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Introduction

The Hamilton-Jacobi (HJ) theory is one of the most
powerful methods of integration by quadratures a wide
class of systems described by nonlinear ordinary
differential equations.
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Introduction

The Hamilton-Jacobi (HJ) theory is one of the most
powerful methods of integration by quadratures a wide
class of systems described by nonlinear ordinary
differential equations.
There are some milestones of that theory in the works
of Stäckel, Levi-Civita, Eisenhart, Woodhouse,
Klanins, Miller, Benenti, Rauch-Wojciechowski and
others.
The first constructive theory of separated coordinates
was made by Sklyanin. He adapted the method of Lax
representation and r-matrix theory to derive separated
coordinates. In that approach involutive functions
appear as coefficients of characteristic equation
(spectral curve) of Lax matrix.
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Introduction

Recently, a modern geometric theory of separability
on bi-Poisson manifolds was constructed (Magri,
Falqui, Pedroni), related to the so-called
Gel’fand-Zakharevich (GZ) bi-Hamiltonian systems.
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Introduction

Recently, a modern geometric theory of separability
on bi-Poisson manifolds was constructed (Magri,
Falqui, Pedroni), related to the so-called
Gel’fand-Zakharevich (GZ) bi-Hamiltonian systems.
In that approach constants of motion are closely
related to Casimirs of Poisson pencil and further to so
called separation curve or more generally separatin
relations.
Content:
1. Separation relations
2. Classification
3. Bi-hamiltonian extension
3. Generalized Stäckel transform
4. Multi-times reciprocal transformations

Bi-hamiltonian property and related class of separation re lations – p. 3/34



Separation relations

Let us consider Liouville integrable system on 2n
dimensional phase space M, given in canonical
representation:
M ∋ u = (q1, ..., qn, p1, ..., pn)T and n functions Hi(q, p) in
involution with respect to the canonical Poisson tensor
π

{Hi, Hj}π = π(dHi, dHj) =< dHi, π dHj >= 0, i, j = 1, ..., n,

where < ·, · > is the duality map between TM and
T ∗M .
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Separation relations

Let us consider Liouville integrable system on 2n
dimensional phase space M, given in canonical
representation:
M ∋ u = (q1, ..., qn, p1, ..., pn)T and n functions Hi(q, p) in
involution with respect to the canonical Poisson tensor
π

{Hi, Hj}π = π(dHi, dHj) =< dHi, π dHj >= 0, i, j = 1, ..., n,

where < ·, · > is the duality map between TM and
T ∗M .
Functions Hi generate n Hamiltonian dynamic systems

uti
= π dHi = XHi

, i = 1, ..., n,

where XHi
are called the Hamiltonian vector fields.
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Separation relations

The Hamilton-Jacobi method of solution is related with
linearization of equations through a canonical
transformation

(q, p) → (b, a), ai = Hi, i = 1, ..., n.
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Separation relations

The Hamilton-Jacobi method of solution is related with
linearization of equations through a canonical
transformation

(q, p) → (b, a), ai = Hi, i = 1, ..., n.

In order to find the conjugate coordinates bi it is
necessary to construct a generating function W (q, a)
such that

bj =
∂W

∂aj
, pj =

∂W

∂qj
.

Bi-hamiltonian property and related class of separation re lations – p. 5/34



Separation relations

The Hamilton-Jacobi method of solution is related with
linearization of equations through a canonical
transformation

(q, p) → (b, a), ai = Hi, i = 1, ..., n.

In order to find the conjugate coordinates bi it is
necessary to construct a generating function W (q, a)
such that

bj =
∂W

∂aj
, pj =

∂W

∂qj
.

W (q, a) is a complete integral of related
Hamilton-Jacobi equations (HJ)

Hi

(

q1, ..., qn,
∂W

∂q1
, ...,

∂W

∂qn

)

= ai, i = 1, ..., n.
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Separation relations

In (b, a) representation the ti−dynamic is trivial

(aj)ti
= 0, (bj)ti

= δij

hence,

bj(q, a) =
∂W

∂aj
= tj + constj , j = 1, ..., n.

are implicit solutions known as the inversion Jacobi
problem.
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Separation relations

In (b, a) representation the ti−dynamic is trivial

(aj)ti
= 0, (bj)ti

= δij

hence,

bj(q, a) =
∂W

∂aj
= tj + constj , j = 1, ..., n.

are implicit solutions known as the inversion Jacobi
problem.

Where are the difficulties?
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Separation relations

In (b, a) representation the ti−dynamic is trivial

(aj)ti
= 0, (bj)ti

= δij

hence,

bj(q, a) =
∂W

∂aj
= tj + constj , j = 1, ..., n.

are implicit solutions known as the inversion Jacobi
problem.

Where are the difficulties?

(λ, µ): distinguished canonical coordinates in which
there exist n relations:

Bi-hamiltonian property and related class of separation re lations – p. 6/34



Separation relations

ϕi(λi, µi; a1, ..., an) = 0, i = 1, ..., n, ai ∈ R, det

[

∂ϕi

∂aj

]

6= 0,

each containing one pair of canonical coordinates.
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Separation relations

ϕi(λi, µi; a1, ..., an) = 0, i = 1, ..., n, ai ∈ R, det

[

∂ϕi

∂aj

]

6= 0,

each containing one pair of canonical coordinates.
If the functions Wi(λi, a) are solutions of a system of n
decuple ODE’s

ϕi

(

λi, µi =
dWi(λi, a)

dλi
, a1, . . . , an

)

= 0, i = 1, ..., n,

then the function W (λ, a) =
∑n

i=1Wi(λi, a) is an
additively separable solution of the above system and
simultaneously it is a solution of all Hamilton-Jacobi
equations.
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Separation relations

Solving separation relations

ai = Hi(λ, µ)

we get Poisson-commute Hamiltonians Hi.
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Separation relations

Solving separation relations

ai = Hi(λ, µ)

we get Poisson-commute Hamiltonians Hi.
Consider a generic case of separation relations linear
in Hi:

n
∑

k=1

Sk
i (λi, µi)Hk = ψi(λi, µi), i = 1, ..., n,

called generalized Stäckel separation relations, while
S = (Sk

i ) is generalized Stäckel matrix.
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Separation relations

Solving separation relations

ai = Hi(λ, µ)

we get Poisson-commute Hamiltonians Hi.
Consider a generic case of separation relations linear
in Hi:

n
∑

k=1

Sk
i (λi, µi)Hk = ψi(λi, µi), i = 1, ..., n,

called generalized Stäckel separation relations, while
S = (Sk

i ) is generalized Stäckel matrix.
If additionally Sk

i = Sk and ψi = ψ then separation
conditions can be represented by n copies of some
curve:
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Separation relations

n
∑

k=1

Sk(λ, µ)Hk = ψ(λ, µ)

in (λ, µ) plane, called a separation curve.
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Separation relations

n
∑

k=1

Sk(λ, µ)Hk = ψ(λ, µ)

in (λ, µ) plane, called a separation curve.
Degenerations: assume that in (λ, µ) coordinates H1

separates, i.e. H1 = H1,1 +H2,1, then we get separation
relations for two sub-systems

n1
∑

k=1

f1,k(λ, µ)H1,k = ψ1(λ, µ)

n2
∑

k=1

f2,k(λ, µ)H2,k = ψ2(λ, µ), n1 + n2 = n.
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Separation relations

n
∑

k=1

Sk(λ, µ)Hk = ψ(λ, µ)

in (λ, µ) plane, called a separation curve.
Degenerations: assume that in (λ, µ) coordinates H1

separates, i.e. H1 = H1,1 +H2,1, then we get separation
relations for two sub-systems

n1
∑

k=1

f1,k(λ, µ)H1,k = ψ1(λ, µ)

n2
∑

k=1

f2,k(λ, µ)H2,k = ψ2(λ, µ), n1 + n2 = n.

In order to get the bi-Hamiltonian extension we further
restrict to:
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Separation relations

n
∑

k=1

µα′

kλβ′

kHk = ψ(λ, µ), α′

k, β
′

k ∈ N,

with the following normalization:
α′

1 ≥ α′

2 ≥ ... ≥ α′

n = 0, β′n = 0.
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Separation relations

n
∑

k=1

µα′

kλβ′

kHk = ψ(λ, µ), α′

k, β
′

k ∈ N,

with the following normalization:
α′

1 ≥ α′

2 ≥ ... ≥ α′

n = 0, β′n = 0.

For further purpose let us collect terms from the l.h.s.
in the following form

m
∑

k=1

µαkλβkH(k)(λ) = ψ(λ, µ), m ≤ n, αk, βk ∈ N,

where

H(k)(λ) =
nk
∑

i=1

λnk−iH
(k)
i , n1 + ...+ nm = n
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classification

The form of separation relations allow us to classify
related Stäckel systems. Actually, a given class of
Stäckel separable systems can be represented by a
fixed Stäckel matrix S.
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classification

The form of separation relations allow us to classify
related Stäckel systems. Actually, a given class of
Stäckel separable systems can be represented by a
fixed Stäckel matrix S.
For separation curves under consideration S is
uniquelly determined by fixed sequences:

(α1, ..., αm−1, 0), (β1, ..., βm−1, 0), (n1, ..., nm)

and an appropriate type of admissible functions ψ.
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classification

The form of separation relations allow us to classify
related Stäckel systems. Actually, a given class of
Stäckel separable systems can be represented by a
fixed Stäckel matrix S.
For separation curves under consideration S is
uniquelly determined by fixed sequences:

(α1, ..., αm−1, 0), (β1, ..., βm−1, 0), (n1, ..., nm)

and an appropriate type of admissible functions ψ.
Example 1. m = 1 : (0), (0), (n) and functions ψ being
quadratic in momenta (Benenti class):

n
∑

i=1

λn−iHi =
1

2
f(λ)µ2 + γ(λ)
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classification

Example 2. m = 1 : (0), (0), (n) and functions ψ being
exponential in momenta

n
∑

i=1

λn−iHi = f1(λ) exp(aµ) + f2(λ) exp(−bµ) + γ(λ).

(periodic Toda lattice, KdV dressing chain,
Rujsenaar-Schneider system,...).
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classification

Example 2. m = 1 : (0), (0), (n) and functions ψ being
exponential in momenta

n
∑

i=1

λn−iHi = f1(λ) exp(aµ) + f2(λ) exp(−bµ) + γ(λ).

(periodic Toda lattice, KdV dressing chain,
Rujsenaar-Schneider system,...).
Example 3. m = 2 : (1, 0), (0, 0), (n1, n2) and functions ψ
being qubic in momenta

µ(
n1
∑

i=1

λn−iH
(1)
i ) +

n2
∑

i=1

λn−iH
(2)
i = µ3 + γ1(λ)µ+ γ2(λ)

stationary Businesq hierarchy - (n1 = n− 2, n2 = 2),
dynamic on loop algebra sl(3) - (n1 = 2, n2 = 4).
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classification

Example 4. Systems from classes with 1 < m ≤ n,
αi = 0 and ψ quadratic in momenta

n
∑

i=1

λβiHi =
1

2
f(λ)µ2 + γ(λ).
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Bi-hamiltonian representation
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Bi-hamiltonian representation

Stäckel Hamiltonians fulfil the following quasi-
bi-Hamiltonian representation (Tondo,Falqui,Pedroni):

π1dHi =
n
∑

j=1

Fij π0 dHj , i = 1, ..., n,

where

π0 =

(

0 In

−In 0

)

, π1 =

(

0 Λn

−Λn 0

)

, Λn = diag(λ1, ..., λn),

are compatible Poisson tensors and
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Bi-hamiltonian representation

Stäckel Hamiltonians fulfil the following quasi-
bi-Hamiltonian representation (Tondo,Falqui,Pedroni):

π1dHi =
n
∑

j=1

Fij π0 dHj , i = 1, ..., n,

where

π0 =

(

0 In

−In 0

)

, π1 =

(

0 Λn

−Λn 0

)

, Λn = diag(λ1, ..., λn),

are compatible Poisson tensors and

Fij = (S−1ΛnS)ij ,

where Sl
k = µα′

l

k λ
β′

l

k .
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Bi-hamiltonian representation

To have a better control of functions Fij we will find it
another representation.
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Bi-hamiltonian representation

To have a better control of functions Fij we will find it
another representation.
Observation.

Fij = (J−1ΛnJ)ij =
Wij

W
,

where W = detS, Wki = detUki and Uki is matrix S with
the k-th column replaced by that (µα′

i

1 λ
β′

i+1
1 , ...,

µα′

i
n λ

β′

i+1
n )T .
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Bi-hamiltonian representation

To have a better control of functions Fij we will find it
another representation.
Observation.

Fij = (J−1ΛnJ)ij =
Wij

W
,

where W = detS, Wki = detUki and Uki is matrix S with
the k-th column replaced by that (µα′

i

1 λ
β′

i+1
1 , ...,

µα′

i
n λ

β′

i+1
n )T .

Now, the important question is: which Fij 6= 0. In other
words, for which i, j determinant Wij has no repeating
columns.
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Bi-hamiltonian representation

First, for the following separation curve

m
∑

k=1

µαkλβkH(k)(λ) = ψ(λ, µ), m ≤ n, αk, βk ∈ N,

where

H(k)(λ) =
nk
∑

i=1

λnk−iH
(k)
i , n1 + ...+ nm = n

we rewrite the quasi-bi-Hamiltonian chain in the form

π1dH
(k)
i =

m
∑

l=1

nl
∑

j=1

F k,l
i,j π0 dH

(l)
j , k = 1, ...,m, i = 1, ..., nk
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Bi-hamiltonian representation

A simple inspection shows that

F k,k
i,i+1 = 1, F k,l

i,1 6= 0.

Hence, a quasi-bi-Hamiltonian representation takes
the form

π1dH
(k)
i = π0 dH

(k)
i+1 +

m
∑

l=1

F k,l
i,1 π0 dH

(l)
1 .
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Bi-hamiltonian representation

A simple inspection shows that

F k,k
i,i+1 = 1, F k,l

i,1 6= 0.

Hence, a quasi-bi-Hamiltonian representation takes
the form

π1dH
(k)
i = π0 dH

(k)
i+1 +

m
∑

l=1

F k,l
i,1 π0 dH

(l)
1 .

Bihamiltonian extension:
M → M, dimM = 2n, dimM = 2n+m, with additional
coordinates ci, i = 1, ...,m.
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Bi-hamiltonian representation

A simple inspection shows that

F k,k
i,i+1 = 1, F k,l

i,1 6= 0.

Hence, a quasi-bi-Hamiltonian representation takes
the form

π1dH
(k)
i = π0 dH

(k)
i+1 +

m
∑

l=1

F k,l
i,1 π0 dH

(l)
1 .

Bihamiltonian extension:
M → M, dimM = 2n, dimM = 2n+m, with additional
coordinates ci, i = 1, ...,m.

Then we extend Hamiltonians:
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Bi-hamiltonian representation

H
(k)
i (λ, µ) → h

(k)
i (λ, µ, c) = H

(k)
i (λ, µ) −

m
∑

l=1

F k,l
i,1 (λ, µ) cl.
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Bi-hamiltonian representation

H
(k)
i (λ, µ) → h

(k)
i (λ, µ, c) = H

(k)
i (λ, µ) −

m
∑

l=1

F k,l
i,1 (λ, µ) cl.

separation relations for h(k)
i are given by

m
∑

k=1

µαkλβkh(k)(λ) = ψ(λ, µ), m ≤ n, αk, βk ∈ N,

where

h(k)(λ) =
nk
∑

i=0

λnk−ih
(k)
i , h

(k)
0 = ck, n1 + ...+ nm = n.
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Bi-hamiltonian representation

On M Poisson tensors π0 and π1 will be denoted by Π0

and Π1D, respectively. Both are degenerated with
common Casimirs ci, i = 1, ...,m

Π0 =

(

π0 0

0 0

)

, Π1D =

(

π1 0

0 0

)

.
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Bi-hamiltonian representation

On M Poisson tensors π0 and π1 will be denoted by Π0

and Π1D, respectively. Both are degenerated with
common Casimirs ci, i = 1, ...,m

Π0 =

(

π0 0

0 0

)

, Π1D =

(

π1 0

0 0

)

.

Quasi-bi-Hamiltonian representation on M:

Π1D dh
(k)
i = Π0 dh

(k)
i+1 +

m
∑

l=1

F k,l
i,1 Π0 dh

(l)
1 , F k,l

0,1 = −δkl.
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Bi-hamiltonian representation

On M Poisson tensors π0 and π1 will be denoted by Π0

and Π1D, respectively. Both are degenerated with
common Casimirs ci, i = 1, ...,m

Π0 =

(

π0 0

0 0

)

, Π1D =

(

π1 0

0 0

)

.

Quasi-bi-Hamiltonian representation on M:

Π1D dh
(k)
i = Π0 dh

(k)
i+1 +

m
∑

l=1

F k,l
i,1 Π0 dh

(l)
1 , F k,l

0,1 = −δkl.

Let us introduce the following bivector

Π1 := Π1D +
m
∑

k=1

X
(k)
1 ∧ Zk, X

(k)
1 = Π0dh

(k)
1 , Zk :=

∂

∂ck
.
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Bi-hamiltonian representation

Theorem.
1. Bivector Π1 is Poisson.
2. Poisson bivectors Π0 and Π1 are compatible.
3. h(k)(λ) are Casimir functions of the Poisson pencil
Πλ = Π1 − λΠ0: functions h(k)

i form bi-Hamiltonian
chains with respect to Π0,Π1.
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Bi-hamiltonian representation

Theorem.
1. Bivector Π1 is Poisson.
2. Poisson bivectors Π0 and Π1 are compatible.
3. h(k)(λ) are Casimir functions of the Poisson pencil
Πλ = Π1 − λΠ0: functions h(k)

i form bi-Hamiltonian
chains with respect to Π0,Π1.

Example. n = 2, Benenti class.
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Bi-hamiltonian representation

Theorem.
1. Bivector Π1 is Poisson.
2. Poisson bivectors Π0 and Π1 are compatible.
3. h(k)(λ) are Casimir functions of the Poisson pencil
Πλ = Π1 − λΠ0: functions h(k)

i form bi-Hamiltonian
chains with respect to Π0,Π1.

Example. n = 2, Benenti class.
Separation curve for the Henon-Heiles system:

λH1 +H2 =
1

2
λµ2 + λ4.
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Bi-hamiltonian representation

Theorem.
1. Bivector Π1 is Poisson.
2. Poisson bivectors Π0 and Π1 are compatible.
3. h(k)(λ) are Casimir functions of the Poisson pencil
Πλ = Π1 − λΠ0: functions h(k)

i form bi-Hamiltonian
chains with respect to Π0,Π1.

Example. n = 2, Benenti class.
Separation curve for the Henon-Heiles system:

λH1 +H2 =
1

2
λµ2 + λ4.

The transformation to cartesian coordinates (q, p)
takes the form:
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Bi-hamiltonian representation

q1 = λ1 + λ2, q2 = 2
√

−λ1λ2,

p1 =
λ1µ1

λ1 − λ2
+

λ2µ2

λ2 − λ1
, p2 =

√

−λ1λ2

(

µ1

λ1 − λ2
+

µ2

λ2 − λ1

)

.
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Bi-hamiltonian representation

q1 = λ1 + λ2, q2 = 2
√

−λ1λ2,

p1 =
λ1µ1

λ1 − λ2
+

λ2µ2

λ2 − λ1
, p2 =

√

−λ1λ2

(

µ1

λ1 − λ2
+

µ2

λ2 − λ1

)

.

H1 =
1

2
p2
1 +

1

2
p2
2 + (q1)3 +

1

2
q1(q2)2,

H2 =
1

2
q2p1p2 −

1

2
q1p2

2 +
1

16
(q2)4 +

1

4
(q1)2(q2)2,
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Bi-hamiltonian representation

q1 = λ1 + λ2, q2 = 2
√

−λ1λ2,

p1 =
λ1µ1

λ1 − λ2
+

λ2µ2

λ2 − λ1
, p2 =

√

−λ1λ2

(

µ1

λ1 − λ2
+

µ2

λ2 − λ1

)

.

H1 =
1

2
p2
1 +

1

2
p2
2 + (q1)3 +

1

2
q1(q2)2,

H2 =
1

2
q2p1p2 −

1

2
q1p2

2 +
1

16
(q2)4 +

1

4
(q1)2(q2)2,

The quasi-bi-Hamiltonian chain is

π1dHr = π0dHr+1 − ρrπ0dH1, r = 1, 2,

where ρ1 = −λ1 − λ2 = −q1, ρ2 = λ1λ2 = −1
4(q2)2 and
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Bi-hamiltonian representation

π1 =











0 0 λ1 0

0 0 0 λ2

−λ1 0 0 0

0 −λ2 0 0











=











0 0 q1 1
2q

2

0 0 1
2q

2 0

−q1 −1
2q

2 0 1
2p2

−1
2q

2 0 1
2p2 0











.
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Bi-hamiltonian representation

π1 =











0 0 λ1 0

0 0 0 λ2

−λ1 0 0 0

0 −λ2 0 0











=











0 0 q1 1
2q

2

0 0 1
2q

2 0

−q1 −1
2q

2 0 1
2p2

−1
2q

2 0 1
2p2 0











.

In M ∋ (q1, q2, p1, p2, c) the extended Hamiltonians

h0 = c, h1 = H1 − cq1, h2 = H2 −
1

4
c(q2)2

form one bi-Hamiltonian chain

Π0dh0 = 0

Π0dh1 = X1 = Π1dh0

Π0dh2 = X2 = Π1dh1

0 = Π1dh2,Bi-hamiltonian property and related class of separation re lations – p. 22/34



Bi-hamiltonian representation

where

Π0 =

(

π0 0

0 0

)

, Π1 =

(

π1 π0dh1

−(π0dh1)
T 0

)

and separation curve takes the form

cλ2 + h1λ+ h2 =
1

2
λµ2 + λ4.
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Bi-hamiltonian representation

where

Π0 =

(

π0 0

0 0

)

, Π1 =

(

π1 π0dh1

−(π0dh1)
T 0

)

and separation curve takes the form

cλ2 + h1λ+ h2 =
1

2
λµ2 + λ4.

Example. n = 2, non-Benenti class.
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Bi-hamiltonian representation

where

Π0 =

(

π0 0

0 0

)

, Π1 =

(

π1 π0dh1

−(π0dh1)
T 0

)

and separation curve takes the form

cλ2 + h1λ+ h2 =
1

2
λµ2 + λ4.

Example. n = 2, non-Benenti class.
Separation curve:

H
(1)
1 λ2 +H

(2)
1 =

1

2
λµ2 + λ4.
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Bi-hamiltonian representation

The quasi-bi-Hamiltonian chain takes the form

π1dH
(k)
1 = F k,1

1,1 π0dH
1
1 + F k,2

1,1 π0dH
(2)
1 , k = 1, 2.

and
F k,1

1,1 = −ρk + ρk−1ρ2ρ
−1
1 , F k,2

1,1 = −ρk−1ρ
−1
1 .
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Bi-hamiltonian representation

The quasi-bi-Hamiltonian chain takes the form

π1dH
(k)
1 = F k,1

1,1 π0dH
1
1 + F k,2

1,1 π0dH
(2)
1 , k = 1, 2.

and
F k,1

1,1 = −ρk + ρk−1ρ2ρ
−1
1 , F k,2

1,1 = −ρk−1ρ
−1
1 .

In extended phase space M ∋ (q1, q2, p1, p2, c1, c2)

h
(1)
0 = c1,

h
(1)
1 =

1

2

1

q1
p2
1 +

1

2

1

q1
p2
2 + (q1)2 +

1

2
(q2)2 − c1[q1 +

1

4

1

q1
(q2)2] − c2

1

q1

h
(2)
0 = c2,

h
(2)
1 = −

q22
8q1

p2
1 +

1

2
q2p1p2 −

1

2
q1p2

2 −
q22
8q1

p2
2 −

(q2)4

16
+ c1

(q2)4

16q1
+ c2

(q2)2

4q1
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Bi-hamiltonian representation

Π0 =







π0 0 0

0

0
0






, Π1 =







π1 π0dh
(1)
1 π0dh

(2)
1

−(π0dh
(1)
1 )T

−(π0dh
(2)
1 )T

0






.
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Bi-hamiltonian representation

Π0 =







π0 0 0

0

0
0






, Π1 =







π1 π0dh
(1)
1 π0dh

(2)
1

−(π0dh
(1)
1 )T

−(π0dh
(2)
1 )T

0






.

Two bi-Hamiltonian sub-chains are

Π0dh
(1)
0 = 0

Π0dh
(1)
1 = Π1dh

(1)
0

0 = Π1dh
(1)
1

Π0dh
(2)
0 = 0

Π0dh
(2)
1 = Π1dh

(2)
1

0 = Π1dh3 ,
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Bi-hamiltonian representation

Π0 =







π0 0 0

0

0
0






, Π1 =







π1 π0dh
(1)
1 π0dh

(2)
1

−(π0dh
(1)
1 )T

−(π0dh
(2)
1 )T

0






.

Two bi-Hamiltonian sub-chains are

Π0dh
(1)
0 = 0

Π0dh
(1)
1 = Π1dh

(1)
0

0 = Π1dh
(1)
1

Π0dh
(2)
0 = 0

Π0dh
(2)
1 = Π1dh

(2)
1

0 = Π1dh3 ,

Separation curve for extended system is

λ2(c1λ+ h
(1)
1 ) + c2λ+ h

(2)
1 =

1

2
λµ2 + λ4.
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Generalized Stäckel transform
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Generalized Stäckel transform

Consider Liouville integrable system with n involutive
Hamiltonians Hi which depend linearly on k ≤ n
parameters α1, ..., αk:

Hi = Hi,0 +
k
∑

j=1

αjHi,j , i = 1, . . . , n.
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Generalized Stäckel transform

Consider Liouville integrable system with n involutive
Hamiltonians Hi which depend linearly on k ≤ n
parameters α1, ..., αk:

Hi = Hi,0 +
k
∑

j=1

αjHi,j , i = 1, . . . , n.

Let us define n new Hamiltonians H̃i in the following
way:
from (1, 2, ..., n) fix a k-tuple (s1, . . . , sk), then

Hsi,0 +
k
∑

j=1

H̃sj
Hsi,j = α̃i, i = 1, . . . , k,

H̃i = Hi,0 +
k
∑

j=1

H̃sj
Hi,j , i 6= sj for j = 1, . . . , k.
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Generalized Stäckel transform

Notice that new Hamiltonians are of the form:

H̃i = H̃i,0 +
k
∑

j=1

α̃jH̃i,j , i = 1, . . . , n.
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Generalized Stäckel transform

Notice that new Hamiltonians are of the form:

H̃i = H̃i,0 +
k
∑

j=1

α̃jH̃i,j , i = 1, . . . , n.

We shall refer to the above transformation from Hi, to
H̃i, as to the k-parameter generalized Stäckel
transform generated by Hs1

, .., Hsk
(Błaszak,Sergeyev).

One-parameter case was considered by Hieterinta,
Grammaticos, Dorizi, Ramani and by Boyer, Kalnins,
Miller.
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Generalized Stäckel transform

Notice that new Hamiltonians are of the form:

H̃i = H̃i,0 +
k
∑

j=1

α̃jH̃i,j , i = 1, . . . , n.

We shall refer to the above transformation from Hi, to
H̃i, as to the k-parameter generalized Stäckel
transform generated by Hs1

, .., Hsk
(Błaszak,Sergeyev).

One-parameter case was considered by Hieterinta,
Grammaticos, Dorizi, Ramani and by Boyer, Kalnins,
Miller.
Theorem. Hamiltonians H̃i, i = 1, ..., n form Liouville
integrable systems.
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Multi-times reciprocal transformations
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Multi-times reciprocal transformations

Assume that H̃i, i = 1, . . . , n, are related to Hi,
i = 1, . . . , n, through the k-parameter Stäckel transform
generated by Hs1

, . . . , Hsk
.
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Multi-times reciprocal transformations

Assume that H̃i, i = 1, . . . , n, are related to Hi,
i = 1, . . . , n, through the k-parameter Stäckel transform
generated by Hs1

, . . . , Hsk
.

Consider simultaneously the equations of motion for
the Hamiltonians Hsi

with the times tsi
and for H̃si

with
the times t̃si

:

dxb/dtsi
= (XHsi

)b, b = 1, . . . , dimM, i = 1, . . . , k,

dxb/dt̃si
= (X

H̃si

)b, b = 1, . . . , dimM, i = 1, . . . , k.

where xb are local coordinates on M
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Multi-times reciprocal transformations

Theorem. (Błaszak,Sergeyev)
Consider the equations of motion for Hsi

, i = 1, . . . , k,
restricted onto the common level surface Nα̃ of Hsi

:
Nα̃ = {x ∈M |Hsi

(x, α1, . . . , αk) = α̃i, i = 1, . . . , k}.

Then the reciprocal transformation

dt̃si
= −

k
∑

j=1

Hsj ,idtsj
, i = 1, . . . , k

is well defined on these restricted equations of motion
and sends them into the equations of motion for H̃si

,
i = 1, . . . , k, restricted onto the common level surface
Ñα of H̃si

, where
Ñα = {x ∈M |H̃si

(x, α̃1, . . . , α̃k) = αi, i = 1, . . . , k},

moreover Ñα = Nα̃. Bi-hamiltonian property and related class of separation re lations – p. 29/34



Stäckel equivalent separable systems
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Stäckel equivalent separable systems

Separation relations under consideration are as
follows

m
∑

k=1

µαkλβkH(k)(λ) = ψ(λ, µ), m ≤ n, αk, βk ∈ N,

where

H(k)(λ) =

nk
∑

i=1

λnk−iH
(k)
i , n1 + ...+ nm = n
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Stäckel equivalent separable systems

Separation relations under consideration are as
follows

m
∑

k=1

µαkλβkH(k)(λ) = ψ(λ, µ), m ≤ n, αk, βk ∈ N,

where

H(k)(λ) =

nk
∑

i=1

λnk−iH
(k)
i , n1 + ...+ nm = n

The classes for which α1 > α2 > ... > αm will be called
seed classes.
Theorem. Any separable system under consideration
belongs either to some seed class or is Stäckel
equivalent to an appropriate system from some seed
class.
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Stäckel equivalent separable systems

Consider classical Stäckel systems and related
classes of separation relations:

n
∑

i=1

λβiHi =
1

2
f(λ)µ2 + γ(λ).

Benenti class, where (β1, ..., βn) = (n− 1, n− 2, ..., 0), is
the only seed class. All other classes are Stäckel
related to the Benenti one.
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Stäckel equivalent separable systems

Consider classical Stäckel systems and related
classes of separation relations:

n
∑

i=1

λβiHi =
1

2
f(λ)µ2 + γ(λ).

Benenti class, where (β1, ..., βn) = (n− 1, n− 2, ..., 0), is
the only seed class. All other classes are Stäckel
related to the Benenti one.
Consider a seed class of separation curves qubic in
momenta:

µ(
n1
∑

i=1

λn−iH
(1)
i ) +

n2
∑

i=1

λn−iH
(2)
i = µ3 + γ1(λ)µ+ γ2(λ).
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Stäckel equivalent separable systems

Consider classical Stäckel systems and related
classes of separation relations:

n
∑

i=1

λβiHi =
1

2
f(λ)µ2 + γ(λ).

Benenti class, where (β1, ..., βn) = (n− 1, n− 2, ..., 0), is
the only seed class. All other classes are Stäckel
related to the Benenti one.
Consider a seed class of separation curves qubic in
momenta:

µ(
n1
∑

i=1

λn−iH
(1)
i ) +

n2
∑

i=1

λn−iH
(2)
i = µ3 + γ1(λ)µ+ γ2(λ).

All other classes of the form
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Stäckel equivalent separable systems

(

n1
∑

i=1

λαiH
(1)
i )µ+

n2
∑

i=1

λβiH
(2)
i = µ3 + γ1(λ)µ+ γ2(λ)

are Stäckel related to the seed one.
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THE END
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