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Generalities about 2nd-order equations

It is well known that a Sode field on TM

Γ = vi ∂

∂qi
+ f i(q, v)

∂

∂vi

comes with a canonically defined connection on τ : TM → M , determined
by

X ∈ X (M) 7→ XH =
1

2

(
Xc + [XV , Γ]

)
[Xc: complete lift, XV : vertical lift].

In coordinates:

XH = X i Hi, Hi =
∂

∂qi
− Γj

i

∂

∂vj
, Γi

j = −1

2

∂f i

∂vj
.

In turn, with the aid of the projection operators PH and PV of this non-linear
connection on TM , one can construct a linear connection on the pullback
bundle τ ∗τ : τ ∗TM → TM , said to be of Berwald type.



Essentially, this connection defines vertical and horizontal covariant deriva-
tive operators DV

X and DH
X on X (τ ), which in coordinates, are determined by

the following action on functions F and basic vector fields (and then further
extend by duality):

DV
XF = X i Vi(F ), DV

X

∂

∂qi
= 0 (Vi :=

∂

∂vi
)

DH
XF = X i Hi(F ), DH

X

∂

∂qi
= XjVi(Γ

k
j )

∂

∂qk

Of equal importance are

• the dynamical covariant derivative ∇ (degr. 0 derivation)

• a (1,1) tensor Φ ∈ V 1(τ ), called Jacobi endomorphism

which can implicitly be defined by LΓX
H = (∇X)H + Φ(X)V .

∇F = Γ(F ) ∇ ∂

∂qi
= Γj

i

∂

∂qj
∇dqi = −Γi

jdqj ,

Φi
j = −∂f i

∂qj
− Γi

kΓ
k
j − Γ(Γi

j) .



Submersive equations and decoupling

Sodes are submersive (Kossowski and Thompson, 1991) if a number of the
eqns decouple from the rest, i.e. in suitable coordinates (xa, yi), the system
takes the form

ÿi = f i(y),

ẍa = fa(x, y).

Such property is completely characterized intrinsically by:

existence of a distribution K along τ : TM → M , such that

Φ(K) ⊂ K, ∇K ⊂ K, DV
ZK ⊂ K ∀Z ∈ X (τ ).

Indeed, those conditions have the following effect:

• DV -invariance means that K is generated by basic vector fields,

• DV - and ∇-invariance further implies DH-invariance and as a result Frobe-
nius integrability,

• if the xa are coordinates on integral manifolds of K,
∇-invariance implies that the f i do not depend on ẋa,

• finally Φ-invariance then implies ∂f i/∂xa = 0 as well.



Assume now further that g is a Riemannian metric on M , satisfying

∇g = 0.

Let K⊥ be the orthogonal complement of K: g(K, K⊥) = 0.

It follows from ∇g = 0 and DV
Xg = 0 that

∇K⊥ ⊂ K⊥, DV
ZK⊥ ⊂ K⊥ ∀Z ∈ X (τ ).

Important special case

If Γ represents a Lagrangian system on TM , the Hessian g of L has the
property that Φ g is symmetric. If this g is Riemannian on M , the implication
is that also Φ(K⊥) ⊂ K⊥, i.e. K⊥ satisfies all conditions of submersiveness
as well (and there exist coordinates simultaneously adapted to K and K⊥).

Conclusion: A submersive Lagrangian system of mechanical type decouples
into two separate systems.



Cofactor systems

Lundmark, Wojciechowski and co-workers introduced cofactor systems as
Newtonian type Sodes of the form

q̈α = −(A(q)−1)αβ∂W

∂qβ
,

where the matrix A is of the form

A(q) = cof G(q), with Gαβ(q) = a qαqβ + bαqβ + bβqα + cαβ.

These can be viewed as representing a class of non-conservative Lagrangian
systems

d

dt

(
∂T

∂q̇α

)
− ∂T

∂qα
= Qα,

with a ‘Euclidean kinetic energy’ T = 1
2

∑
(q̇α)2 and non-conservative forces

of some quasi-potential type.

The same authors later obtained remarkable results about a subclass of such
systems which split into a so-called ‘driving’ and ‘driven part’.



Driven cofactor systems

The basic assumption is one of submersiveness in the given coordinates, i.e.
with (qα) = (yi, xa), a given cofactor system q̈α = fα is assumed to appear in
the form:

ÿi = Qi(yj), i = 1, . . . ,m

ẍa = Qa(yi, xb) a = 1, . . . n.

An extra hypothesis is: after solving the driving eqns for the yi, the driven
system

ẍa = Qa(yi(t), xb)

has a Lagrangian of mechanical type

T − V = 1
2

∑
(ẋa)2 − V (yi(t), xa).

What is proved then is:

• the driving system is of cofactor type on IRm,

• for any solution y(t) of the driving system, the driven system has n (time-
dependent) integrals,



• under some technical assumptions, primarily functional independence of
eigenfunctions ua of a suitably adapted reduced eigenvalue problem, there
exists a canonical transformation (xa, pa) ↔ (ua, sa) which has the effect
that all the time-dependence in the transformed Hamiltonian is caught in
an overall factor and the Hamilton-Jacobi eqn can be solved by separation
of variables.

Cofactor and driven cofactor systems on Riemannian manifolds

Recall (Crampin and W.S. (2001)) the following characterization of a cofactor
system on (the tangent bundle of) a Riemannian space (M, g).

Consider a non-conservative Lagrangian system determined by the ‘Riemannian
kinetic energy’ T = 1

2 gαβ(q)q̇αq̇β and non-conservative forces Qα(q), given by
some 1-form µ = Qα(q)dqα on M .

Definition: The pair (g, µ) determines a cofactor system if g admits a
special conformal Killing tensor J and µ satisfies DJµ = 0.



A special conformal Killing tensor w.r.t. g is a (non-singular) type (1,1)
tensor J on M , such that Jαβ = gαγJ

γ
β is symmetric and (w.r.t. the Levi-

Civita connection of g) has the property

Jαβ|γ = 1
2(σαgβγ + σβgαγ), which implies σ = d tr J. (scKt)

Secondly, DJ is a ‘gauged’ differential operator defined (for any 1-form ρ) by

DJρ = dJρ + d(tr J) ∧ ρ or DJρ = (det J)−1dJ((det J)ρ).

Note that the corresponding Sode field Γ on TM is of the form

Γ = Γ̃ + Qβ ∂

∂vβ
, Qβ = gβαQα,

where Γ̃ is the geodesic spray of g.

But Γ̃ is Lagrangian, hence: ∇̃g = 0, Φ̃ g is symmetric.

It follows that ∇g = 0 as well, and we must insist on dµ 6= 0 to avoid
that Γ would be Lagrangian also and submersiveness would imply complete
decoupling.



Assume now again that a distribution K makes Γ submersive and consider its
complement K⊥.

As before,
∇K⊥ ⊂ K⊥, DV

ZK⊥ ⊂ K⊥ ∀Z ∈ X (τ ).

It follows from the submersiveness of Γ̃ that DHµ(K, K⊥) = 0, and the con-
dition to avoid splitting of Γ thus becomes: DHµ(K⊥, K) 6= 0.

In coordinates (yi, xa), simultaneously adapted to K and K⊥

K = sp

{
∂

∂xa

}
K⊥ = sp

{
∂

∂yi

}
,

the equations of motion will take the form

ÿi = −Γi
jk(y)ẏjẏk + Qi(y),

ẍa = −Γa
bc(x)ẋbẋc + Qa(y, x).

Within this class of submersive non-conservative systems, two more assump-
tions are needed to capture and generalize the driven cofactor systems:



• one is the existence of a scKt J for the overall cofactor nature of the system,

• the other one is simply dµ(K, K) = 0, which in adapted coordinates means
that the Qa(y, x) satisfy

∂Qa

∂xb
− ∂Qb

∂xa
= 0,

and ensures that the ‘driven’ system is (parametrically) Hamiltonian.

Hence we arrive at the following coordinate-free characterization:

Definition: A driven cofactor system is a cofactor system (g, µ, J), de-
termined by a Riemannian metric g, a basic 1-form µ and a scKt J on M ,
for which there exists a distribution K along τ , with the properties

Φ(K) ⊂ K, ∇K ⊂ K, DV
ZK ⊂ K

and
dµ(K, K) = 0, DHµ(K⊥, K) 6= 0.



Further properties of cofactor systems

By now well known: if A is the cofactor tensor of a scKt J

A J = (det J)I,

then A is a Killing tensor!

Also, NJ = 0, DJµ = 0 (in view of DJ
2 = 0) implies that there exists a

function W on M , such that

A(µ) = dW,

and we have the first integral

E = 1
2Aij(q)vivj + W (q).

Denote by J̃ the complete lift of J to T ∗M :

J̃ = J i
j

(
∂

∂qi
⊗ dqj +

∂

∂pj
⊗ dpi

)
+ pk

(
∂Jk

i

∂qj
−

∂Jk
j

∂qi

)
∂

∂pi
⊗ dqj.



J̃ commutes with the standard Poisson map

P0 : X ∗(T ∗M) → X (T ∗M),

and is the recursion operator of a Poisson-Nijenhuis structure on T ∗M , which
makes PJ = J̃ ◦ P0 and P0 compatible.

Furthermore, if Γ̂ ∈ X (T ∗M) denotes the image of Γ under the Legendre
transform of the kinetic energy Lagrangian L = 1

2gijv
ivj, the cofactor sys-

tem properties are necessary and sufficient for Γ̂ to have a quasi-Hamiltonian
representation:

F Γ̂ = PJ(dH)

with
H(= E) = 1

2A
ijpipj + W, F = det J.

Finally (see e.g. Benenti (2005) or Marciniak and Blaszak (2008)), a time-scale
transformation determined by

dt

dt̃
= det J,



will transform this representation, using results on geodesic equivalence of
metrics, into a standard Hamiltonian system˜̂

Γ = P0(dH̃) with H̃(q, p̃) = H(q, Jp̃).

Cofactor pair systems

Suppose that a non-conservative system (g, µ) has two independent cofactor
representations, so:

• J and K are two scKts for g

• DJµ = DKµ = 0.

Then, the scKt properties of J and K imply that [J, K] = 0 and hence that
PJ and PK are compatible.



Furthermore, ∀a, b ∈ IR we have that aJ + bK is also a scKt and the gauged
bi-differential operators DJ and DK behave as commuting derivations of
degree 1, in the sense that

DJ
2 = 0, DK

2 = 0 and DJDK + DKDJ = 0.

One can show then that there are n quadratic integrals, which are in involution
w.r.t. both Poisson structures. Also, rescaling one or the other representation
will lead to a quasi-bi-Hamiltonian system and Hamilton-Jacobi separability
results of that theory become applicable.



And now back to the driven cofactor systems ...

With K and K⊥ we have two complementary sub-bundles of TM

(and corresponding sub-modules of X (τ )). Put

g1 = g|K⊥ , g2 = g|K,

so that in adapted coordinates

g = g1 + g2 = gij(y)dyi ⊗ dyj + gab(x)dxa ⊗ dxb.

Consider further the projection operators

P1 : X (τ ) → K⊥, P2 : X (τ ) → K,

and decompose the scKt J and the non-conservative forces µ accordingly:

J1 = P1 ◦ J ◦P1, J2 = P2 ◦ J ◦P2, J12 = P1 ◦ J ◦P2, J21 = P2 ◦ J ◦P1

µ1 = P1(µ), µ2 = P2(µ).



Effect of the submersiveness on J

In adapted coordinates, we have

J1 = J i
j(y)

∂

∂yi
⊗ dyj, J2 = Ja

b (x)
∂

∂xa
⊗ dxb,

J12 = J i
a(y, x)

∂

∂yi
⊗ dxa, J21 = Ja

i (y, x)
∂

∂xa
⊗ dyi,

with
∂Ja

i

∂yj
=

∂Ja
j

∂yi
,

∂J i
a

∂xb
=

∂J i
b

∂xa
.

In addition,

Jij|k = 1
2(σ1igjk + σ1jgik), σ1 = d tr J1,

Jab|c = 1
2(σ2agbc + σ2bgac), σ2 = d tr J2,

meaning that J1 and J2 are scKts for g1 and g2 respectively.



A summary of results

The ‘driving system’, determined by (g1, µ1) is of cofactor type in its own
right, with J1 (assumed to be non-singular) as scKt, and thus has a quadratic
integral which in adapted coordinates reads

E1 = 1
2A

1
ij(y)ẏiẏj + W 1(y),

with A1 = cof J1 and A1µ1 = dW 1.

The projector P2 is a degenerate scKt tensor for the complete system, so that
we have a cofactor pair system in some sense.

The algorithm for generating integrals in involution of a cofactor pair system
can be suitably adapted to this degenerate situation of (J, P2): if n = dim K,
it produces n + 1 integrals, one of which in fact is the E1 of the driving
system. The remaining n, say H(1), . . . , H(n) will be first integrals of the
‘driven system’, along arbitrary solutions yi(t) of the driving system.



Since det J1 6= 0, the block matrix structure of J can be decomposed as(
J1 J12

J21 J2

)
=

(
J1 0

J21 1

)(
1 J1

−1J12

0 J2 − J21J1
−1J12

)
It follows that J̄2 = J2 − J21J1

−1J12 is non-singular and

det J = (det J1)(det J̄2).

Moreover, J̄2 is a scKt for the metric g2 and gives rise to a cofactor represen-
tation of the driven system. Since, by assumption, the driven system also has
a standard Hamiltonian representation, we seem to have the usual data for
Hamilton-Jacobi separability.

However, the driven system, which comes to life along solutions of the driving
system, is time-dependent!

The point is that, as in the Euclidean case, a cleverly chosen standard (time-
dependent) canonical transformation will transform the original Hamiltonian
into one of the form H(1)/ det J1 say, where all the time-dependence goes into
the factor (det J1)

−1.



The fundamental technical assumption now is that the eqn

det(J − λP2) = 0,

which is a polynomial of degree n = dim K due to degeneracy of P2, has n
functionally independent solutions ua(y, x).

One can show then that

J̄2(P2(dua)) = ua P2(dua),

which reveals eigenfunctions and eigenforms of J̄2.

The idea is to use the ua as new coordinates for the driven system. To dis-
cover the right canonical transformation (xa, pa) ↔ (ua, sa), we first trans-
form the original quasi-Hamiltonian representation of the full system via re-
parametrisation with factor (det J), but extract from that only the effect on
the driven system, i.e.

pα = Jβ
α p̌β ⇒ pa = J̄2

b
ap̌b + . . . ,

then we rescale the driven system with factor (det J̄2)
−1

p̌b = (J̄−1
2 )cb p̃c ⇒ pa = p̃a + . . . ,



then, in the variables (xa, p̃a), consider the standard canonical transformation
induced by the point transformation xa → ua(y(t), x), i.e.

sa =
∂xb

∂ua
p̃b =

∂xb

∂ua
(pb + . . .),

and finally rescale again with factor (det J1)
−1. Since

(det J)/(det J̄2) = det J1,

this means that we in the end come back to the original time-variable.

But in the original time, the driven system had a standard Hamiltonian de-
scription, hence the canonical tf will preserve this.

It turns out that the new Hamiltonian is

K = H(1)(u
a, sa, t)/(det J1)(t).

Since H(1) is a first integral of the driven system, it follows from K being a
Hamiltonian that H(1) cannot have explicit time dependence.

Hamilton-Jacobi separability now follows.


