Partial and superintegrabilty of Hamiltonian systems

Andrzej Maciejewski ${ }^{1}$, Maria Przybylska² and Haruo Yoshida ${ }^{3}$
${ }^{1}$ Institute of Astronomy, University of Zielona Góra
${ }^{3}$ Toruń Centre for Astronomy, Nicolaus Copernicus University
${ }^{3}$ National Astronomical Observatory of Japan, Mitaka

August 4, 2008

Outline

(1) The problem
(2) Outline of the Morales-Ramis theory

- Non-Hamilonian systems
- Hamiltonian systems
(3) Back to the problem
- Two Theorems
- Application

4) Our Theorem

- Examples
(5) Minimal parial integrability

Outline

(1) The problem

(2) Outline of the Morales-Ramis theory

- Non-Hamilonian systems
- Hamiltonian systems
(3) Back to the problem
- Two Theorems
- Application
(4) Our Theorem
- Examples
(5) Minimal parial integrability

Hamiltonian systems

- Complex analytic symplectic manifold: $\left(M^{2 n}, \omega\right)$. Our main example

$$
M^{2 n}=\mathbb{C}^{2 n}, \quad \omega=\sum_{i=1}^{n} \mathrm{~d} q_{i} \wedge \mathrm{~d} p_{i}
$$

- Holomorphic Hamiltonian: $H: M^{2 n} \rightarrow \mathbb{C}$. Our main example

Hamiltonian systems

- Complex analytic symplectic manifold: $\left(M^{2 n}, \omega\right)$. Our main example

$$
M^{2 n}=\mathbb{C}^{2 n}, \quad \omega=\sum_{i=1}^{n} \mathrm{~d} q_{i} \wedge \mathrm{~d} p_{i}
$$

- Holomorphic Hamiltonian: $H: M^{2 n} \rightarrow \mathbb{C}$. Our main example

$$
H=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+V\left(q_{1}, \ldots, q_{n}\right)
$$

where

$$
V \in \mathbb{C}\left(q_{1}, \ldots, q_{n}\right)=: \mathbb{C}(\boldsymbol{q})
$$

Hamiltonian systems

- Hamiltonian vector field: $X_{H}, \omega\left(X_{H}, Y\right)=\mathrm{d} H \cdot Y$. In our example

$$
X_{H}=\sum_{i=1}^{n}\left(p_{i} \frac{\partial}{\partial q_{i}}-\frac{\partial V}{\partial q_{i}} \frac{\partial}{\partial p_{i}}\right)
$$

- First integrals of $X_{H}:\{H, F\}=0$.

Hamiltonian systems

- Hamiltonian vector field: $X_{H}, \omega\left(X_{H}, Y\right)=\mathrm{d} H \cdot Y$. In our example

$$
X_{H}=\sum_{i=1}^{n}\left(p_{i} \frac{\partial}{\partial q_{i}}-\frac{\partial V}{\partial q_{i}} \frac{\partial}{\partial p_{i}}\right)
$$

- Poisson bracket: $\{F, G\}:=\omega\left(X_{F}, X_{G}\right)$. In our example

$$
\{F, G\}:=\sum_{i=1}^{n}\left(\frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}}-\frac{\partial F}{\partial p_{i}} \frac{\partial G}{\partial q_{i}}\right)
$$

Hamiltonian systems

- Hamiltonian vector field: $X_{H}, \omega\left(X_{H}, Y\right)=\mathrm{d} H \cdot Y$. In our example

$$
X_{H}=\sum_{i=1}^{n}\left(p_{i} \frac{\partial}{\partial q_{i}}-\frac{\partial V}{\partial q_{i}} \frac{\partial}{\partial p_{i}}\right)
$$

- Poisson bracket: $\{F, G\}:=\omega\left(X_{F}, X_{G}\right)$. In our example

$$
\{F, G\}:=\sum_{i=1}^{n}\left(\frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}}-\frac{\partial F}{\partial p_{i}} \frac{\partial G}{\partial q_{i}}\right)
$$

- First integrals of $X_{H}:\{H, F\}=0$.

Integrability

Definition

A Hamiltonian system is partially integrable iff

- it admits independent first integrals $F_{1}=H, \ldots, F_{m}, 1<m \leq n$, and
- $\left\{F_{i}, F_{j}\right\}=0$, for $1<i, j<m$.
\square
\square
- it admits independent first integrals $F_{1}=H$, and

Integrability

Definition

A Hamiltonian system is partially integrable iff

- it admits independent first integrals $F_{1}=H, \ldots, F_{m}, 1<m \leq n$, and
- $\left\{F_{i}, F_{j}\right\}=0$, for $1<i, j<m$.

Definition

A Hamiltonian system is superintegrable iff

- it admits independent first integrals $F_{1}=H, \ldots, F_{n+m}, 1 \leq m<n$, and
- $\left\{F_{i}, F_{j}\right\}=0$, for $1 \leq i, j \leq n$.

Our problem

Problem

Find necessary conditions for partial and superintegrabilty for an arbitrary $1<m<n$.
\square
In the frame of the of the differential Galois approach to the integrability (Morales-Ramis theory).

Our problem

Problem

Find necessary conditions for partial and superintegrabilty for an arbitrary $1<m<n$.
... method?

In the frame of the of the differential Galois approach to the intearability (Morales-Ramis theorv).

Our problem

Problem

Find necessary conditions for partial and superintegrabilty for an arbitrary $1<m<n$.
method?

Hint

In the frame of the of the differential Galois approach to the integrability (Morales-Ramis theory).

Outline

(1) The problem

(2) Outline of the Morales-Ramis theory

- Non-Hamilonian systems
- Hamiltonian systems
(3) Back to the problem
- Two Theorems
- Application
(4) Our Theorem
- Examples
(5) Minimal parial integrability

Variational equations

Main Idea

A non-linear system leaves fingerprints of its properties in variational equations.

Main assumption: for a given holomorphic system

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{x}=\boldsymbol{v}(\boldsymbol{x}), \quad \boldsymbol{x} \in M^{n}, \quad t \in \mathbb{C} \tag{1}
\end{equation*}
$$

we know a non-equilibrium particular solution $\varphi(t), \Gamma$ is the corresponding phase curve.

Variational equations

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{\xi}=A(t) \boldsymbol{\xi}, \quad A(t)=\frac{\partial \boldsymbol{v}}{\partial \boldsymbol{x}}(\varphi(t)), \quad \xi \in T_{\Gamma} M^{n} \tag{2}
\end{equation*}
$$

Leading terms

Definition

The leading term f of a holomorphic function F is the lowest order term of an expansion

$$
F(\varphi(t)+\boldsymbol{\xi})=F_{m}(\boldsymbol{\xi})+O\left(\|\boldsymbol{\xi}\|^{m+1}\right), \quad F_{m} \neq 0
$$

i.e., $f(\xi):=F_{m}(\xi)$. Note that $f(\xi)$ is a homogeneous polynomial with respect to $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right)$ of degree m and its coefficients are polynomials in $\varphi(t)$.

Definition

If F is a meromorphic function, then $F=P / Q$ for certain holomorphic functions P and Q. In this case, the leading term f of F is defined as $f=p / q$, where p and q are leading terms of P and Q, respectively. As result $f(\xi)$ is a homogeneous rational function of $\boldsymbol{\xi}$.

First integrals of the system and its VEs

First implication

If F is a meromorphic (holomorphic) first integral of the differential system, then its leading term f is a rational (polynomial) first integral of variational equations. Similarly, If the system possesses $k \geq 2$ functionally independent meromorphic first integrals F_{1}, \ldots, F_{k}, then, by the Ziglin Lemma, VEs have k functionally independent rational first integrals. Warning: generally they are NOT leading terms of F_{1}, \ldots, F_{k} !

Second implication

If $\mathcal{G} \subset \mathrm{GL}(n, \mathbb{C})$ is the differential Galois group of (2), and $f \in \mathbb{C}(\xi)$ its rational first integral of variational equations, then $\left(g^{-1} \cdot f\right)(\xi):=f(g(\xi))=f(\xi)$ for every $g \in \mathcal{G}$, i.e., f is a rational invariant of group \mathcal{G}.

Correspondence between first integrals of the system and invariants of DGG

Theorem

If system has k functionally independent first integrals which are meromorphic in a connected neighbourhood of a non-equilibrium solution $\varphi(t)$, then the differential Galois group \mathcal{G} of the variational equations along $\varphi(t)$ has k functionally independent rational invariants.

$$
\mathbb{C}(\boldsymbol{x})^{\mathcal{G}}:=\{f \in \mathbb{C}(\boldsymbol{x}) \mid g \cdot f=f \quad \text { for all } \quad g \in \mathcal{G}\}
$$

Fact

The differential Galois group \mathcal{G} of a system of linear equations is a linear algebraic group, so in particular it is also a Lie group.

Passing to Lie algebras

$\mathfrak{g} \subset \operatorname{gl}(n, \mathbb{C})$ - the Lie algebra of \mathcal{G}.
With a $Y \in \mathfrak{g}$ we connect a linear vector field:

$$
\boldsymbol{x} \mapsto Y(\boldsymbol{x}):=Y \cdot \boldsymbol{x}
$$

for $\boldsymbol{x} \in \mathbb{C}^{n}$.

Definition

$f \in \mathbb{C}(\boldsymbol{x})$ is an integral of \mathfrak{g}, iff $L_{Y}(f)=0$ for all $Y \in \mathfrak{g}$.

$$
\mathbb{C}(\boldsymbol{x})^{\mathfrak{g}}:=\left\{f \in \mathbb{C}(\boldsymbol{x}) \mid L_{Y}(f)=0 \quad \text { for all } \quad Y \in \mathfrak{g}\right\}
$$

Lemma

If $f_{1}, \ldots, f_{k} \in \mathbb{C}(\boldsymbol{x})^{\mathcal{G}}$ are algebraically independent invariants of an algebraic group $\mathcal{G} \subset \mathrm{GL}(n, \mathbb{C})$, then $f_{1}, \ldots, f_{k} \in \mathbb{C}(\boldsymbol{x})^{\mathfrak{g}}$, where \mathfrak{g} is the Lie algebra of \mathcal{G}.

Normal Variational Equations

Fact

$\boldsymbol{v}(\varphi(t))$ is a non-zero solution of VEs

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{\xi}=\frac{\partial \boldsymbol{v}}{\partial \boldsymbol{x}}(\varphi(t)) \boldsymbol{\xi} .
$$

The reduction gives NVEs

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{\eta}=A_{\mathrm{N}}(t) \boldsymbol{\eta}, \quad \boldsymbol{\eta} \in \mathbb{C}^{n-1}
$$

Formally

$$
\begin{gathered}
N=T_{\Gamma} M^{n} / T \Gamma, \quad \pi: T_{\Gamma} M^{n} \rightarrow F, \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \boldsymbol{\eta}=\pi_{\star}\left(T \boldsymbol{v}(\boldsymbol{x}) \pi^{-1}(\boldsymbol{\eta})\right), \quad \boldsymbol{\eta} \in N
\end{gathered}
$$

Main Theorem

Fact

For a Hamiltonian system the differential Galois group \mathcal{G} of variatonal equations is a subgroup of $\operatorname{Sp}(2 n, \mathbb{C})$ and its Lie algebra \mathfrak{g} is a Lie subalgebra of $\operatorname{sp}(2 n, \mathbb{C})$.

Main Theorem

Fact

For a Hamiltonian system the differential Galois group \mathcal{G} of variatonal equations is a subgroup of $\operatorname{Sp}(2 n, \mathbb{C})$ and its Lie algebra \mathfrak{g} is a Lie subalgebra of $\mathrm{sp}(2 n, \mathbb{C})$.

Theorem (Morales-Ramis)

Assume that a Hamiltonian system is meromorphically integrable in the Liouville sense in a neighbourhood of the analytic phase curve Γ. Then the Lie algebra \mathfrak{g} of the differential Galois group \mathcal{G} of the variational equations along Γ is Abelian.

Outline of the proof

(1) Commuting independent first integrals F_{1}, \ldots, F_{n} of X_{H} give rational, commuting and indepenent first integrals $f_{1}, \ldots f_{n}$ of variational variational equations (Ziglin)
differential Galois group of variational equations.

Outline of the proof

(1) Commuting independent first integrals F_{1}, \ldots, F_{n} of X_{H} give rational, commuting and indepenent first integrals $f_{1}, \ldots f_{n}$ of variational variational equations (Ziglin)
(2) Thus, $f_{1}, \ldots f_{n} \in \mathbb{C}(\boldsymbol{x}, \boldsymbol{y})^{\mathfrak{g}}$, where \mathfrak{g} is the Lie algebra of the differential Galois group of variational equations.

Outline of the proof

(1) Commuting independent first integrals F_{1}, \ldots, F_{n} of X_{H} give rational, commuting and indepenent first integrals $f_{1}, \ldots f_{n}$ of variational variational equations (Ziglin)
(2) Thus, $f_{1}, \ldots f_{n} \in \mathbb{C}(\boldsymbol{x}, \boldsymbol{y})^{\mathfrak{g}}$, where \mathfrak{g} is the Lie algebra of the differential Galois group of variational equations.
(3) Missing point:

Lemma (Key Lemma)

If a Lie algebra $\mathfrak{g} \subset \operatorname{sp}(2 n, \mathbb{C})$ admits n independent and commuting first integrals, then it is Abelian.

NVEs for Hamiltonian Systems

Double reduction

Restrict Hamilton's equations to the level $E=H(\varphi(t))$ and then reduce VEs to the normal boundle.

$$
\frac{\mathrm{d}}{\mathrm{~d} \boldsymbol{t}} \boldsymbol{\eta}=A_{\mathrm{N}}(t) \boldsymbol{\eta}, \quad \boldsymbol{\eta} \in \mathbb{C}^{2 n-2} .
$$

Fact I

\mathcal{G}_{N} is a linear algebraic subgroup of $\mathrm{Sp}(2 n-2, \mathbb{C})$.

Fact II

The Morales-Ramis Theorem is true if we change VEs to NVEs.

Outline

(1) The problem

(2) Outline of the Morales-Ramis theory

- Non-Hamilonian systems
- Hamiltonian systems
(3) Back to the problem
- Two Theorems
- Application
(4) Our Theorem
- Examples
(5) Minimal parial integrability

Maximally superintegrable Hamiltonian systems

Theorem (I)

Assume that a holomorphic Hamiltonian system with n degrees admits $2 n-1$ first integrals which are meromorphic in a neighbourhood U of a phase curve Γ and independent in $U \backslash \Gamma$. Then the Lie algebra $\mathfrak{g}_{\mathrm{N}}$ of the differential Galois group \mathcal{G}_{N} of the normal variational equations along Γ is the zero algebra, i.e., \mathcal{G}_{N} is a finite subgroup of $\mathrm{Sp}(2 n-2, \mathbb{C})$.

Proof

- \mathcal{G}_{N} admits $2 n-2$ independent rational first integrals $f_{1}, \ldots, f_{2 n-2}$;

Proof

- \mathcal{G}_{N} admits $2 n-2$ independent rational first integrals $f_{1}, \ldots, f_{2 n-2}$;
- for each $Y \in \mathfrak{g}_{\mathrm{N}} \subset \operatorname{sp}(2 n-2, \mathbb{C}), Y\left(f_{i}\right)=0$ for $i=1, \ldots, 2 n-2$, thus $Y=0$.

Maximally superintegrable non-Hamiltonian systems

Theorem (II)

Assume that a holomorphic n-dimensional system admits $n-1$ first integrals which are meromorphic in a neighbourhood U of a phase curve Γ and independent in $U \backslash \Gamma$. Then the Lie algebra $\mathfrak{g}_{\mathrm{N}}$ of the differential Galois group \mathcal{G}_{N} of the normal variational equations along Γ is the zero algebra, i.e., \mathcal{G}_{N} is a finite subgroup of $\mathrm{GL}(n-1, \mathbb{C})$.

Darboux Points and Particular Solutions

Assumption

Potential $V \in \mathbb{C}(\boldsymbol{q})$ is homogeneous and $\operatorname{deg} V=k \in \mathbb{Z}^{\star}$.

Definition

Darboux point $\boldsymbol{d} \in \mathbb{C}^{n}$ is a solution of

$$
V^{\prime}(\boldsymbol{d})=\boldsymbol{d}, \quad \boldsymbol{d} \neq \mathbf{0} .
$$

Particular solution

$$
\boldsymbol{q}(t)=\varphi(t) \boldsymbol{d}, \quad \boldsymbol{p}(t)=\dot{\varphi}(t) \boldsymbol{d}, \quad \text { provided } \quad \ddot{\varphi}=-\varphi^{k-1} .
$$

Phase curve Γ_{ε} :

$$
\dot{\varphi}^{2}=\frac{2}{k}\left(\varepsilon-\varphi^{k}\right)
$$

Variational equations

$$
\ddot{\boldsymbol{x}}=-\varphi(t)^{k-2} V^{\prime \prime}(\boldsymbol{d}) \boldsymbol{x} .
$$

If $V^{\prime \prime}(\boldsymbol{d})$ is diagonalisable, then in an appropiate base

$$
\begin{equation*}
\ddot{y}_{i}=-\lambda_{i} \varphi(t)^{k-2} y_{i}, \quad 1 \leq i \leq n, \tag{3}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of $V^{\prime \prime}(\boldsymbol{d})$. One of these eigenvalues, let us say λ_{n} is $k-1$.

Differential Galois group

$$
\mathcal{G} \subset \mathcal{G}\left(\lambda_{1}\right) \times \cdots \times \mathcal{G}\left(\lambda_{n}\right) \subset \operatorname{Sp}(2 n, \mathbb{C}), \quad \mathcal{G}\left(\lambda_{i}\right) \subset \operatorname{Sp}(2, \mathbb{C})
$$

and

$$
\mathcal{G}_{\mathrm{N}} \subset \mathcal{G}\left(\lambda_{1}\right) \times \cdots \times \mathcal{G}\left(\lambda_{n-1}\right) \subset \operatorname{Sp}(2 n-2, \mathbb{C}), \quad \mathcal{G}\left(\lambda_{i}\right) \subset \operatorname{Sp}(2, \mathbb{C})
$$

Hence

$$
\mathfrak{g} \subset \mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{n}
$$

and

$$
\mathfrak{g}_{\mathrm{N}} \subset \mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{n-1}
$$

where \mathfrak{g}_{i} is a Lie subalgebra of $\operatorname{sp}(2, \mathbb{C})$, for $i=1, \ldots, n$.

Transformation to hypergeometric equations

$$
\begin{gathered}
\ddot{\eta}=-\lambda \varphi(t)^{k-2} \eta, \\
\Gamma_{\varepsilon}: \quad \varepsilon=\frac{1}{2} \dot{\varphi}^{2}+\frac{1}{k} \varphi^{k} .
\end{gathered}
$$

Differential Galois group $\mathcal{G}(k, \lambda) \subset \operatorname{Sp}(2, \mathbb{C})$.
Yoshida transformation

$$
z:=\frac{1}{\varepsilon k} \varphi(t)^{k}
$$

$$
\begin{align*}
& z(1-z) \eta^{\prime \prime}+[c-(a+b+1) z] \eta^{\prime}-a b \eta=0 \\
& a+b=\frac{k-2}{2 k}, \quad a b=-\frac{\lambda_{j}}{2 k}, \quad c=1-\frac{1}{k} \tag{H}
\end{align*}
$$

Differenial Galois group $G(k, \lambda) \subset G L(2, \mathbb{C})$.

Properties of $\mathrm{G}(k, \lambda)^{\circ}$

Fact

The identity component $\mathcal{G}(k, \lambda)^{\circ}$ is isomorphic to $G(k, \lambda)^{\circ}$.

Proposition

If $G(k, \lambda)^{\circ}$ is solvable then it is Abelian.

Lemma (K)

The identity component $G(k, \lambda)^{\circ}$ of the differential Galois group of hypergeometric equation (H) is Abelian if and only if (k, λ) belong to the following list

Properties $\mathrm{G}(k, \lambda)^{\circ}$

$$
\left.\begin{array}{ccc}
\text { case } & k & \lambda \\
\hline \text { 1. } & \pm 2 & \lambda \\
\text { 2. } & k & p+\frac{k}{2} p(p-1) \\
\text { 3. } & k & \frac{1}{2}\left(\frac{k-1}{k}+p(p+1) k\right) \\
\text { 4. } & 3 & -\frac{1}{24}+\frac{1}{6}(1+3 p)^{2}, \\
& & -\frac{1}{24}+\frac{3}{32}(1+4 p)^{2} \\
& & -\frac{3}{50}(1+5 p)^{2},
\end{array}-\frac{1}{24}+\frac{6}{25}(1+5 p)^{2}\right)
$$

Properties $G(k, \lambda)^{\circ}$

$$
\begin{array}{cccc}
\text { case } & k & \lambda \\
\hline \text { 6. } & 5 & -\frac{9}{40}+\frac{5}{18}(1+3 p)^{2}, & -\frac{9}{40}+\frac{2}{5}(1+5 p)^{2} \\
\text { 7. } & -3 & \frac{25}{24}-\frac{1}{6}(1+3 p)^{2}, & \frac{25}{24}-\frac{3}{32}(1+4 p)^{2} \\
& & \frac{25}{24}-\frac{3}{50}(1+5 p)^{2}, & \frac{25}{24}-\frac{6}{25}(1+5 p)^{2} \\
& & & \\
\text { 8. } & -4 & \frac{9}{8}-\frac{2}{9}(1+3 p)^{2} \\
\text { 9. } & -5 & \frac{49}{40}-\frac{5}{18}(1+3 p)^{2}, & \frac{49}{40}-\frac{2}{5}(1+5 p)^{2}
\end{array}
$$

where p is an integer and λ an arbitrary complex number.

Outline

(1) The problem

(2) Outline of the Morales-Ramis theory

- Non-Hamilonian systems
- Hamiltonian systems
(3) Back to the problem
- Two Theorems
- Application

4 Our Theorem

- Examples
(5) Minimal parial integrability

Theorem

Assume that the Hamiltonian a natural Hamiltonian system system with a homogeneous potential $V \in \mathbb{C}(\boldsymbol{q})$ of degree $k \in \mathbb{Z}^{\star}$ satisfies the following conditions:
(1) there exists a non-zero $\boldsymbol{d} \in \mathbb{C}^{n}$ such that $V^{\prime}(\boldsymbol{d})=\boldsymbol{d}$, and
(2) matrix $V^{\prime \prime}(\boldsymbol{d})$ is diagonalizable with eigenvalues
$\lambda_{1}, \ldots, \lambda_{n-1}, \lambda_{n}=k-1$;
(3) the system admits $2 n-1$ functionally independent first integrals $F_{1}=H, F_{2}, \ldots, F_{2 n-1}$ which are meromorphic in a connected neighbourhood of phase curve Γ_{ε}.

Our Theorem

Theorem (continuation)

Then each (k, λ_{i}) belongs to the list from Lemma K, and moreover

- if $|k|>2$, then each pair $\left(k, \lambda_{i}\right)$ for $1 \leq i \leq n-1$, belongs to items 3-9 of the table from Lemma K;
- if $|k| \leq 2$, then each pair $\left(k, \lambda_{i}\right)$, for $1 \leq i \leq n-1$ belongs to the following list

$$
\text { case } \quad k \quad \lambda
$$

I. $-21-r^{2}$
II. $\begin{array}{ll}-1 & 1\end{array}$
III. 10
IV. $2 r^{2}$
where $r \in \mathbb{Q}^{\star}$;

Separable potential

$$
V=A q_{1}^{k}+B q_{2}^{k}
$$

- Darboux points $\boldsymbol{d}_{1}=\left(0,\left(\frac{1}{B k}\right)^{1 /(k-2)}\right)$ and $\boldsymbol{d}_{2}=\left(\left(\frac{1}{A k}\right)^{1 /(k-2)}, 0\right)$ for $k \neq 2$; for $\boldsymbol{d}=(1,0)$ and $\boldsymbol{d}=(0,1)$
- non-trivial eigenvalues $\lambda\left(\boldsymbol{d}_{i}\right)=0$ for $k \neq 2$; for $k=2 \lambda\left(\boldsymbol{d}_{1}\right)=B / A$ and $\lambda\left(\boldsymbol{d}_{2}\right)=A / B$
- by our theorem, if V is integrable, then either $k=-2$, or $k=1$ or $k=2$ and, in this last case, $A / B=r^{2}$ for $r \in \mathbb{Q}^{\star}$.

Radial potential

$$
V=\alpha r^{k}, \quad r=\sqrt{q_{1}^{2}+q_{2}^{2}}
$$

- infintely many Darboux points
- non-trivial eigenvalue at each of them $\lambda(\boldsymbol{d})=1$. Thus, by our theorem, if V is superintegrable, then $k=-1$ or $k=2$.

Three body problem

$$
\begin{gathered}
V=\frac{1}{k}\left[\left(q_{1}-q_{2}\right)^{k}+\left(q_{2}-q_{3}\right)^{k}+\left(q_{3}-q_{1}\right)^{k}\right], \quad k \in \mathbb{Z} \backslash\{0,1\} \\
F_{2}=p_{1}+p_{2}+p_{3}
\end{gathered}
$$

Lemma

Assume that $k \in \mathbb{Z} \backslash\{-2,0,1,2,4\}$. Then the potential V is not integrable by meromorphic first integrals in the Liouville sense.

- $k=4$, one additional first integral F_{3};

Lemma

Assume that $k \in \mathbb{Z} \backslash\{0,1,-2\}$. Then the potential V is not maximally superintegrable by meromorphic first integrals.

Three body problem

$$
\begin{gathered}
V=\frac{1}{k}\left[\left(q_{1}-q_{2}\right)^{k}+\left(q_{2}-q_{3}\right)^{k}+\left(q_{3}-q_{1}\right)^{k}\right], \quad k \in \mathbb{Z} \backslash\{0,1\} \\
F_{2}=p_{1}+p_{2}+p_{3}
\end{gathered}
$$

Lemma

Assume that $k \in \mathbb{Z} \backslash\{-2,0,1,2,4\}$. Then the potential V is not integrable by meromorphic first integrals in the Liouville sense.

- $k=4$, one additional first integral F_{3};
- $k=2$ two additional first integrals F_{3} and F_{4};

Lemma

Assume that $k \in \mathbb{Z} \backslash\{0,1,-2\}$. Then the potential V is not maximally superintegrable by meromorphic first integrals.

Three body problem

$$
\begin{gathered}
V=\frac{1}{k}\left[\left(q_{1}-q_{2}\right)^{k}+\left(q_{2}-q_{3}\right)^{k}+\left(q_{3}-q_{1}\right)^{k}\right], \quad k \in \mathbb{Z} \backslash\{0,1\} \\
F_{2}=p_{1}+p_{2}+p_{3}
\end{gathered}
$$

Lemma

Assume that $k \in \mathbb{Z} \backslash\{-2,0,1,2,4\}$. Then the potential V is not integrable by meromorphic first integrals in the Liouville sense.

- $k=4$, one additional first integral F_{3};
- $k=2$ two additional first integrals F_{3} and F_{4};
- $k=-2$ three additional first integrals F_{3}, F_{4} and F_{5};

Lemma

Assume that $k \in \mathbb{Z} \backslash\{0,1,-2\}$. Then the potential V is not maximally superintegrable by meromorphic first integrals.

Outline

(1) The problem

(2) Outline of the Morales-Ramis theory

- Non-Hamilonian systems
- Hamiltonian systems
(5) Back to the problem
- Two Theorems
- Application
(4) Our Theorem
- Examples
(5) Minimal parial integrability
A. J. Maciejewski (Poland)

Restriction of the problem

Problem

Whether a Hamiltonian system admits just one odditional first integral?

Lemma

If H admits an additional first integral meromorphic in a neighbourhood of Γ, then $\operatorname{dim} \mathcal{G}_{\mathrm{N}}<(n-1)(2 n-1)$, i.e., $\operatorname{dim} \mathcal{G}_{\mathrm{N}}$ is not maximal.

Certain Kolchin Theorem

$$
\begin{equation*}
w_{i}^{\prime \prime}=r_{i} w_{i}, \quad r_{i} \in \mathbb{C}(z), \quad i=1, \ldots m \tag{P}
\end{equation*}
$$

Theorem (Kolchin)

Assume then the differential Galois group G of the system (P) has dimension smaller than $3 m$. Then either the differential Galois group G_{i} for i-the equation has dimension smaller than 3 , or there exist indices $1 \leq i<j \leq m$ and fundamental matrices W_{i} and W_{j} of solutions of i-th and j-th equations, such that

$$
\begin{equation*}
W_{i}=\alpha A W_{j} \tag{5}
\end{equation*}
$$

for a certain 2×2 matrix A with coefficients in $\mathbb{C}(z)$ and $\alpha^{2} \in \mathbb{C}(z)$.

Our Lemma

Lemma

Assume that each equation in the product (P) is Fuchsian and has singularities at $S:=\left\{z_{1}, \ldots, z_{l}\right\} \in \mathbb{C P}^{1}$, and differential Galois group G of the system (P) has dimension smaller than $3 m$. If the second possibility the Kolchin Theorem occurs for i-th and j-th equations, then for all $z_{\star} \in S$ the local monodromy matrices $M_{i}\left(z_{\star}\right), M_{j}\left(z_{\star}\right)$ around point z_{\star} of the respective equations, satisfy either $M_{i}\left(z_{\star}\right)=M_{j}\left(z_{\star}\right)$, or $M_{i}\left(z_{\star}\right)=-M_{j}\left(z_{\star}\right)$.

Our Theorem

Theorem

Assume that a homogeneous potential $V \in \mathbb{C}(\boldsymbol{q})$ of degree $k \in \mathbb{Z}^{\star}$ satisfies the following conditions:
(1) there exists a non-zero $\boldsymbol{d} \in \mathbb{C}^{n}$ such that $V^{\prime}(\boldsymbol{d})=\boldsymbol{d}$, and
(2) matrix $V^{\prime \prime}(\boldsymbol{d})$ is semi-simple with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}=k-1$;
(3) the system admits an additional meromorphic first integral F in a connected neighbourhood of the phase curve Γ_{ε}.
Then either:
A1. there exists $1 \leq r<n$ such that pair $\left(k, \lambda_{r}\right)$ belongs to the list from Lemma K, or
A2. there exist $1 \leq i<j<n$ such that

$$
\begin{equation*}
\frac{1}{2 k} \sqrt{(k-2)^{2}+8 k \lambda_{i}}=\frac{1}{2 k} \sqrt{(k-2)^{2}+8 k \lambda_{j}}+p, \tag{6}
\end{equation*}
$$

for some $n \in \mathbb{Z}$.
A. J. Maciejewski (Poland)

Partial and superintegrabilty
August 4, 2008

The second possibility

$$
V=\left(q_{1}^{2}+q_{2}^{2}\right)^{2}+\frac{1}{2} \lambda q_{3}^{2}\left(q_{1}^{2}+q_{2}^{2}\right)+\frac{1}{4} q_{3}^{4}, \quad \lambda \in \mathbb{C} .
$$

- First integral $F=q_{1} p_{2}-q_{2} p_{1}$.

The second possibility

$$
V=\left(q_{1}^{2}+q_{2}^{2}\right)^{2}+\frac{1}{2} \lambda q_{3}^{2}\left(q_{1}^{2}+q_{2}^{2}\right)+\frac{1}{4} q_{3}^{4}, \quad \lambda \in \mathbb{C} .
$$

- First integral $F=q_{1} p_{2}-q_{2} p_{1}$.
- Darboux point $\boldsymbol{d}=(0,0,1)$.

The second possibility

$$
V=\left(q_{1}^{2}+q_{2}^{2}\right)^{2}+\frac{1}{2} \lambda q_{3}^{2}\left(q_{1}^{2}+q_{2}^{2}\right)+\frac{1}{4} q_{3}^{4}, \quad \lambda \in \mathbb{C} .
$$

- First integral $F=q_{1} p_{2}-q_{2} p_{1}$.
- Darboux point $\boldsymbol{d}=(0,0,1)$.
- $V^{\prime \prime}(\boldsymbol{d})=\operatorname{diag}(\lambda, \lambda, 3)$.

