from some seed
- class.
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Stackel equivalent separable systems

onsider classical Stackel systems and related
asses of separation relations:

1

- Girr. _ = 2
ZZ_;A Hi = S f()p” +9(N).

Benenti class, where (51,...,6,) =(n—1,n—2,...,0), IS
the only seed class. All other classes are Stackel
related to the Benenti one.
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Stackel equivalent separable systems

onsider classical Stackel systems and related
asses of separation relations:

> NH; = §f(A)u2 +(A).

1=1

Benenti class, where (51,...,6,) =(n—1,n—2,...,0), IS
the only seed class. All other classes are Stackel
related to the Benenti one.

Consider a seed class of separation curves qubic In
momenta:

ni

WA HD) 4+ 3 NTHD < i oy (Wt ()
1=1 1=1
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Stackel equivalent separable systems

onsider classical Stackel systems and related
asses of separation relations:

> NiH; = %f()\)MQ +(A).
=1

Benenti class, where (51,...,6,) =(n—1,n—2,...,0), IS
the only seed class. All other classes are Stackel
related to the Benenti one.

Consider a seed class of separation curves qubic In
momenta:

ni

WA HD) 4+ 3 NTHD < i oy (Wt ()
1=1 1=1

All other classes of the form

. Bi-hamiltonian propertv and related class of separation re lations = n.



Stackel equivalent separable systems

QoA H )t YN HE = 1 (M +72(0)
1=1 1=1

are Stackel related to the seed one.
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THE END
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