Integrability properties of the geodesic equation in sub-Riemannian spaces

Witold Respondek
Laboratory of Mathematics, INSA de Rouen
France
based on a joint research with
Andrzej J. Maciejewski
Institute of Astronomy, University of Zielona Góra Poland
30 Years of Bi-Hamiltonian Systems
Bȩdlewo, August 3-9, 2008

Aim

- To study integrability of the geodesic equation (adjoint equation) in sub-Riemannian problems.
- To show usefulness of the Morales-Ramis theory in proving nonintegrability.

Plan

- Sub-Riemannian manifolds
- Geodesic equation
- Classification of integrable homogeneous sub-Riemannian problems in dimension 3
- Nilpotent approximations of 3-dim. sub-Riemannian manifolds
- Integrability and nonintegrability in the tangent case
- Morales-Ramis theorem and differential Galois group
- Optimal energy of the transfer pulses for the n-level quantum system and nonintegrability for $n \geq 4$

Sub-Riemannian manifold

A sub-Riemannian manifold is a triple (M, \mathcal{D}, B), where

- M is a smooth manifold,
- \mathcal{D} is a smooth distribution of rank m on M
- B a smoothly varying positive definite bilinear form on \mathcal{D}, that is, a smoothly varying scalar product on \mathcal{D}.

Controllability: Rashevsky and Chow

Put $\mathcal{D}_{0}=\mathcal{D}$ and $\mathcal{D}_{s+1}=\mathcal{D}_{s}+\left[\mathcal{D}, \mathcal{D}_{s}\right]$. If for each point $q \in M$, there exists an integer $r(q)$ (called the nonholonomy degree at q) such that $\mathcal{D}_{r(q)}(q)=T_{q} M$, then any two points in M can be joined by a curve that is almost everywhere tangent to \mathcal{D}, called a horizontal curve.

Sub-Riemannian metric

Put $\|v\|=(B(v, v))^{1 / 2}$, for any $v \in \mathcal{D}(q) \subset T_{q} M$, and let $\gamma: I \rightarrow M$ be a horizontal curve. We define the length $l(\gamma)$ of γ as

$$
l(\gamma)=\int_{I}\|\dot{\gamma}(t)\| d t
$$

We can thus endow M with a metric d : the sub-Riemannian distance $d\left(q_{1}, q_{2}\right)$ between two pints q_{1} and q_{2} is the infimum of $l(\gamma)$ over all horizontal curves joining q_{1} and q_{2}.

- Sub-Riemannian geometry problem: find horizontal curves minimizing the length $l(\gamma)$, i.e., find sub-Riemannian geodesics.

Minimizing: energy versus length

- The energy $E(\gamma)$ of a curve γ is defined as

$$
E(\gamma)=\frac{1}{2} \int_{I}\|\dot{\gamma}(t)\|^{2} d t .
$$

- Analytically it is more convenient to minimize the energy $E(\gamma)$ rather than the length $l(\gamma)$.
- As in Riemannian geometry, due to Cauchy-Schwartz inequality, the minimizers of both problems coincide. Namely, a horizontal curve γ minimizes the energy E among all horizontal curves joining q_{1} and q_{2} in time T if and only if it minimizes the length l among all horizontal curves joining q_{1} and q_{2} and is parameterized to have constant speed $c=d\left(q_{1}, q_{2}\right) / T$.

Sub-Riemannian hamiltonian

- Choose a local orthonormal frame $\left\langle X_{1}, \ldots, X_{m}\right\rangle$ of \mathcal{D}, that is, $B\left(X_{i}, X_{j}\right)=\delta_{i j}$.
- Consider each X_{i} as a fiber-linear function on $T^{*} M$. Then each X_{i}^{2} can be interpreted as a fiber-quadratic function on $T^{*} M$
- We have

$$
h=\frac{1}{2}\left(X_{1}^{2}+\cdots+X_{m}^{2}\right) .
$$

The hamiltonian equation associated with h will be called geodesic equation.

- The projections to M of its solutions are sub-Riemannian geodesics, called normal geodesics. Notice that in the general case there may exist length minimizing horizontal curves that are not projections of solutions of the geodesic equation (Montgomery).

Formulating an optimal control problem

- For a given framing $\mathcal{D}=\left\langle X_{1}, \ldots, X_{m}\right\rangle$ by m orthonormal vector fields, any integral curve $q(t)$ of \mathcal{D} satisfies

$$
\Sigma: \quad \dot{q}(t)=\sum_{i=1}^{m} X_{i}(q(t)) u_{i}(t)
$$

where $u_{i}(t)$, for $1 \leq i \leq m$, are controls.

- A geodesic is a trajectory of Σ that minimizes the energy

$$
E=\frac{1}{2} \int_{I} \sum_{i=1}^{m} u_{i}^{2}(t) d t
$$

- The geometric problem of minimizing the subriemannian distance is the optimal control problem of minimizing the energy E for the control-linear system Σ.

Pontryagin Maximum Principle (PMP)

- To solve this optimal control problem, we will apply the Pontryagin Maximum Principle (PMP) to the problem of minimization of E.
- Define the hamiltonian of the optimal control problem

$$
\widehat{h}: T^{*} M \times \mathbb{R}^{m} \longrightarrow \mathbb{R}, \quad \widehat{h}(q, p, u)=\sum_{j=1}^{m}\left(<p, u_{j} X_{j}(x)>-\frac{1}{2} u_{j}^{2}\right)
$$

- Define the maximized hamiltonian h (solve $\frac{\partial \widehat{h}}{\partial u}=0$ which gives $\left.u_{j}=<p, X_{j}>\right)$ by

$$
h(x, p)=\max _{u} \widehat{h}(q, p, u)=\frac{1}{2} \sum_{j=1}^{m}\left(<p, X_{j}(q)>\right)^{2}
$$

(a quadratic function on fibres).

Pontryagin Maximum Principle - statement

Theorem 1 If a control $u(t)$ and the corresponding normal trajectory $q(t)$ minimize the cost E, then there exits a curve $p(t) \in T_{q(t)}^{*} M$ in the cotangent bundle such that $\lambda(t)=(q(t), p(t))$ satisfies the following hamiltonian equation $\dot{\lambda}(t)=\vec{h}(\lambda(t))$ on $T^{*} M$:

$$
\begin{aligned}
& \dot{q}=\frac{\partial h}{\partial p}(q(t), p(t)) \\
& \dot{p}=-\frac{\partial h}{\partial q}(q(t), p(t)),
\end{aligned}
$$

where h is the maximized hamiltonian, and $u_{j}(t)=<p(t), X_{j}(q(t))>$ are optimal controls.

Integrability of the geodesic equation

- Our main problem: study integrability of the geodesic equation.
- Brockett and Dai started a systematic study of integrability of the geodesic equation (in terms of elliptic functions) in SR-geometry.
- 3-dimensional nilpotent cases are integrable: Heisenberg (in terms of trigonometric functions) and Martinet (in terms of elliptic functions, Bonnard, Chyba, Trelat); and the tangent case?
- Jurdjevic has shown integrability (in terms of elliptic functions) of several invariant SR-problems on Lie groups.
- There exist nonintegrable sub-Rimennian geodesic equations in nilpotent cases (a 6-dim. example of Montgomery-Shapiro).

Our goal

- Classify all cases of integrable adjoint geodesic equation for homogeneous spaces in dimension 3
- Study integrability of the nilpotent tangent case in dimension 3.
- Integrability of some quantum systems on $S O(n)$

Homogenous and symmetric SR-spaces

- A sub-Riemannian isometry between SR-manifolds (M, \mathcal{D}, B) and $(\tilde{M}, \tilde{\mathcal{D}}, \tilde{B})$ is a diffeomorphism $\psi: M \rightarrow \tilde{M}$ such that $\psi_{*}(\mathcal{D})=\tilde{\mathcal{D}}$ and $B=\psi^{*}(\tilde{B})$.
- A homogeneous sub-Riemannian space, shortly, a $S R$-homogeneous space, is a sub-Riemannian manifold for which the group of its sub-Riemannian isometries is a Lie group that acts smoothly and transitively on the manifold.
- A SR-homogeneous space is said to be symmetric, shortly, $S R$ symmetric, if for each point $q \in M$ there exists an isometry ψ such that $\psi(q)=q$ and $\left.\psi_{*}\right|_{\mathcal{D}(q)}=-\mathrm{Id}$.

3-dimensional homogeneous sub-Riemannian spaces

Lemma 1 (Falbel-Gorodski) To any 3-dimensional SR-homogenous space (M, \mathcal{D}, B) there corresponds a Lie group G that acts simply and transitively on M (need not be the group of $S R$-isometries).

Pontryagin Maximum Principle on a Lie group G

Using the PMP we conclude that if $Q(t)$ is a minimizing curve in G, then there exits a curve $P(t) \in T_{Q(t)}^{*} G$ such that $(Q(t), P(t))$ satisfies the hamiltonian system

$$
\begin{aligned}
\dot{Q} & =\frac{\partial H}{\partial Q}(Q(t), P(t)) \\
\dot{P} & =-\frac{\partial H}{\partial X}(Q(t), P(t)),
\end{aligned}
$$

where $H: T^{*} G \longrightarrow \mathbb{R}$ is given by

$$
\left.H(Q, P)=\frac{1}{2} \sum_{j=1}^{m}\left(<P, X_{j}\right\rangle\right)^{2} .
$$

Poisson structure on \mathfrak{g}^{*}

- Upon the identification of the space of left invariant vector fields on G with the Lie algebra \mathfrak{g} of G, the hamiltonian $H(Q, P)=$ $\frac{1}{2} \sum_{j=1}^{m}\left(<P, X_{j}>\right)^{2}$ becomes identified with a quadratic function on \mathfrak{g}^{*}.
- The dual \mathfrak{g}^{*} of the Lie algebra \mathfrak{g} carries a Poisson bracket defined, for any smooth functions φ_{1} and φ_{2} on \mathfrak{g}^{*}, by

$$
\left\{\varphi_{1}, \varphi_{2}\right\}(\eta)=\left\langle\eta,\left[d \varphi_{1}, d \varphi_{2}\right](\eta)\right\rangle, \quad \text { for each } \eta \in \mathfrak{g}^{*}
$$

Adjoint equation

To the hamiltonian H on \mathfrak{g}^{*} (considered as a Poisson manifold) we associate the Hamiltonian vector field \vec{H} on \mathfrak{g}^{*} defined by

$$
\vec{H}(\varphi)=\{\varphi, H\}, \quad \text { for each } \varphi \in C^{\infty}\left(\mathfrak{g}^{*}\right) .
$$

We will call the differential equation

$$
\dot{\eta}(t)=\vec{H}(\eta(t)), \quad \eta(t) \in \mathfrak{g}^{*},
$$

defined on \mathfrak{g}^{*} by the Hamiltonian vector field \vec{H} associated to H, the adjoint equation of the hamiltonian system

$$
\begin{aligned}
\dot{Q} & =\frac{\partial H}{\partial P}(Q(t), P(t)) \\
\dot{P} & =-\frac{\partial H}{\partial Q}(Q(t), P(t)) \quad(\dot{\eta}(t)=\vec{H}(\eta(t))) .
\end{aligned}
$$

Form a basis $X_{1}, \ldots, X_{m}, X_{m+1}, \ldots, X_{n}$ and put

$$
H_{j}=<P, X_{j}>,
$$

for $1 \leq i \leq n$, which allows to rewrite the hamiltonian as

$$
H=\frac{1}{2} \sum_{j=1}^{m} H_{j}^{2},
$$

the optimal controls as

$$
u_{j}(t)=H_{j}(t)=<P(t), X_{j}(Q(t))>,
$$

and the corresponding hamiltonian system as

$$
\begin{aligned}
\dot{Q} & =\sum_{j=1}^{m} H_{j} X_{j} \\
\dot{H}_{i} & =\left\{H, H_{i}\right\}, \quad 1 \leq i \leq n, \quad(\dot{\eta}(t)=\vec{H}(\eta(t))) .
\end{aligned}
$$

Integrability

- The adjoint equation is a Lie-Poisson equation defined by a Poisson structure on \mathfrak{g}^{*} whose structure constants $C_{i, j}^{k}$ are those defining the Lie algebra \mathfrak{g}.
- This Poisson structure is degenerated and of rank, say, $2 r$.
- Since $\operatorname{dim} \mathfrak{g}^{*}=n$, the Poisson structure admits $k=n-2 r$ Casimir functions $C_{1}, \ldots, C_{n-2 r}$ whose common constant level sets $M_{c}=$ $\left\{\eta \in \mathfrak{g}^{*}: C_{1}(\eta)=c_{1}, \ldots, C_{n-2 r}(\eta)=c_{n-2 r}\right\}$ are $2 r$-dimensional submanifolds of \mathfrak{g}^{*} equipped with a symplectic structure defined by the restriction of the Poisson structure to M_{c}.
- The adjoint equation restricted to M_{c} is a hamiltonian equation.

Integrability - definition

- If a Lie-Poisson equation possesses $k+r$ functionally independent first integrals belonging to a category \mathcal{C} such that the first k integrals are Casimir functions and the remaining r ones commute, then we will say that this equation is integrable in the category \mathcal{C}.

The Lie algebra \mathfrak{g} of G has a decomposition $\mathfrak{g}=\mathfrak{p}+[\mathfrak{p}, \mathfrak{p}]$, where for a chosen base point $q \in M$ we identify \mathfrak{g} with $T_{q} M$, the subspace \mathfrak{p} of \mathfrak{g} with $\mathcal{D}(q)$, and the quadratic form \mathfrak{b} defined on \mathfrak{p} with B. The triple $(\mathfrak{g}, \mathfrak{p}, \mathfrak{b})$ will be called a sub-Riemannian Lie algebra (does not depend on the chosen base point q).

The SR-Lie algebra in the SR-symmetric cases is given by the normal form (sub-symmetric Lie algebras):

$$
\begin{aligned}
& {\left[X_{1}, X_{2}\right]=X_{3}} \\
& {\left[X_{1}, X_{3}\right]=a X_{2}} \\
& {\left[X_{2}, X_{3}\right]=b X_{1}}
\end{aligned}
$$

where $(a, b) \in \mathbb{R}^{2} ;$ above $\mathfrak{g}=\operatorname{span}\left\{X_{1}, X_{2}, X_{3}\right\}, \mathfrak{p}=\operatorname{span}\left\{X_{1}, X_{2}\right\}$, and X_{1}, X_{2} are orthonormal.

Integrability of the SR-symmetric case

Theorem 2 For any 3-dimensional sub-Riemannian homogeneous space, the following conditions are equivalent:
(i) The sub-Riemannian space is symmetric.
(ii) The adjoint equation has two functionally independent quadratic first integrals;
(iii) The optimal controls are elliptic functions;
(iv) All solutions of the complexified adjoint equation are singlevalued functions of the complex time;

Nonintegrability of the SR-non symmetric spaces

The Lie algebra of an orthonormal frame can be brought in the SRsymmetric case to the following normal form

$$
\begin{aligned}
& {\left[X_{1}, X_{2}\right]=X_{3},} \\
& {\left[X_{1}, X_{3}\right]=a X_{2}+b X_{3},} \\
& {\left[X_{2}, X_{3}\right]=0,}
\end{aligned}
$$

where $(a, b) \in \mathbb{R}^{2}$ and $a b \neq 0$. When $a=0$ or $b=0$ the underlying space is isometric to a sub-symmetric space. By a proper rescaling we can assume $b=1$.

We distinguish two subsets of the classification parameter:

- $a \in \Lambda_{p} \subset \mathbb{R}$ if and only if there exist positive integers m and n such that $a=m n /(m-n)^{2}$
- $a \in \Lambda_{r} \subset \mathbb{R}$ if and only if there exist integers m and n such that $a=m n /(m-n)^{2}$ and $a \neq-1 / 4$.

Theorem 3 For any non symmetric sub-homogeneous space defined by the parameter a we have:
(i) The adjoint equation admits a polynomial fist integral independent with the hamiltonian H if and only if $a \in \Lambda_{p}$;
(ii) The adjoint equation admits a rational fist integral independent with the hamiltonian H if and only if $a \in \Lambda_{r}$;
(iii) If $a \in \mathbb{R} \backslash \Lambda_{r}$ then the adjoint equation does not admit any realmeromorphic first integral independent with the hamiltonian H.

Lie algebra of the system

Consider the system

$$
\dot{\xi}=\sum_{i=1}^{m} X_{i}(\xi) u_{i}
$$

on a manifold M. We have $\mathcal{D}=\operatorname{span}\left\{X_{1}, \ldots, X_{m}\right\}$.

- Let $\mathcal{L}_{1}=\operatorname{span}_{\mathbb{R}}\left\{X_{1}, \ldots, X_{m}\right\}$.
- Define inductively

$$
\mathcal{L}_{s}=\mathcal{L}_{s-1}+\left[\mathcal{L}_{s-1}, \mathcal{L}_{1}\right] \text { for } s \geq 2
$$

- Clearly $\mathcal{L}_{s}(q)=\mathcal{D}_{s}(q)$ and the sum

$$
\mathcal{L}\left(X_{1}, \ldots, X_{m}\right)=\mathcal{L}=\sum_{s \geq 1} \mathcal{L}_{s}
$$

is the Lie algebra of the system.

Weights

- For $q \in M$, put $L_{s}(q)=\left\{X(q): X \in \mathcal{L}_{s}\right\}$
- Denote $n_{s}(q)=\operatorname{dim} L_{s}(q)$. For a completely nonholonomic system we have

$$
1 \leq n_{1}(q) \leq n_{2}(q) \leq \cdots \leq n_{r(q)}(q)=n
$$

and we will call $\left(n_{1}(q), n_{2}(q), \ldots, n_{r(q)}(q)\right)$ the growth vector of the system (we will omit indicating the point if it is not confusing).

- Define weights $w_{1} \leq \cdots \leq w_{n}$ by putting $w_{j}=s$ if $n_{s-1}<j \leq n_{s}$, with $n_{0}=0$.

Privileged coordinates

- We will call $X_{1} \varphi, \ldots X_{m} \varphi$ the nonholonomic partial derivatives of order 1 of a function φ
- $X_{i_{1}} X_{i_{2}} \varphi$ nonholonomic derivatives of order two of φ etc.
- If all the nonholonomic derivatives of order $\leq s-1$ of φ vanish at q, we say that φ is of order $\geq s$ at q. A function φ is of order s at q if it is of order $\geq s$ but not of order $\geq s+1$.
- Local coordinates $\left(\xi_{1}, \ldots, \xi_{n}\right)$ are privileged coordinates at q if the order of ξ_{i} is w_{i} for $1 \leq i \leq n$.
- The integers $\left(w_{1}, \ldots, w_{n}\right)$ are the weights of the privileged coordinates $\left(\xi_{1}, \ldots, \xi_{n}\right)$. Homogeneity is considered with respect to them.

Nilpotent approximations

- Using privileged coordinates we can rewrite the system as

$$
\dot{\xi}_{j}=\sum_{i=1}^{m} X_{i j}\left(\xi_{1}, \ldots, \xi_{j-1}\right) u_{i}+O\left(\|\xi\|^{w_{j}}\right)
$$

for $1 \leq j \leq n$, where the components $X_{i j}$ are homogeneous polynomials of weighted degree $w_{j}-1$.

- By dropping the terms $O\left(\|\xi\|^{w_{j}}\right)$, we get

$$
\dot{\xi}=\sum_{i=1}^{m} \widehat{X}_{i}(\xi) u_{i}, \quad \text { where } \quad \widehat{X}_{i}=\sum_{j=1}^{n} X_{i j}\left(\xi_{1}, \ldots, \xi_{j-1}\right) \frac{\partial}{\partial \xi_{j}}
$$

called the nilpotent approximation of the system. The Lie algebra $\mathcal{L}\left(\widehat{X}_{1}, \ldots, \widehat{X}_{m}\right)$ is nilpotent.

3-dimensional sub-Riemannian manifolds

Consider a 3 -dimensional sub-Riemannian manifold (M, \mathcal{D}, B), where

- M is a 3-dimensional manifold,
- \mathcal{D} is a rank 2 smooth distribution on M
- B is a smoothly varying positive definite quadratic form on \mathcal{D}.
- Represent locally the sub-Riemannian structure (M, \mathcal{D}, B) by the control system

$$
\dot{\xi}=X_{1}(\xi) u_{1}+X_{2}(\xi) u_{2}
$$

where the smooth vector fields X_{1} and X_{2} form an orthonormal frame of \mathcal{D}.

Normal form

An isometry between two sub-Riemannian manifolds (M, \mathcal{D}, B) and $(\tilde{M}, \tilde{\mathcal{D}}, \tilde{B})$ is a diffeomorphism $\phi: M \rightarrow \tilde{M}$ such that $\phi_{*}(\mathcal{D})=\tilde{\mathcal{D}}$ and $B=\phi^{*}(\tilde{B})$. Agrachev et al have shown that there exists a subRiemannian isometry transforming the orthonormal frame $\left\langle X_{1}, X_{2}\right\rangle$ into an orthonormal frame, which in local coordinates (x, y, z) takes the following normal form around $0 \in \mathbb{R}^{3}$:
$X_{1}(x, y, z)=\left(1+y^{2} \beta(x, y, z)\right) \frac{\partial}{\partial x}-x y \beta(x, y, z) \frac{\partial}{\partial y}+\frac{y}{2} \gamma(x, y, z) \frac{\partial}{\partial z}$
$X_{2}(x, y, z)=-x y \beta(x, y, z) \frac{\partial}{\partial x}+\left(1+x^{2} \beta(x, y, z)\right) \frac{\partial}{\partial y}-\frac{x}{2} \gamma(x, y, z) \frac{\partial}{\partial z}$.

Contact case

- If $\gamma(0,0,0) \neq 0$, then we are in the contact case.
- The growth vector in the contact case is $(2,3)$ and the variables x, y, z have weights 1,1 , and 2 , respectively.
- The normal form for the nilpotent approximation is

$$
\begin{aligned}
& \widehat{X}_{1}(x, y, z)=\frac{\partial}{\partial x}+c \frac{y}{2} \frac{\partial}{\partial z} \\
& \widehat{X}_{2}(x, y, z)=\frac{\partial}{\partial y}-c \frac{x}{2} \frac{\partial}{\partial z}
\end{aligned}
$$

- All cases are isometric to the Heisenberg case $c=1$.
- The Heisenberg case is integrable in trigonometric functions.
- The general contact case (non nilpotent) has been completely analyzed by Agrachev, Gauthier, Kupka, and Chakir.

Martinet case

- If γ is of order 1 with respect to (x, y), then we are in the Martinet case
- The growth vector at $0 \in \mathbb{R}^{3}$ in the Martinet case is $(2,2,3)$ and the weights of the variables x, y, z are 1,1 , and 3 , respectively.
- the set of points, at which the growth vector is $(2,2,3)$, is a smooth surface (called Martinet surface) and the distribution \mathcal{D} spanned by X_{1} and X_{2} is transversal to the Martinet surface.
- The normal form for the nilpotent approximation is

$$
\begin{aligned}
\widehat{X}_{1}(x, y, z) & =\frac{\partial}{\partial x}+\frac{y}{2}(a x+b y) \frac{\partial}{\partial z} \\
\widehat{X}_{2}(x, y, z) & =\frac{\partial}{\partial y}-\frac{x}{2}(a x+b y) \frac{\partial}{\partial z}
\end{aligned}
$$

Martinet case - cont.

- All nilpotent Martinet cases are integrable in terms of elliptic functions.
- sub-Riemannian geometry in the general (non nilpotent) case has been intensively studied by Bonnard, Chyba, and Trélat.

Tangent case

- The next degeneration, tangent case, occurs at points at which the distribution \mathcal{D} is tangent to the Martinet surface.
- Generically, the growth vector at such a tangency point is $(2,2,2,3)$ and the variables x, y, z are of weights 1,1 , and 4 , respectively.
- γ is of order 2 with respect to (x, y).
- The normal form of the nilpotent approximation of the tangent case is

$$
\begin{aligned}
\widehat{X}_{1}(x, y, z) & =\frac{\partial}{\partial x}+\frac{y}{2}\left(a x^{2}+b y^{2}\right) \frac{\partial}{\partial z} \\
\widehat{X}_{2}(x, y, z) & =\frac{\partial}{\partial y}-\frac{x}{2}\left(a x^{2}+b y^{2}\right) \frac{\partial}{\partial z}
\end{aligned}
$$

We can assume that $a=1$ (by normalizing z).

Tangent case: geodesic equation

The geodesic equation in the nilpotent tangent case is:
(GE)

$$
\begin{aligned}
\dot{x} & =p+\frac{r y}{2}\left(x^{2}+b y^{2}\right), \\
\dot{y} & =q-\frac{r x}{2}\left(x^{2}+b y^{2}\right), \\
\dot{z} & =\frac{1}{2}\left(x^{2}+b y^{2}\right)(y p-x q)+\frac{r}{4}\left(x^{2}+y^{2}\right)\left(x^{2}+b y^{2}\right)^{2} \\
\dot{p} & =-r x y u_{1}+\frac{r}{2}\left(3 x^{2}+b y^{2}\right) u_{2}, \\
\dot{q} & =-\frac{r}{2}\left(x^{2}+3 b y^{2}\right) u_{1}+b r x y u_{2} . \\
\dot{r} & =0
\end{aligned}
$$

where $u_{1}=p+\frac{r y}{2}\left(x^{2}+b y^{2}\right)$ and $u_{2}=q-\frac{r x}{2}\left(x^{2}+b y^{2}\right)$.

Integrability problem

- The hamiltonian H and $H_{1}=r$ are first integrals.
- Integrability problem: find a third first integral H_{2}, commuting with H and H_{1}, and functionally independent with H and H_{1} (Liouville integrability).
- We will distinguish the elliptic nilpotent tangent case, for which $a=1$ and $b>0$ and the hyperbolic nilpotent tangent case, for which $a=1$ and $b<0$.

Tangent case: integrable cases

- M. Pelletier proved that if $b=1$ (symmetric elliptic case), then the Hamiltonian (GE) is integrable in the Liouville sense with an additional first integral given by

$$
H_{2}=x q-y p .
$$

- Geometric reason: if $b=1$, then the rotation in the (x, y) space is a sub-Riemannian isometry.
- For $b=0$, the geodesic equation (GE) is also integrable. In this case the third first integral has the form

$$
H_{2}=6 q+r x^{3} .
$$

- Both cases are integrable in terms of elliptic functions.

Main result

Theorem 4 The complexified geodesic equation for the 3-dimensional nilpotent tangent case is not meromorphically integrable in the Liouville sense, except for $b=1$ and $b=0$, that is, for $b \in \mathbb{R} \backslash\{0,1\}$ the complexified system (GE) does not possess a meromorphic first integral, commuting with H and H_{1} and functionally independent with H and H_{1}.

- Our proof is based on the Morales-Ramis theory

Morales-Ramis theory

Consider a complex analytic hamiltonian differential equation

$$
\frac{d x}{d t}=v(x), \quad t \in \mathbb{C}
$$

on an analytic symplectic manifold $\mathrm{M}\left(\right.$ say, $\left.\mathbb{C}^{n}\right)$. Let $\varphi(t)$ be its nonstationary solution and Γ its maximal analytic prolongation (Riemann surface). Take the linearization (variational equation) along Γ

$$
\frac{d \xi}{d t}=\frac{\partial v}{\partial x}(\varphi(t)) \xi
$$

Theorem 5 (Morales-Ramis) If the hamiltonian system on $M\left(\mathbb{C}^{n}\right)$ is Liouville integrable in the meromorphic category, then the identity component of the differential Galois group of the (normal) variational equation along Γ is abelian.

Differential Galois group

Consider a homogeneous ordinary linear differential equation in \mathbb{C}^{n}, over the field $F=\mathbb{C}(z)$ of rational functions of $z \in \mathbb{C}$

$$
L(Y)=\frac{\mathrm{d}}{\mathrm{~d} z} Y-A(z) Y=0, \quad Y \in \mathbb{C}^{n}
$$

where $A_{i}^{j} \in \mathbb{C}(z)$

- Where do the solutions live?

Theorem 6 There exits a unique (up to isomorphism) $P V_{L} \supset \mathbb{C}(z)$, the smallest differential field extension containing n linearly independent, over \mathbb{C}, solutions of $L(Y)=0$ (Picard-Vessiot extension).

We have $\left(P V_{L}, D\right) \supset\left(\mathbb{C}(z), \frac{\mathrm{d}}{\mathrm{d} z}\right)$, where the derivation D restricted to $\mathbb{C}(z)$ is $\frac{\mathrm{d}}{\mathrm{d} z}$.

Differential Galois group - continuation

The space of solutions $V=\left\{Y \in P V_{L} \mid L(Y)=0\right\}$ is a linear space over \mathbb{C}.

Definition 1 Differential Galois group of L is the group of differential automorphisms of $P V_{L}$ (i.e., commuting with the derivation D) preserving all elements of $\mathbb{C}(z)$.

The differential Galois group, denoted $\operatorname{Gal}\left(P V_{L} \backslash \mathbb{C}(z)\right)$

- preserves solutions
- preserves polynomial relations among them
- is an algebraic subgroup of $\operatorname{GL}(n, \mathbb{C})$ (in the hamiltonian case of $\operatorname{Sp}(n, \mathbb{C}))$.

The (x, y, p, q))-part of the geodesic equation can be transformed to

$$
\begin{aligned}
& \dot{z}_{1}=z_{3}, \\
& \dot{z}_{2}=z_{4}, \\
& \dot{z}_{3}=r \gamma z_{1} z_{2}\left[\left(z_{4}-z_{3}\right)-b\left(z_{3}+z_{4}\right)\right], \\
& \dot{z}_{4}=r \gamma z_{1} z_{2}\left[\left(z_{4}-z_{3}\right)+b\left(z_{3}+z_{4}\right)\right] .
\end{aligned}
$$

It is obvious that $z(t)=(0, c t, 0, c)$ with $c \neq 0$ is a solution of the above equations.
The normal variational equation can be represented as

$$
\ddot{\xi}_{1}=(1-b) \gamma r c^{2} t \xi_{1} .
$$

where $(1-b) \gamma r c^{2} \neq 0$, which gives the Airy equation. It is known that the differential Galois group of this equation is $\mathrm{Sl}(2, \mathbb{C})$ and thus non Abelian.

n-level quantum system

- Consider a quantum system with a finite number of (distinct) levels in interaction with a time dependent external field.
- The energies of the system state appearing on the diagonal, we put $\mathcal{H}_{0}=\operatorname{diag}\left(E_{1}, \ldots, E_{n}\right)$.
- The time-functions $\Omega_{j}(\cdot): \mathbb{R} \longrightarrow \mathbb{C}$, for $1 \leq j \leq n-1$ have their supports in $\left[t_{0}, t_{1}\right]$. They couple the states by pairs.
- The hamiltonian \mathcal{H} is given by:

$$
\begin{aligned}
\mathcal{H} & =\left(\begin{array}{cccccc}
E_{1} & \Omega_{1}(t) & 0 & \ldots & 0 \\
\Omega_{1}^{*}(t) & E_{2} & \Omega_{2}(t) & \ddots & \vdots \\
0 & \Omega_{2}^{*}(t) & \ddots & \ddots & & 0 \\
\vdots & \ddots & \ddots & E_{n-1} & \Omega_{n-1}(t) \\
0 & \ldots & 0 & \Omega_{n-1}^{*}(t) & E_{n}
\end{array}\right) \\
& =\mathcal{H}_{0}+\left(\begin{array}{ccccc}
0 & \Omega_{1}(t) & 0 & \ldots & 0 \\
\Omega_{1}^{*}(t) & 0 & \Omega_{2}(t) & \ddots & \vdots \\
0 & \Omega_{2}^{*}(t) & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & 0 & \Omega_{n-1(t)} \\
0 & \cdots & 0 & \Omega_{n-1}^{*}(t) & 0
\end{array}\right)
\end{aligned}
$$

Schrödinger equation

- The state vector $\psi(\cdot): \mathbb{R} \longrightarrow \mathbb{C}^{n}$ satisfies the Schrödinger equation

$$
i \frac{d \psi(t)}{d t}=\mathcal{H} \psi=\left(\mathcal{H}_{0}+\sum_{j=1}^{n-1} \Omega_{j}(t) \mathcal{H}_{j}\right) \psi
$$

(we have assumed coupling of neighboring levels only).

- We represent

$$
\psi(t)=\psi_{1}(t) e_{1}+\psi_{2}(t) e_{2}+\cdots \psi_{n}(t) e_{n}
$$

where e_{1}, \ldots, e_{n} is the canonical basis of \mathbb{C}^{n}

- We have $\left|\psi_{1}(t)\right|^{2}+\left|\psi_{2}(t)\right|^{2}+\cdots+\left|\psi_{n}(t)\right|^{2}=1$.
- For $t<t_{0}$ and $t>t_{1},\left|\psi_{j}(t)\right|^{2}$ is the probability of measuring the energy E_{j}. Notice that $\frac{d}{d t}\left|\psi_{j}(t)\right|^{2}=0$, for $t<t_{0}$ and $t>t_{1}$.

Optimal problem

Problem :

Assuming that

$$
\left|\psi_{1}(t)\right|^{2}=1, \quad \text { for } t<t_{0}
$$

find suitable interaction functions $\Omega_{j}(t), 1 \leq j \leq n-1$, such that

$$
\left|\psi_{i}(t)\right|^{2}=1, \quad \text { for } t>t_{1}
$$

for some chosen $i \in\{2, \ldots, n\}$, say $i=n$, and such that the cost

$$
E=\frac{1}{2} \int_{t_{o}}^{t_{1}} \sum_{j=1}^{n-1}\left|\Omega_{j}(t)\right|^{2} d t \longrightarrow \min
$$

(minimize the energy of the transfer pulses).

Resonant case

Optimal interaction functions Ω_{j} correspond to lasers that are in resonance (real resonant case, Brockett, Khaneja, Glaser, and Boscain, Charlot, Gauthier):

$$
\Omega_{j}(t)=u_{j}(t) e^{i \omega_{j} t}, \quad \omega_{j}=E_{j+1}-E_{j},
$$

for $1 \leq j \leq n-1$, where $u_{j}(\cdot): \mathbb{R} \longrightarrow \mathbb{R}$ are real controls. The cost function becomes

$$
E=\frac{1}{2} \int_{t_{o}}^{t_{1}} \sum_{j=1}^{n-1} u_{j}^{2}(t) d t
$$

Simplifications of the problem

- We apply the unitary transformation

$$
\psi(t)=U(t) \tilde{\psi}(t)
$$

to eliminate the drift $\mathcal{H}_{0}=\operatorname{diag}\left(E_{1}, \ldots, E_{n}\right)$.

- We pass from \mathbb{C}^{n} to \mathbb{R}^{n} to get finally the system

$$
\dot{x}=\mathcal{H}_{\mathbb{R}} x, \quad x \in \mathbb{R}^{n},
$$

where

$$
\mathcal{H}_{\mathbb{R}}=\left(\begin{array}{ccccc}
0 & u_{1}(t) & 0 & \cdots & 0 \\
-u_{1}(t) & 0 & u_{2}(t) & \ddots & \vdots \\
0 & -u_{2}(t) & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & 0 & u_{n-1(t)} \\
0 & \cdots & 0 & -u_{n-1}(t) & 0
\end{array}\right)
$$

Introduce the vector fields (infinitesimal generators of rotation in the (x_{i}, x_{j})-space)

$$
f_{i, j}=x_{j} \frac{\partial}{\partial x_{i}}-x_{i} \frac{\partial}{\partial x_{j}}, \quad 1 \leq i, j \leq n
$$

Optimal problem in \mathbb{R}^{n}

The problem is now: find real controls $u_{1}(t), \ldots, u_{n-1}(t)$ such that the corresponding trajectory of

$$
\dot{q}=\mathcal{H}_{\mathbb{R}} q=\sum_{j=1}^{n-1} u_{j} f_{j, j+1}(q), \quad q \in \mathbb{R}^{n}
$$

joins given q_{0} and q_{T} and

$$
E=\frac{1}{2} \int_{t_{o}}^{t_{1}} \sum_{j=1}^{n-1} u_{j}^{2}(t) d t \longrightarrow \min .
$$

Lifting the problem to $\mathrm{SO}(\mathrm{n})$

- The Lie algebra

$$
\left\{f_{1,2}, \ldots, f_{n-1, n}\right\}_{L A}=\operatorname{vect}_{\mathbb{R}}\left\{f_{i, k}, \quad 1 \leq i<k \leq n\right\}=\mathfrak{s o}(n)
$$

- Let $F_{i, k}$ stand for the left invariant vector fields on $\mathrm{SO}(\mathrm{n})$ that satisfy exactly the same commutation relations as $f_{i, k}$.
- We lift our optimal control problem to the following left invariant on $\mathrm{G}=\mathrm{SO}(n)$: find controls $u_{j}(t)$ that minimize the energy E of the curve $Q(t) \in G=\mathrm{SO}(n)$ (time evolution operator) satisfying

$$
\dot{Q}=\sum_{j=1}^{n-1} u_{j} F_{j, j+1}, \quad E=\frac{1}{2} \int_{t_{o}}^{t_{1}} \sum_{j=1}^{n-1} u_{j}^{2}(t) d t \longrightarrow \min .
$$

- It is a sub-Riemannian problem!!!

3-level system

Easy to integrate (Brockett, Boscain et al. for the quantum system) The adjoint equation takes the form

$$
\begin{aligned}
\dot{H}_{1,2} & =H_{1,3} H_{2,3} \\
\dot{H}_{2,3} & =-H_{1,3} H_{1,2} \\
\dot{H}_{1,3} & =0
\end{aligned}
$$

We get $H_{1,3}(t)=$ const. $=a$ and

$$
\begin{aligned}
& u_{1}(t)=H_{1,2}(t)=r \cos (a t+\varphi) \\
& u_{2}(t)=H_{1,2}(t)=-r \sin (a t+\varphi)
\end{aligned}
$$

$H_{1,3}$ is a Casimir function; we integrate the system on its constant level sets.

Now it suffices to integrate the linear time-varying system

$$
\left(\begin{array}{c}
\dot{x}_{1} \tag{1}\\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right)=u_{1}\left(\begin{array}{c}
-x_{2} \\
x_{1} \\
0
\end{array}\right)+u_{2}\left(\begin{array}{c}
0 \\
-x_{3} \\
x_{2}
\end{array}\right)
$$

which has the first integral:

$$
\begin{equation*}
h=x_{1}^{2}+x_{2}^{2}+x_{3}^{2} . \tag{2}
\end{equation*}
$$

Main result

Theorem 7 For the n-level system, $n \geq 4$, the complexification of the adjoint equation on $\mathfrak{s o}(n)^{*}$ is not integrable in the meromorphic category. More precisely, restricted to the leaves M_{c} of the symplectic foliation on $\mathfrak{s o}(n)^{*}$, does not possess any meromorphic first integral independent of the hamiltonian, i.e. is not Liouville integrable on M_{c}.

4-level system: Adjoint equation on $\mathfrak{s o}(4)^{*}$

- By restricting the $A E$ to $\left\{H_{i, k}=0\right\}$, where $i \geq 5$ or $k \geq 5$, the nonintegrability problem of the general n-level system reduces to that of the 4-level system.
- We will consider the complexification $A E_{\mathbb{C}}$ of $A E$ on $\mathfrak{s o}(4)^{*}$ by taking $x_{i} \in \mathbb{C}$ and $t \in \mathbb{C}$, where $x_{1}=H_{1,2}, x_{2}=H_{2,3}, x_{3}=H_{1,3}$, $x_{4}=H_{3,4}, x_{5}=H_{1,4}$, and $x_{6}=H_{4,2}$.
- The complexified $A E_{\mathbb{C}}$ reads as

$$
\frac{\mathrm{d}}{\mathrm{~d} t} x=J(x) \nabla H(x), \quad x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \mathbb{C}^{6}, \quad t \in \mathbb{C}
$$

where

$$
H=H(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{4}^{2}\right)
$$

and

$$
J(x)=\left[\begin{array}{rrrrrr}
0 & x_{3} & -x_{2} & 0 & x_{6} & -x_{5} \\
-x_{3} & 0 & x_{1} & -x_{6} & 0 & x_{4} \\
x_{2} & -x_{1} & 0 & x_{5} & -x_{4} & 0 \\
0 & x_{6} & -x_{5} & 0 & x_{3} & -x_{2} \\
-x_{6} & 0 & x_{4} & -x_{3} & 0 & x_{1} \\
x_{5} & -x_{4} & 0 & x_{2} & -x_{1} & 0
\end{array}\right]
$$

It is a Lie-Poisson system: $\operatorname{rank} J(x)=4$ so $J(x)$ defines a Poisson structure (a "degenerated symplectic structure").

- Besides the Hamiltonian $H, A E_{\mathbb{C}}$ admits two additional first integrals

$$
C_{1}=\sum_{i=1}^{6} x_{i}^{2}, \quad C_{2}=x_{1} x_{4}+x_{2} x_{5}+x_{3} x_{6},
$$

which are actually the Casimir function of the Poisson structure defined by $J(x)$; the first integrability requirement is satisfied.

- Each level set

$$
\mathcal{M}_{a, b}:=\left\{x \in \mathbb{C}^{6} \mid C_{1}(x)=a, \quad C_{2}(x)=b\right\},
$$

is a 4-dimensional symplectic manifold on which $A E_{\mathbb{C}}$ is hamiltonian with Hamiltonian function $H_{\mid \mathcal{M}_{a, b}}$. We need one more first integral!
$A E_{\mathbb{C}}$ admits the invariant space

$$
\mathcal{M}^{3}=\left\{x \in \mathbb{C}^{6} \mid x_{4}=x_{5}=x_{6}=0\right\}
$$

foliated by the phase curves $\Gamma_{h, f}=\mathbb{S}_{\mathbb{C}}^{1}$, complex circles, given by

$$
x_{1}^{2}+x_{2}^{2}=h, \quad x_{3}=f
$$

The normal variational equations along $\Gamma_{h, f}$ reduces to the form

$$
w^{\prime \prime}=r(z) w, \quad r(z)=\frac{\alpha_{0}}{z^{2}}+\frac{\alpha_{h}}{(z-h)^{2}}+\frac{\beta_{0}}{z}+\frac{\beta_{h}}{z-h}
$$

Singular points at $z=0$ and $z=h$ are regular but at ∞ is irregular. Indeed, we have (using Kovacic algorithm)

Lemma 2 The differential Galois group of $w^{\prime \prime}=r(z) w$ is $\operatorname{SL}(2, \mathbb{C})$. $\mathrm{SL}^{0}(2, \mathbb{C})$ is non-abelian, hence the adjoint equation is not integrable.

$$
n \text {-level quantum system }
$$

optimal control problem: Pontryagin Maximum Principle
\Downarrow
sub-Riemannian problem on $\mathbf{S O}(n)$
\Downarrow
nonintegrability of a hamiltonian system
\Downarrow
Differential Galois group and complex analysis

Conclusions

- We discussed (non)integrability of the geodesic equation (adjoint equation) for various Sub-Riemannian problems
- We show usefulness of the Morales-Ramis theory in proving nonintegrability
- open problems: homogenous 4-dimensional SR-problems, general contact and quasi-contact SR-problems,...

