Partial and superintegrability of Hamiltonian systems

Andrzej Maciejewski¹, Maria Przybylska² and Haruo Yoshida³

¹Institute of Astronomy, University of Zielona Góra

³Toruń Centre for Astronomy, Nicolaus Copernicus University

³National Astronomical Observatory of Japan, Mitaka

August 4, 2008

Outline

Outline of the Morales-Ramis theory

- Non-Hamilonian systems
- Hamiltonian systems

Back to the problem

- Two Theorems
- Application

Our Theorem

Examples

5 Minimal parial integrability

Outline

The problem

- Outline of the Morales-Ramis theory
 Non-Hamilonian systems
 - Hamiltonian systems

3 Back to the problem

- Two Theorems
- Application

Our Theorem

Examples

5 Minimal parial integrability

< A >

Hamiltonian systems

Complex analytic symplectic manifold: (M²ⁿ, ω). Our main example

$$M^{2n} = \mathbb{C}^{2n}, \qquad \omega = \sum_{i=1}^{n} \mathrm{d} q_i \wedge \mathrm{d} p_i.$$

• Holomorphic Hamiltonian: $H: M^{2n} \to \mathbb{C}$. Our main example

$$H = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + V(q_1, \ldots, q_n),$$

where

$$V \in \mathbb{C}(q_1,\ldots,q_n) =: \mathbb{C}(q).$$

< 同 > < ∃ >

Hamiltonian systems

Complex analytic symplectic manifold: (M²ⁿ, ω). Our main example

$$M^{2n} = \mathbb{C}^{2n}, \qquad \omega = \sum_{i=1}^{n} \mathrm{d} q_i \wedge \mathrm{d} p_i.$$

• Holomorphic Hamiltonian: $H: M^{2n} \to \mathbb{C}$. Our main example

$$H = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + V(q_1, \ldots, q_n),$$

where

$$V \in \mathbb{C}(q_1,\ldots,q_n) =: \mathbb{C}(q).$$

• Hamiltonian vector field: X_H , $\omega(X_H, Y) = dH \cdot Y$. In our example

$$X_{H} = \sum_{i=1}^{n} \left(p_{i} \frac{\partial}{\partial q_{i}} - \frac{\partial V}{\partial q_{i}} \frac{\partial}{\partial p_{i}} \right).$$

• Poisson bracket: $\{F, G\} := \omega(X_F, X_G)$. In our example

$$\{F,G\} := \sum_{i=1}^{n} \left(\frac{\partial F}{\partial q_i} \frac{\partial G}{\partial p_i} - \frac{\partial F}{\partial p_i} \frac{\partial G}{\partial q_i} \right).$$

• First integrals of X_H : {H, F} = 0.

< ロ > < 同 > < 三 > < 三

• Hamiltonian vector field: X_H , $\omega(X_H, Y) = dH \cdot Y$. In our example

$$X_{H} = \sum_{i=1}^{n} \left(p_{i} \frac{\partial}{\partial q_{i}} - \frac{\partial V}{\partial q_{i}} \frac{\partial}{\partial p_{i}} \right).$$

• Poisson bracket: $\{F, G\} := \omega(X_F, X_G)$. In our example

$$\{F,G\} := \sum_{i=1}^{n} \left(\frac{\partial F}{\partial q_i} \frac{\partial G}{\partial p_i} - \frac{\partial F}{\partial p_i} \frac{\partial G}{\partial q_i} \right).$$

• First integrals of X_H : $\{H, F\} = 0$.

< D > < A > < B >

• Hamiltonian vector field: X_H , $\omega(X_H, Y) = dH \cdot Y$. In our example

$$X_{H} = \sum_{i=1}^{n} \left(p_{i} \frac{\partial}{\partial q_{i}} - \frac{\partial V}{\partial q_{i}} \frac{\partial}{\partial p_{i}} \right).$$

• Poisson bracket: $\{F, G\} := \omega(X_F, X_G)$. In our example

$$\{F,G\} := \sum_{i=1}^{n} \left(\frac{\partial F}{\partial q_i} \frac{\partial G}{\partial p_i} - \frac{\partial F}{\partial p_i} \frac{\partial G}{\partial q_i} \right).$$

• First integrals of X_H : {H, F} = 0.

< 同 > < ∃ >

Definition

A Hamiltonian system is partially integrable iff

• it admits independent first integrals $F_1 = H, \ldots, F_m$, $1 < m \le n$, and

•
$$\{F_i, F_j\} = 0$$
, for $1 < i, j < m$.

Definition

A Hamiltonian system is superintegrable iff

- it admits independent first integrals $F_1 = H, \ldots, F_{n+m}$, $1 \le m < n$, and
- $\{F_i, F_j\} = 0$, for $1 \le i, j \le n$.

< ロ > < 同 > < 回 > < 回 >

Definition

A Hamiltonian system is partially integrable iff

• it admits independent first integrals $F_1 = H, \ldots, F_m$, $1 < m \le n$, and

•
$$\{F_i, F_j\} = 0$$
, for $1 < i, j < m$.

Definition

A Hamiltonian system is superintegrable iff

 it admits independent first integrals F₁ = H,..., F_{n+m}, 1 ≤ m < n, and

•
$$\{F_i, F_j\} = 0$$
, for $1 \le i, j \le n$.

Problem

Find necessary conditions for partial and superintegrability for an arbitrary 1 < m < n.

... method?

Hint

In the frame of the of the differential Galois approach to the integrability (Morales-Ramis theory).

Problem

Find necessary conditions for partial and superintegrability for an arbitrary 1 < m < n.

... method?

Hint

In the frame of the of the differential Galois approach to the integrability (Morales-Ramis theory).

Problem

Find necessary conditions for partial and superintegrability for an arbitrary 1 < m < n.

... method?

Hint

In the frame of the of the differential Galois approach to the integrability (Morales-Ramis theory).

Outline

The problem

2 Outline of the Morales-Ramis theory

- Non-Hamilonian systems
- Hamiltonian systems

Back to the problem

- Two Theorems
- Application

Our Theorem

• Examples

5 Minimal parial integrability

Main Idea

A non-linear system leaves fingerprints of its properties in variational equations.

Main assumption: for a given holomorphic system

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{x} = \boldsymbol{v}(\boldsymbol{x}), \qquad \boldsymbol{x} \in M^n, \qquad t \in \mathbb{C}$$
(1)

we know a non-equilibrium particular solution $\varphi(t)$, Γ is the corresponding phase curve.

Variational equations

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{\xi} = \boldsymbol{A}(t)\boldsymbol{\xi}, \qquad \boldsymbol{A}(t) = \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{x}}(\boldsymbol{\varphi}(t)), \qquad \boldsymbol{\xi} \in T_{\Gamma} M^{n}$$
(2)

< D > < P > < P >

Leading terms

Definition

The leading term f of a holomorphic function F is the lowest order term of an expansion

 $F(\varphi(t) + \xi) = F_m(\xi) + O(\|\xi\|^{m+1}), \qquad F_m \neq 0,$

i.e., $f(\xi) := F_m(\xi)$. Note that $f(\xi)$ is a homogeneous polynomial with respect to $\xi = (\xi_1, \dots, \xi_n)$ of degree *m* and its coefficients are polynomials in $\varphi(t)$.

Definition

If *F* is a meromorphic function, then F = P/Q for certain holomorphic functions *P* and *Q*. In this case, the leading term *f* of *F* is defined as f = p/q, where *p* and *q* are leading terms of *P* and *Q*, respectively. As result $f(\xi)$ is a homogeneous rational function of ξ .

-

First implication

If *F* is a meromorphic (holomorphic) first integral of the differential system, then its leading term *f* is a rational (polynomial) first integral of variational equations. Similarly, If the system possesses $k \ge 2$ functionally independent meromorphic first integrals F_1, \ldots, F_k , then, by the Ziglin Lemma, VEs have *k* functionally independent rational first integrals. Warning: generally they are NOT leading terms of F_1, \ldots, F_k !

Second implication

If $\mathcal{G} \subset \operatorname{GL}(n, \mathbb{C})$ is the differential Galois group of (2), and $f \in \mathbb{C}(\xi)$ its rational first integral of variational equations, then $(g^{-1} \cdot f)(\xi) := f(g(\xi)) = f(\xi)$ for every $g \in \mathcal{G}$, i.e., *f* is a rational invariant of group \mathcal{G} .

< ロ > < 同 > < 回 > < 回 >

Correspondence between first integrals of the system and invariants of DGG

Theorem

If system has k functionally independent first integrals which are meromorphic in a connected neighbourhood of a non-equilibrium solution $\varphi(t)$, then the differential Galois group \mathcal{G} of the variational equations along $\varphi(t)$ has k functionally independent rational invariants.

$$\mathbb{C}(\mathbf{x})^{\mathfrak{G}} := \{ f \in \mathbb{C}(\mathbf{x}) \mid g \cdot f = f \text{ for all } g \in \mathfrak{G} \}$$

Fact

The differential Galois group \mathcal{G} of a system of linear equations is a linear algebraic group, so in particular it is also a Lie group.

Passing to Lie algebras

 $\mathfrak{g} \subset \mathfrak{gl}(n,\mathbb{C})$ – the Lie algebra of \mathfrak{G} .

With a $Y \in \mathfrak{g}$ we connect a linear vector field:

$$\boldsymbol{x}\mapsto Y(\boldsymbol{x}):=Y\cdot \boldsymbol{x}$$

for $\boldsymbol{x} \in \mathbb{C}^n$.

Definition

 $f \in \mathbb{C}(\mathbf{x})$ is an integral of \mathfrak{g} , iff $L_Y(f) = 0$ for all $Y \in \mathfrak{g}$.

$$\mathbb{C}(\boldsymbol{x})^{\mathfrak{g}} := \{ f \in \mathbb{C}(\boldsymbol{x}) \mid L_{Y}(f) = 0 \quad \text{for all} \quad Y \in \mathfrak{g} \}$$

Lemma

If $f_1, \ldots, f_k \in \mathbb{C}(\mathbf{x})^{\mathfrak{G}}$ are algebraically independent invariants of an algebraic group $\mathfrak{G} \subset \operatorname{GL}(n, \mathbb{C})$, then $f_1, \ldots, f_k \in \mathbb{C}(\mathbf{x})^{\mathfrak{g}}$, where \mathfrak{g} is the Lie algebra of \mathfrak{G} .

A. J. Maciejewski (Poland)

Partial and superintegrability

 $\mathbf{v}(\varphi(t))$ is a non-zero solution of VEs

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{\xi} = \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{x}}(\varphi(t))\boldsymbol{\xi}.$$

The reduction gives NVEs

$$\frac{\mathrm{d}}{\mathrm{d}t}\eta=A_{\mathrm{N}}(t)\eta,\qquad\eta\in\mathbb{C}^{n-1}.$$

Formally

$$N = T_{\Gamma} M^n / T\Gamma, \qquad \pi : T_{\Gamma} M^n \to F,$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{\eta} = \pi_{\star}(T\boldsymbol{\nu}(\boldsymbol{x})\pi^{-1}(\boldsymbol{\eta})), \qquad \boldsymbol{\eta} \in \boldsymbol{N}$$

Image: A mathematic state of the state of

For a Hamiltonian system the differential Galois group \mathcal{G} of variatonal equations is a subgroup of $\operatorname{Sp}(2n, \mathbb{C})$ and its Lie algebra \mathfrak{g} is a Lie subalgebra of $\operatorname{sp}(2n, \mathbb{C})$.

Theorem (Morales-Ramis)

Assume that a Hamiltonian system is meromorphically integrable in the Liouville sense in a neighbourhood of the analytic phase curve Γ . Then the Lie algebra g of the differential Galois group G of the variational equations along Γ is Abelian.

For a Hamiltonian system the differential Galois group \mathcal{G} of variatonal equations is a subgroup of $\operatorname{Sp}(2n, \mathbb{C})$ and its Lie algebra \mathfrak{g} is a Lie subalgebra of $\operatorname{sp}(2n, \mathbb{C})$.

Theorem (Morales-Ramis)

Assume that a Hamiltonian system is meromorphically integrable in the Liouville sense in a neighbourhood of the analytic phase curve Γ . Then the Lie algebra \mathfrak{g} of the differential Galois group \mathfrak{G} of the variational equations along Γ is Abelian.

< ロ > < 同 > < 回 > < 回 > .

- Commuting independent first integrals F_1, \ldots, F_n of X_H give rational, commuting and indepenent first integrals f_1, \ldots, f_n of variational variational equations (Ziglin)
- 2 Thus, $f_1, \ldots, f_n \in \mathbb{C}(\mathbf{x}, \mathbf{y})^{\mathfrak{g}}$, where \mathfrak{g} is the Lie algebra of the differential Galois group of variational equations.
- Missing point:

Lemma (Ke

If a Lie algebra $\mathfrak{g} \subset sp(2n, \mathbb{C})$ admits n independent and commuting first integrals, then it is Abelian.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Commuting independent first integrals F₁,..., F_n of X_H give rational, commuting and indepenent first integrals f₁,... f_n of variational variational equations (Ziglin)
- **2** Thus, $f_1, \ldots, f_n \in \mathbb{C}(\mathbf{x}, \mathbf{y})^{\mathfrak{g}}$, where \mathfrak{g} is the Lie algebra of the differential Galois group of variational equations.

Missing point:

Lemma (

If a Lie algebra $\mathfrak{g} \subset sp(2n, \mathbb{C})$ admits n independent and commuting first integrals, then it is Abelian.

- Commuting independent first integrals F₁,..., F_n of X_H give rational, commuting and indepenent first integrals f₁,... f_n of variational variational equations (Ziglin)
- **2** Thus, $f_1, \ldots, f_n \in \mathbb{C}(\mathbf{x}, \mathbf{y})^{\mathfrak{g}}$, where \mathfrak{g} is the Lie algebra of the differential Galois group of variational equations.
- Missing point:

Lemma (Key Lemma)

If a Lie algebra $\mathfrak{g} \subset \operatorname{sp}(2n, \mathbb{C})$ admits n independent and commuting first integrals, then it is Abelian.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Double reduction

Restrict Hamilton's equations to the level $E = H(\varphi(t))$ and then reduce VEs to the normal boundle.

$$rac{\mathrm{d}}{\mathrm{d}t} \eta = \mathcal{A}_{\mathrm{N}}(t) \eta, \qquad \eta \in \mathbb{C}^{2n-2},$$

Fact I

 \mathcal{G}_N is a linear algebraic subgroup of $\operatorname{Sp}(2n-2,\mathbb{C})$.

Fact II

The Morales-Ramis Theorem is true if we change VEs to NVEs.

A. J. Maciejewski (Poland)

Partial and superintegrabilty

August 4, 2008 17 / 40

Outline

The problem

2 Outline of the Morales-Ramis theory

- Non-Hamilonian systems
- Hamiltonian systems

Back to the problem

- Two Theorems
- Application

Our Theorem

Examples

5 Minimal parial integrability

A >

Theorem (I)

Assume that a holomorphic Hamiltonian system with n degrees admits 2n - 1 first integrals which are meromorphic in a neighbourhood U of a phase curve Γ and independent in $U \setminus \Gamma$. Then the Lie algebra \mathfrak{g}_N of the differential Galois group \mathfrak{G}_N of the normal variational equations along Γ is the zero algebra, i.e., \mathfrak{G}_N is a finite subgroup of $\operatorname{Sp}(2n - 2, \mathbb{C})$.

G_N admits 2n - 2 independent rational first integrals f₁,..., f_{2n-2};
for each Y ∈ g_N ⊂ sp(2n - 2, C), Y(f_i) = 0 for i = 1,..., 2n - 2, thus Y = 0.

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

- \mathcal{G}_N admits 2n 2 independent rational first integrals f_1, \ldots, f_{2n-2} ;
- for each $Y \in \mathfrak{g}_N \subset \operatorname{sp}(2n-2,\mathbb{C})$, $Y(f_i) = 0$ for $i = 1, \ldots, 2n-2$, thus Y = 0.

4 AR 1 4 B 1

Maximally superintegrable non-Hamiltonian systems

Theorem (II)

Assume that a holomorphic n-dimensional system admits n - 1 first integrals which are meromorphic in a neighbourhood U of a phase curve Γ and independent in $U \setminus \Gamma$. Then the Lie algebra \mathfrak{g}_N of the differential Galois group \mathfrak{G}_N of the normal variational equations along Γ is the zero algebra, i.e., \mathfrak{G}_N is a finite subgroup of $\operatorname{GL}(n - 1, \mathbb{C})$.

- 4 同 2 4 回 2 4 回 2 4

Darboux Points and Particular Solutions

Assumption

Potential
$$V \in \mathbb{C}(q)$$
 is homogeneous and deg $V = k \in \mathbb{Z}^*$.

Definition

Darboux point $\boldsymbol{d} \in \mathbb{C}^n$ is a solution of

$$V'(d) = d, \qquad d \neq 0.$$

Particular solution

$$\boldsymbol{q}(t) = \varphi(t)\boldsymbol{d}, \quad \boldsymbol{p}(t) = \dot{\varphi}(t)\boldsymbol{d}, \quad ext{provided} \quad \ddot{\varphi} = -\varphi^{k-1}.$$

Phase curve Γ_{ε} :

$$\dot{\varphi}^2 = \frac{2}{k} \left(\varepsilon - \varphi^k \right)$$

< □ > < 三 >

$$\ddot{\boldsymbol{x}} = -\varphi(t)^{k-2} V''(\boldsymbol{d}) \boldsymbol{x}.$$

If V''(d) is diagonalisable, then in an appropriate base

$$\ddot{y}_i = -\lambda_i \varphi(t)^{k-2} y_i, \qquad 1 \le i \le n,$$
(3)

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of $V''(\mathbf{d})$. One of these eigenvalues, let us say λ_n is k - 1.

A (1) < (1) < (1) </p>

$$\mathfrak{G} \subset \mathfrak{G}(\lambda_1) \times \cdots \times \mathfrak{G}(\lambda_n) \subset \operatorname{Sp}(2n,\mathbb{C}), \qquad \mathfrak{G}(\lambda_i) \subset \operatorname{Sp}(2,\mathbb{C}).$$

$$\mathfrak{G}_{\mathrm{N}} \subset \mathfrak{G}(\lambda_1) \times \cdots \times \mathfrak{G}(\lambda_{n-1}) \subset \mathrm{Sp}(2n-2,\mathbb{C}), \qquad \mathfrak{G}(\lambda_i) \subset \mathrm{Sp}(2,\mathbb{C}).$$

Hence

and

$$\mathfrak{g} \subset \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_n,$$

and

$$\mathfrak{g}_{N} \subset \mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{n-1},$$

where g_i is a Lie subalgebra of $sp(2, \mathbb{C})$, for i = 1, ..., n.

< 同 > < ∃ >

Transformation to hypergeometric equations

$$\ddot{\eta} = -\lambda \varphi(t)^{k-2} \eta,$$

 $\Gamma_{\varepsilon}: \qquad \varepsilon = \frac{1}{2} \dot{\varphi}^2 + \frac{1}{k} \varphi^k.$

Differential Galois group $\mathfrak{G}(k, \lambda) \subset \mathrm{Sp}(2, \mathbb{C})$. Yoshida transformation

$$z:=\frac{1}{\varepsilon k}\varphi(t)^k.$$

$$z(1-z)\eta'' + [c - (a+b+1)z]\eta' - ab\eta = 0,$$

$$a+b = \frac{k-2}{2k}, \quad ab = -\frac{\lambda_i}{2k}, \quad c = 1 - \frac{1}{k}.$$
(H)

Differenial Galois group $G(k, \lambda) \subset GL(2, \mathbb{C})$.

The identity component $\mathfrak{G}(k,\lambda)^{\circ}$ is isomorphic to $G(k,\lambda)^{\circ}$.

Proposition

If $G(k, \lambda)^{\circ}$ is solvable then it is Abelian.

Lemma (K)

The identity component $G(k, \lambda)^{\circ}$ of the differential Galois group of hypergeometric equation (H) is Abelian if and only if (k, λ) belong to the following list

3

Properties $G(\overline{k,\lambda})^{\circ}$

case	k	λ	
1.	±2	λ	
2.	k	$p+rac{k}{2}p(p-1)$	
3.	k	$\frac{1}{2}\left(\frac{k-1}{k}+p(p+1)k\right)$	
4.	3		$-\frac{1}{24}+\frac{3}{32}(1+4\rho)^2$
		$-rac{1}{24}+rac{3}{50}\left(1+5p ight)^2,$	$-rac{1}{24}+rac{6}{25}\left(1+5p ight)^2$
5.	4	$-rac{1}{8}+rac{2}{9}(1+3 ho)^2$	

æ

Properties $G(\overline{k, \lambda})^{\circ}$

case	k	λ	
6.	5	$-\frac{9}{40}+\frac{5}{18}(1+3\rho)^2,$	$-\frac{9}{40}+\frac{2}{5}(1+5\rho)^2$
7.	-3	$\frac{25}{24}-\frac{1}{6}(1+3p)^2,$	$\frac{25}{24} - \frac{3}{32} \left(1 + 4\rho\right)^2$
		$\frac{25}{24}-\frac{3}{50}\left(1+5\rho\right)^2,$	$\frac{25}{24} - \frac{6}{25} \left(1 + 5p\right)^2$
8.	-4	$\frac{9}{8}-\frac{2}{9}(1+3\rho)^2$	
9.	-5	$\frac{49}{40}-\frac{5}{18}(1+3\rho)^2,$	$\frac{49}{40} - \frac{2}{5}(1+5p)^2$

where p is an integer and λ an arbitrary complex number.

< D > < A > < B >

Outline

The problem

Outline of the Morales-Ramis theory Non-Hamilonian systems

- Hamiltonian systems

3 Back to the problem

- Two Theorems
- Application

Our TheoremExamples

5 Minimal parial integrability

A 1

Theorem

Assume that the Hamiltonian a natural Hamiltonian system system with a homogeneous potential $V \in \mathbb{C}(q)$ of degree $k \in \mathbb{Z}^*$ satisfies the following conditions:

- **1** there exists a non-zero $\mathbf{d} \in \mathbb{C}^n$ such that $V'(\mathbf{d}) = \mathbf{d}$, and
- 2 matrix $V''(\mathbf{d})$ is diagonalizable with eigenvalues $\lambda_1, \ldots, \lambda_{n-1}, \lambda_n = k 1$;
- the system admits 2n 1 functionally independent first integrals
 F₁ = H, F₂,..., F_{2n-1} which are meromorphic in a connected neighbourhood of phase curve Γ_ε.

< 同 > < ∃ >

Our Theorem

Theorem (continuation)

Then each (k, λ_i) belongs to the list from Lemma K, and moreover

- *if* |k| > 2, then each pair (k, λ_i) for $1 \le i \le n 1$, belongs to items 3–9 of the table from Lemma K;
- if |k| ≤ 2, then each pair (k, λ_i), for 1 ≤ i ≤ n − 1 belongs to the following list

case	k	λ	
Ι.	-2	1 – <i>r</i> ²	
11.	-1	1	(4
<i>III</i> .	1	0	
IV.	2	r ²	

э.

< ロ > < 同 > < 回 > < 回 > < 回 > <

$$V = Aq_1^k + Bq_2^k$$

- Darboux points $d_1 = (0, (\frac{1}{Bk})^{1/(k-2)})$ and $d_2 = ((\frac{1}{Ak})^{1/(k-2)}, 0)$ for $k \neq 2$; for d = (1, 0) and d = (0, 1)
- non-trivial eigenvalues λ(d_i) = 0 for k ≠ 2; for k = 2 λ(d₁) = B/A and λ(d₂) = A/B
- by our theorem, if V is integrable, then either k = -2, or k = 1 or k = 2 and, in this last case, $A/B = r^2$ for $r \in \mathbb{Q}^*$.

・ 同 ト イ ヨ ト イ ヨ ト

$$V = \alpha r^k, \quad r = \sqrt{q_1^2 + q_2^2}$$

- infinitely many Darboux points
- non-trivial eigenvalue at each of them λ(d) = 1. Thus, by our theorem, if V is superintegrable, then k = −1 or k = 2.

< A >

Three body problem

$$V = rac{1}{k} \left[(q_1 - q_2)^k + (q_2 - q_3)^k + (q_3 - q_1)^k
ight], \qquad k \in \mathbb{Z} \setminus \{0, 1\}$$

 $F_2 = p_1 + p_2 + p_3,$

Lemma

Assume that $k \in \mathbb{Z} \setminus \{-2, 0, 1, 2, 4\}$. Then the potential V is not integrable by meromorphic first integrals in the Liouville sense.

• k = 4, one additional first integral F_3 ;

• k = 2 two additional first integrals F_3 and F_4 ;

• k = -2 three additional first integrals F_3 , F_4 and F_5 ;

Lemma

Assume that $k \in \mathbb{Z} \setminus \{0, 1, -2\}$. Then the potential V is not maximally superintegrable by meromorphic first integrals.

A. J. Maciejewski (Poland)

Partial and superintegrabilty

Three body problem

$$V = rac{1}{k} \left[(q_1 - q_2)^k + (q_2 - q_3)^k + (q_3 - q_1)^k
ight], \qquad k \in \mathbb{Z} \setminus \{0, 1\}$$

 $F_2 = p_1 + p_2 + p_3,$

Lemma

Assume that $k \in \mathbb{Z} \setminus \{-2, 0, 1, 2, 4\}$. Then the potential V is not integrable by meromorphic first integrals in the Liouville sense.

- k = 4, one additional first integral F_3 ;
- k = 2 two additional first integrals F_3 and F_4 ;
- k = -2 three additional first integrals F_3 , F_4 and F_5 ;

Lemma

Assume that $k \in \mathbb{Z} \setminus \{0, 1, -2\}$. Then the potential V is not maximally superintegrable by meromorphic first integrals.

A. J. Maciejewski (Poland)

Partial and superintegrabilty

Three body problem

$$V = rac{1}{k} \left[(q_1 - q_2)^k + (q_2 - q_3)^k + (q_3 - q_1)^k
ight], \qquad k \in \mathbb{Z} \setminus \{0, 1\}$$

 $F_2 = p_1 + p_2 + p_3,$

Lemma

Assume that $k \in \mathbb{Z} \setminus \{-2, 0, 1, 2, 4\}$. Then the potential V is not integrable by meromorphic first integrals in the Liouville sense.

- k = 4, one additional first integral F_3 ;
- k = 2 two additional first integrals F_3 and F_4 ;
- k = -2 three additional first integrals F_3 , F_4 and F_5 ;

Lemma

Assume that $k \in \mathbb{Z} \setminus \{0, 1, -2\}$. Then the potential V is not maximally superintegrable by meromorphic first integrals.

A. J. Maciejewski (Poland)

Partial and superintegrabilty

Outline

The problem

2 Outline of the Morales-Ramis theory

- Non-Hamilonian systems
- Hamiltonian systems

Back to the problem

- Two Theorems
- Application

Our Theorem

Examples

5 Minimal parial integrability

< A >

38 N

Problem

Whether a Hamiltonian system admits just one odditional first integral?

Lemma

If H admits an additional first integral meromorphic in a neighbourhood of Γ , then dim $\mathcal{G}_N < (n-1)(2n-1)$, i.e., dim \mathcal{G}_N is not maximal.

< D > < P > < E > < E</p>

$$w_i'' = r_i w_i, \qquad r_i \in \mathbb{C}(z), \quad i = 1, \dots m,$$
 (P)

Theorem (Kolchin)

Assume then the differential Galois group G of the system (P) has dimension smaller than 3m. Then either the differential Galois group G_i for i-the equation has dimension smaller than 3, or there exist indices $1 \le i < j \le m$ and fundamental matrices W_i and W_j of solutions of i-th and j-th equations, such that

$$W_i = \alpha A W_j \tag{5}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

for a certain 2 × 2 matrix A with coefficients in $\mathbb{C}(z)$ and $\alpha^2 \in \mathbb{C}(z)$.

Lemma

Assume that each equation in the product (P) is Fuchsian and has singularities at $S := \{z_1, \ldots, z_l\} \in \mathbb{CP}^1$, and differential Galois group G of the system (P) has dimension smaller than 3m. If the second possibility the Kolchin Theorem occurs for *i*-th and *j*-th equations, then for all $z_* \in S$ the local monodromy matrices $M_i(z_*)$, $M_j(z_*)$ around point z_* of the respective equations, satisfy either $M_i(z_*) = M_j(z_*)$, or $M_i(z_*) = -M_j(z_*)$.

Theorem

Assume that a homogeneous potential $V \in \mathbb{C}(q)$ of degree $k \in \mathbb{Z}^*$ satisfies the following conditions:

- **1** there exists a non-zero $\mathbf{d} \in \mathbb{C}^n$ such that $V'(\mathbf{d}) = \mathbf{d}$, and
- 2 matrix $V''(\mathbf{d})$ is semi-simple with eigenvalues $\lambda_1, \ldots, \lambda_n = k 1$;
- the system admits an additional meromorphic first integral F in a connected neighbourhood of the phase curve Γ_ε.

Then either:

- **A1.** there exists $1 \le r < n$ such that pair (k, λ_r) belongs to the list from Lemma K, or
- **A2.** there exist $1 \le i < j < n$ such that

$$\frac{1}{2k}\sqrt{(k-2)^2+8k\lambda_i} = \frac{1}{2k}\sqrt{(k-2)^2+8k\lambda_j} + p,$$
 (6)

for some n ∈ 7/ A. J. Maciejewski (Poland)

$$V=(q_1^2+q_2^2)^2+rac{1}{2}\lambda q_3^2(q_1^2+q_2^2)+rac{1}{4}q_3^4, \quad \lambda\in\mathbb{C}.$$

• First integral $F = q_1 p_2 - q_2 p_1$.

- Darboux point d = (0, 0, 1).
- $V''(\mathbf{d}) = \text{diag}(\lambda, \lambda, 3).$

< □ > < 三 >

$$V=(q_1^2+q_2^2)^2+rac{1}{2}\lambda q_3^2(q_1^2+q_2^2)+rac{1}{4}q_3^4, \quad \lambda\in\mathbb{C}.$$

• First integral
$$F = q_1 p_2 - q_2 p_1$$
.

• Darboux point d = (0, 0, 1).

• $V''(\mathbf{d}) = \operatorname{diag}(\lambda, \lambda, 3).$

< 同 ▶ < 三 ▶

$$V=(q_1^2+q_2^2)^2+rac{1}{2}\lambda q_3^2(q_1^2+q_2^2)+rac{1}{4}q_3^4, \quad \lambda\in\mathbb{C}.$$

• First integral
$$F = q_1 p_2 - q_2 p_1$$
.

• Darboux point *d* = (0, 0, 1).

•
$$V''(\mathbf{d}) = \operatorname{diag}(\lambda, \lambda, 3).$$

< 🗇 🕨