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Università di Milano-Bicocca

30 Years of Bihamiltonian Systems – Beḑlewo 3–9 August 2008.
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The Gaudin model was introduced by M. Gaudin as a spin model
related to the Lie algebra sl2, and later generalized to the case of
arbitrary semisimple Lie algebras.
The Hamiltonian is

HG =
∑

i 6=j , a

x
(i)
a x

(j)
a .

{xa}, a = 1, . . . , dim g, is an orthonormal basis of g with respect
to the Killing form.
These objects are regarded as elements of the polynomial algebra
S(g∗)⊗N in the classical case, and as elements of the universal
envelopping algebra U(g)⊗N in the quantum case, as

x
(i)
a = 1 ⊗ · · · ⊗ xa

︸︷︷︸

i−th factor

⊗1 · · · ⊗ 1.



Gaudin himself found that the quadratic Hamiltonians

Hi =
∑

k 6=i

dim g
∑

a=1

x
(i)
a x

(k)
a

zi − zk

. (1)

provide a set of “constants of the motion” for HG , , and z1, . . . , zN

are pairwise distinct complex numbers. Later it was shown (Jurco)
that - in the classical case - the spectral invariants of the Lax
matrix

LG (z) =
∑

i ,a

x
(i)
a

z − zi

encode a (basically complete) set of invariant quantities.
Feigin Frenkel and Reshetikhin proved the existence of a large
commutative subalgebra A(z1, . . . , zN) ⊂ U(g)⊗N containing Hi .
For g = sl2, the algebra A(z1, . . . , zN) is generated by Hi and the
central elements of U(g)⊗N .



In other cases, the algebra A(z1, . . . , zN) has also some new
generators known as higher Gaudin Hamiltonians. Their explicit
construction for g = glr was obtained in 2004 by D. Talalaev and
further discusse in papers by A. Chervov and D. Talalaev.
In the present talk we will consider – both form the classical and
from the quantum point of view – the problem of discussing what
happens when the arbitrary points z1, . . . , zN appearing in the Lax
matrix, and in the quadratic Hamiltonians Hi glue together.
In particular, we will concentrate on the “extreme” case, when in
some sense all points collide .



The Lax matrix

LG (z) =
∑

i ,a

x
(i)
a

z − zi
=

n∑

i=1

Xi

z − zi

satisfies the Poisson algebra

{L(z) ⊗ 1, 1 ⊗ L(u)} = [
Π

z − u
, L(z) ⊗ 1 + 1 ⊗ L(u)]

where Π is the permutation matrix Π(X ⊗ Y ) = Y ⊗ X .
This linear r -matrix structure (together with suitable reductions) is
associated with a huge number of classical integrable systems: e.g:

I The Neumann type systems and the gln- Manakov tops.

I Finite gap reductions of KdV (and n-GD) systems.

I Hitchin’s system on singular rational curves.



As it is well known, the r -matrix Poisson brackets presented before
are a shorthand notation for the following situation:

I The phase space2 of the N-site Gaudin model is g∗⊗N

I The “physical” Hamiltonian is a mean field spin–spin
interaction,

HG =
1

2

N∑

i 6=j=1

Tr(Xi · Xj), Xj =∈ g∗(' g).

I The Poisson brackets defind by the r -matrix formula are just
product Lie-Poisson brackets on g∗⊗N .

I The definition of the (classical) Lax matrix as
LG =

∑N
i=1

Xi

z−zi
defines an embedding of our phase space

g⊗N into a Loop space Lg ' g((z)).

2In this talk we will always deal with metric (or reductive) Lie algebras (and,
in particular, with glr ), so that we will tacitly identify g with g∗



The interplay between classical Lax matrices, Loop algebras and
Poisson manifolds has a long history. It was initiated in a
(somewhat underestimated) paper by Magri and Morosi (1986),
and later settled and expounded in the works of the Leningrad’s
school (see, e.g. Reyman - Semenov-Tyan-Shanski).
It can be encoded in the notion of R-operator. On the space
g∗((z)) of Laurent polynomials with values in (the dual of) a Lie
algebra g, there is a family of mutually compatible Poisson
brackets, {·, ·}k associated with a family of classical R–operators

Rk(X (z)) = (zkX (z))+ − (zkX (z))−. (2)

via the formula

{F ,G}k (X ) = 〈X , [Rk (∇(F )),∇(G )]〉 − 〈X , [Rk (∇(G )),∇(F )]〉

Spectral invariants of a polynomial Lax matrix form an abelian
Poisson subalgebra (w.r.t. any of the brackets {·, ·}k ).



Let us consider the space g∗N,A of matrices of the form

X (z) = zN+1A +
N∑

i=0

z iXi , (3)

where A is a fixed element of g.

I The brackets associated with R0, . . . ,RN on g∗((z)) restrict to
the affine subspace g∗N,A, and thus on g∗N = g∗N,0which is the
case we will henceforth consider).

I These brackets are mutually compatible; in particular, we can
associate with any degree N polynomial Q(z) =

∑N
i=0 κiz

N−i

a Poisson bracket (of the ”polynomial” family) via:

{·, ·}Q =
N∑

i=0

κi{·, ·}i .



The standard (product) Lie–Poisson structure on g⊗N defined by
the standard r -matrix recalled above, via the “Lax map”

LG =
N∑

i=1

Xi

z − zi

is realized, in this framework, by the bracket

{·, ·}S = {·, ·}N +

N−1∑

i=0

(−1)iσi{·, ·}i .

the σi being the elementary symmetric polynomials in the
quantities z1, . . . , zN , that is, is associated with the polynomial

S(z) =

N∏

i=1

(z − zi) = zN +

N−1∑

i=0

(−1)iσiz
N−1



This gives the possibility of constructing bihamiltonian structures
for the classical Gaudin case. Indeed the structure defined by the
polynomial (

S(z)

z

)

+

provides, together with the standard one, a “good” bihamiltonian
structure for the Gaudin model: the coefficients of the
characteristic polynomial of LG (z) fill in recursion relations of GZ
(LM) type.



Also,this gives the opportunity of studying, from this point of view,
the limits of (suitable combinations of) the ”polynomial” Poisson
structures when some (eventually, all) poles of the Lax matrix
z1, . . . , zN “glue together”.
This means the following: we pull back, via the map

LG → LG ,pol , LG ,pol =

N∏

i=1

(z − zi )
(

N∑

i=1

Xi

z − zi
)
)

the fundamental polynomial Poisson brackets {·, ·}k , k = 0, . . . ,N;
we obtain some (complicated) rational expressions depending on
(z1, . . . , zN), suitable linear combinations thereof admit non trivial
limits when some (ev., all) of the zi ’s glue together.



To the best of my knowledge, this problem was studied, in the e(3)
case, by the late Vadim Kuznetsov.

On general (Lie – Poisson theoretic) grounds when points glue
together we pass from a semi-simple Lie Poisson structure to a non
semisimple ones. (Musso-Petrera-Ragnisco, 05 and 08)

In particular, when all zi glue, we obtain the bracket (g = glr ))

{F ,G}limit =
∑

i ,j ,k

rijkTr (∇Fi [Xk ,∇Gj ])

rijk = (k − 1)δijδjk − θ(i−k)δij + θ(j−i)δik + θ(i−j)δjk

where ∇Fi , (∇Gi) are the differentials of F (G ) w.r.t. the i–th
entry.
These Poisson brackets are still compatible with the standard
r -matrix ones.



Pictorially (and in the 3-site case) we have the following
representation – by Poisson operators – of the brackets as follows:

Pstandard r =





[X1, ·]
[X2, ·]

[X3, ·]





Plimit =





0 [X1, · ] [X1, · ]
[X1, · ] [X2 − X1, · ] [X2, · ]
[X1, · ] [X2, · ] [2X3 − X2 − X1, · ]





According to the (Gel’fand–Zakharevich version of the)
Lenard-Magri scheme, Pstandard r and Plimit define the glr (as well
as g) - valued generalization of the so called Bending Flows,
introduced in the case corresponding to g = gl(2) by Kapovich and
Millson (1996).



Bending flows are defined on the moduli space Mr of (N)–gons
with fixed sides lengths r = (r1, . . . , rN), ri > (≥)0.

I Mr is a smooth 2N − 6–dimensional manifold;

I Mr is carry a natural symplectic structure, since it is a
symplectic quotient of products of spheres:

{(e1, e2, · · · , eN) ∈ S2
r1
×S2

r2
×· · · S2

rN
}//SO(3)(diag. action)
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This moduli space of polygons carries a (A)CIHS, whose action
variables are the lenghts of diagonals stemming from one vertex,
and whose angle variables are (indeed) the dihedral angles.
Geometrically, the flow bend one part of the polygon around the
corresponding diagonal, keeping the rest fixed.
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g–Bending flows can be defined on the same phase space of the
g–Gaudin system, the link between the two (in the KM N-gon
case) being the fact that S2

r is a symplectic leaf of su(2).

I g-Bending flows admit a set of N − 1 Lax matrices:

Lk (z) = zXk +

N∑

i=k+1

Xi , k = 1, . . . ,N − 1.

whose spectral invariants (together with the integral of the
motion associated with global g-invariance) provide a
complete set of Hamiltonians

I Hamiltonians come in ”clusters”, each cluster being
associated with the corresponding Lax matrix. For g = glr

Ha
k,m = resz=0

1

za+1
TrLm

k (z).



The ring of Hamitonians of the g-Bending flows comprises the
”physical” Hamiltonian of the Gaudin model. Thus, bending
Hamiltonians are an alternative set of Integral of the Motion for
the Gaudin system.

Separation of variables can be performed in this scheme, with
“clusters” of canonical conjugated variables associated, via the
Sklyanin magic recipe, to each of the Lax matrices. (G.F, F.
Musso, MPAG2006).
In the standard picture, the Jacobi separation relations live (for

g = sl(r)) on a curve of genus gstandard =
r − 1

2
(N − r − 2).

In the ”Bending picture”, the genus of each spectral curve is

gBend =
(r − 1)(r − 2)

2
, independent of the number N of sites.



The existence of a large quantum commutative subalgebra
A(z1, . . . , zN) ⊂ U(g)⊗N containing the Gaudin Hamiltonians Hi

was shown (FFR94). In general A(z1, . . . , zN) has new generators,
besides the quadratic ones, known as higher Gaudin Hamiltonians.
The definition of A(z1, . . . , zN) is via identifiying a commutative
subalgebra of the enveloping algebra U(g ⊗ t−1

C[t−1]). To any
collection z1, . . . , zn of pairwise distinct complex numbers, one can
naturally assign the evaluation map U(g ⊗ t−1

C[t−1]) → U(g)⊗N .
The image of the center under the composition of the above
homomorphisms is A(z1, . . . , zn), and is called (Quantum) Gaudin
Algebra.
The problem of finding explicit representatives for generators of
A(z1, . . . , zN) was solved some ten years later by D. Talalaev.



The Gaudin algebra defined by Feigin, Frenkel and Reshetikhin –
and concretely identified by Talalaev’s formula for N-spin glr
Gaudin systems – depends in general on the position of points
z1, . . . , zN .

Fact

A(z1, . . . , zN) is invariant under permutations and under
simultaneous rescalings zi → α zi + β, α, β ∈ C; thus the ”two
site” algebra A(z1, z2) is independent of z1, z2.

We consider limits of the Gaudin algebras when some of the points
z1, . . . , zN glue together. (A. Chervov, G.F, L. Rybnikov,
arXiv:0710.4971).
This means that we can set z1, . . . , zk ”fixed”, and let the
remaining N − k points glue to z , via

zk+i = z + s ui , i = 1, . . . ,N − k , zi 6= zj ; ui 6= uj , s → 0.



To describe this limit, we consider the maps

Dk,N := id⊗k ⊗ diagN−k : U(g)⊗(k+1) ↪→ U(g)⊗N ,

Dk,N(X1 ⊗ · · · ⊗ Xk ⊗ Xk+1) = X1 ⊗ · · ·Xk ⊗ Xk+1 ⊗ · · · ⊗ Xk+1
︸ ︷︷ ︸

N−k times

and

Ik,N := 1⊗k ⊗ id⊗(N−k) : U(g)⊗(N−k) ↪→ U(g)⊗N ,

Ik,N(X1 ⊗ · · ·XN−k) = 1 ⊗ · · · ⊗ 1
︸ ︷︷ ︸

k times

⊗X1 ⊗ · · · ⊗ XN−k

and define

A(z1,...,zk ,z),(u1,...,uN−k ) = Dk,N(A(z1, .., zk , z)) · Ik,N (A(u1, .., uN−k ))



Theorem

The algebra A(z1,...,zk ,z),(u1,...,uN−k ) is commutative;

lim
s→0

A(z1, . . . , zk , z + su1, . . . , z + s uN−k) = A(z1,...,zk ,z),(u1,...,uN−k ).

In words

In some sense we arrive at a kind of factorization by ”adding” one
point. Indeed, The commutative algebra A(z1,...,zk ,z),(u1,...,uN−k )

involves the FFR algebra associated with the points (z1, . . . , zk , z),
and a FFR algebra related with the points u1, . . . , uN−k .
Iterating this limiting procedure described above we can obtain
some new commutative subalgebras in U(g)⊗N .



Namely, we can iterate the procedure

A(z1, z2, . . . , zN) → A(z1,z2) (z2,z3,...,zN)

(Here we have to use translation invariance of A(z1, . . . , zM)), to
obtain the subalgebra

Alim ≡ A(z1,z2),...,(z1,z2) ⊂ U(g)⊗n

(Here we have to use that the two site Gaudin Algebra A(u, v) is
independent of (u, v)).
This limit algebra is generated by

D1,N(A(z1, z2)), 1 ⊗ D1,N−1(A(z1, z2)), . . . , 1⊗(N−2) ⊗A(z1, z2).



Proposition

The subalgebra Alim is generated by elements H
(α)
l ,k ∈ U(glr )

⊗n

such that their classical ”limits” H
(α)
l ,k , are given by

H
(α)
l ,k (X1, . . . ,Xn) := Resz=0

1

zα+1
Tr(Xk + z(

n∑

i=k+1

Xi ))
l ,

Summing up:

The classical limits of the (still unspecified) ”Quantum Bending
Hamiltonians” do coincide with the spectral invariants of the Lax
operators Lk (z) = z Xk +

∑N
i=k+1 Xi , i = 2, . . . ,N.

”Quantum Bending Hamiltonians” associated with Lax matrices
Lk , Lk′ , k 6= k ′ commute.
Finally, we are left with the determination of the correct (quantum)
Hamiltonian defined by a Lax matrix of the form L = zA + B



Theorem (Talalaev,2004)

Let L(z) be the Lax matrix of the glr -Gaudin model, and consider
the differential operator in the variable z

”DET”
(
∂z − L(z)

)
=

∑

i=0,...,r

QHi (z)∂ i
z ;

Then:

∀i , j ∈ 0, . . . , r , and u, v ∈ C, [QHi (z)|z=u,QHj (z)|z=v ] = 0.

The QHi (z)’s provide a full set generators of quantum mutually
commuting conserved quantities.



Problem:

We cannot apply directly Talalaev’s scheme to our matrices
L = zA + B .

Way out: Classical Bending Hamiltonians can be encoded in a set
of generators of the ring

Tr(
Xk

z1
+

1

z2
(

n∑

i=k+1

Xi))
l , for any z1, z2 ∈ C, k = 1, . . . ,N − 1.

We can use the fact that classical Lax matrices are ”invariant” by
rational changes of the spectral parameter and multiplication by
functions thereof, to consider, instead of L = z A + B , a matrix of
the form

Lpole =
A

z + 1
+

B

z
,

This matrix satisfies standard R matrix commutation rules; we are
left with the determination of the quantum Hamiltonians
associated with Lpole , i.e., to the determination of A(0,−1)



Two ways:

I We use Talalev’s results briefly reminded before, considering

the operators QH
(α)
l ,k defined as

∑

l=0,...,N

QH
(α)
l ,k (∂z )

l := Resz=0z
α−1detc(∂z − L̂pole, k(z)), (4)

(actually, this would quantize the coefficients of the
characteristic polynomials of the Bending flows Lax matrices)
or

I We can consider a suitable quantization of the traces of the
powers of the Lax matrix.



We consider the (differential operator valued) matrix considered in
Talalev’s theorem,

M(z) = ∂z − L(z)

The standard linear r -matrix commutation

[L(z) ⊗ 1, 1 ⊗ L(u)] = [
Π

z − u
, L(z) ⊗ 1 + 1 ⊗ L(u)]

imply that the matrix elements of M satisfy special commutation
relations that turns it into a ”Manin” matrix (A. Chervov, G.F,
J.Phys. A. 08, arXiv:0711.2236, and work in progress with V.
Rubtsov).
The name originates from a seminal paper of Yu. I Manin on
quantum groups (1988).



Manin Matrices

Formally: matrices in a sense associated with linear maps between
commutative rings.
Operative definition: Let Mij be a matrxi with elemnts in a (unital)
ring R; we call it a (column) Manin Matrix if:

I Elements in the same column commute among themselves;

I Commutators of the cross terms in any 2 × 2 submatrix are
equal:

[Mij ,Mkl ] = [Mkj ,Mil ] e.g. [M11,M22] = [M21,M12].



Let M be a Manin matrix. Define ”a” determinant of M by
column expansion:

detM = detcolumnM =
∑

σ∈Sn

(−1)σ

y∏

i=1,...,n

Mσ(i),i , (5)

where Sn is the group of permutations of n letters, and the symbol
y means that in the product

∏

i=1,...,n Mσ(i),i one writes at first
the elements from the first column, then from the second column
and so on and so forth.

Proposition

The determinant of a Manin matrix does not depend on the order
of the columns in the column expansion, i.e.,

∀p ∈ Sn detcolumnM =
∑

σ∈Sn

(−1)σ

y∏

i=1,...,n

Mσ(p(i)),p(i) (6)



Proposition

I ∂z − Lglr−Gaudin(z) is Manin, where Lglr−Gaudin(z) is the Lax
matrix for the Lie algebra glr (as well as its generalization to
the affine algebra glr [t]).

I e−∂z Tglr−Yangian(z) is Manin, where Tglr−Yangian(z) is the Lax
(or ”transfer”) matrix for the Yangian algebra Y (gln)
(quadratic r -matrix commutation relations.

The Talalev theorem about the commutation of the quantum
Gaudin Hamiltonians holds for such matrices (Talalaev, 2006).
In particular, a good notion of ”DET” in the formulation of
Talalaev’s quantum IM is given by the column determinant.
Manin matrices enter other topics in (quantum) integrability.



Main properties of MMs a vol d’oiseau:

I The inverse of a Manin matrix M is again Manin.

I The (left) Cramer formula holds:

MadjM = detcolumn(M)1

I Schur’s formula for the determinant of block matrices holds:

det

(
A B
C D

)

= det(A)det(D − CA−1B) =

det(D)det(A − BD−1C )

.

I The Cayley-Hamilton theorem: det(t − M)|t=M = 0;

I The Newton identities between TrMk and coefficients of
det(t + M)).



The quantization of the traces of powers of the Lax matrices can
be defined according to the last property reminded above and the
following considerations. We (re)consider the (classical) quantities

K
(α)
n,k (X1, . . . ,XN) := Resz=0z

α−1Tr







Xk

z + 1
+

n∑

i=k+1

Xi

z







n

.

The corresponding quantum Hamiltonians can be defined as:

K̂
(α)
n,k = Resz=0z

α−1TrL̂k (z)[n], (7)



Here L̂k(z) are the ”quantum” Lax matrices

L̂k (z) =
X̂k

z + 1
+

n∑

i=k+1

X̂i

z
,

corrsponding to Lk,pole , and L̂k (z)[n] are the corresponding
”quantum powers” defined by

L̂
[0]
k (z) = Id , L̂

[i ]
k (z) = L̂

[i−1]
k (z)L̂k(z) −

∂

∂z
(L̂

[i−1]
k (z)).

The Quantum counterparts of the traces of powers of the
”Bending flows Lax matrices” are obtained taking (ordinary) traces
of these object.



Thanks for the attention!
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