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Generalities about 2nd-order equations

[t is well known that a SODE field on T'M
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comes with a canonically defined connection on 7 : T'"M — M, determined

by
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[ X complete lift, XV: vertical lift].

In coordinates:
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In turn, with the aid of the projection operators Py and P, of this non-linear
connection on T'M, one can construct a linear connection on the pullback

bundle 7°7 : 7T'M — T M, said to be of Berwald type.



Essentially, this connection defines vertical and horizontal covariant deriva-
tive operators DY and D% on X'(7), which in coordinates, are determined by
the following action on functions F' and basic vector fields (and then further
extend by duality):

DYF = X'V(F),  Digl=0 (Vim0
H i 0 J k 0
DLE = X1 Hy(F), D5 = X Vi

Of equal importance are
e the dynamical covariant derivative V (degr. 0 derivation)
e a (1,1) tensor ® € V(7), called Jacobi endomorphism
which can implicitly be defined by  Lp X" = (VX)" + &(X)".
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VI =I(F) i — I —— o7 Vdg' = —T'dg’,
Q! = ——— — [T —T(I").
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Submersive equations and decoupling

SODEs are submersive (Kossowski and Thompson, 1991) if a number of the
eqns decouple from the rest, i.e. in suitable coordinates (z¢,y'), the system
takes the form

i = f'y),

&t = fUz,y).
Such property is completely characterized intrinsically by:
existence of a distribution K along 7 : T'M — M, such that

PK)cK, VKCK, D),KCK VZeX(T).
Indeed, those conditions have the following effect:
e DV-invariance means that K is generated by basic vector fields,

e DV- and V-invariance further implies D*-invariance and as a result Frobe-
nius integrability,

e if the % are coordinates on integral manifolds of K,
V-invariance implies that the f* do not depend on ¢,

e finally ®-invariance then implies f'/0z% = 0 as well.



Assume now further that g is a Riemannian metric on M, satisfying
Vg =0.

Let K+ be the orthogonal complement of K: ¢(K, K+) = 0.

[t follows from Vg = 0 and D% ¢ = 0 that
VK- c K+, DYK+C K+ VZ ¢ X(7).

IMPORTANT SPECIAL CASE

If I' represents a Lagrangian system on T'M, the Hessian g of L has the
property that ®Jg is symmetric. If this g is Riemannian on M, the implication
is that also ®(K+) C K+, i.e. Kt satisfies all conditions of submersiveness

)

as well (and there exist coordinates simultaneously adapted to K and K=).

Conclusion: A submersive Lagrangian system of mechanical type decouples
into two separate systems.



Cofactor systems

Lundmark, Wojciechowski and co-workers introduced cofactor systems as
Newtonian type SODEs of the form

i =—(Aq)™")
where the matrix A is of the form

A(q) = cof G(q), with G*(q) = aq*q” + b°¢" + b°¢" + *°.
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These can be viewed as representing a class of non-conservative Lagrangian

systems
d (0T or 0
dt \ 0¢” oqc Y
with a ‘Euclidean kinetic energy’ T' = % (¢“)? and non-conservative forces

of some quasi-potential type.

The same authors later obtained remarkable results about a subclass of such
systems which split into a so-called ‘driving’ and ‘driven part’.



Driven cofactor systems

The basic assumption is one of submersiveness in the given coordinates, i.e.
with (¢%) = (y', %), a given cofactor system ¢¢ = f¢ is assumed to appear in
the form:

J=Qy), i=1....m
i = Qy, 2" a=1,...n.

An extra hypothesis is: after solving the driving eqns for the y*, the driven
system

i =Q"(y'(t),2")
has a Lagrangian of mechanical type
TV =13 - V), )
What is proved then is:

e the driving system is of cofactor type on R™,

e for any solution y(¢) of the driving system, the driven system has n (time-
dependent) integrals,



e under some technical assumptions, primarily functional independence of
eigenfunctions u® of a suitably adapted reduced eigenvalue problem, there
exists a canonical transformation (%, p,) < (u%, s,) which has the effect
that all the time-dependence in the transformed Hamiltonian is caught in
an overall factor and the Hamilton-Jacobi eqn can be solved by separation
of variables.

Cofactor and driven cofactor systems on Riemannian manifolds

Recall (Crampin and W.S. (2001)) the following characterization of a cofactor
system on (the tangent bundle of ) a Riemannian space (M, g).

Consider a non-conservative Lagrangian system determined by the ‘Riemannian
kinetic energy’ T = % Jas(q)G%¢” and non-conservative forces Q%(q), given by
some 1-form p = Q.(q)dg® on M.

Definition: The pair (g, ) determines a cofactor system if g admits a
spectal conformal Killing tensor J and p satisfies D ju = 0.



A special conformal Killing tensor w.r.t. g is a (non-singular) type (1,1)
tensor J on M, such that J,5 = ngg is symmetric and (w.r.t. the Levi-
Civita connection of g) has the property

Jugly = 5(0098y + 0390r), which implies o0 = dtr J. (scKt)

Secondly, Dy is a ‘gauged’ differential operator defined (for any 1-form p) by
Dip=dmp+dtrJ)ANp or Djp=(detJ) 'd;((det J)p).

Note that the corresponding SODE field I' on T'M is of the form
0

['= f + Qﬁw, Qﬁ — gﬁ&Qom

where T is the geodesic spray of g.
But T is Lagrangian, hence: %g =0, Eijg 1S symmetric.

It follows that Vg = 0 as well, and we must insist on du # 0 to avoid
that I" would be Lagrangian also and submersiveness would imply complete
decoupling.



Assume now again that a distribution K makes I' submersive and consider its
complement K.

As before,
VK- Cc K+, DYK-C K+ VZcX(r)

It follows from the submersiveness of I that D (K, K+) =0, and the con-
dition to avoid splitting of I" thus becomes: D u( K=+, K) # 0.

In coordinates (y*, %), simultaneously adapted to K and K+

0 0
K=sp3— K+ = .
v {5‘93“} v {W}’
the equations of motion will take the form

i = D)y + Q'y),
it = =T ()2’ + QYy, x).

Within this class of submersive non-conservative systems, two more assump-
tions are needed to capture and generalize the driven cofactor systems:



e one is the existence of a scKt J for the overall cofactor nature of the system,

e the other one is simply du( K, K') = 0, which in adapted coordinates means
that the Q. (y, x) satisfy

a@a . aQb — 0
ozt  Ox° ’

and ensures that the ‘driven’ system is (parametrically) Hamiltonian.

Hence we arrive at the following coordinate-free characterization:

Definition: A driven cofactor system is a cofactor system (g, u, J), de-
termined by a Riemannian metric g, a basic 1-form p and a scKt J on M,
for which there exists a distribution K along 7, with the properties

dK)c K, VKCK, DyKCK

and
du(K,K) =0, D"u(K*+ K)#0.




Further properties of cofactor systems

By now well known: if A is the cofactor tensor of a scKt J
AJ = (det J)I,
then A is a Killing tensor!
Also, Ny = 0, Dy = 0 (in view of D 2= 0) implies that there exists a
function W on M, such that
A(p) = dw,
and we have the first integral

= 54i(q)v'v’ + W(q).
Denote by J the complete lift of J to T M:

~ (0 0 oJk oJF\ o |
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J commutes with the standard Poisson map
Py: X*(T"M) — X(T"M),

and 1s the recursion operator of a Poisson-Nijenhuis structure on 7% M, which
makes P; = J o Py and F, compatible.

Furthermore, if I' € X(T*M) denotes the image of I' under the Legendre
transform of the kinetic energy Lagrangian L = %gijvivj . the cofactor sys-
tem properties are necessary and sufficient for [ to have a quasi-Hamiltonian
representation:
FT = Ps(dH)
with
H(=E)=1App;+W,  F=detJ.

Finally (see e.g. Benenti (2005) or Marciniak and Blaszak (2008)), a time-scale
transformation determined by

dt
- — det z],
dt



will transform this representation, using results on geodesic equivalence of
metrics, into a standard Hamiltonian system

~
A

['=Ry(dH) with H(q,p) = Hl(q, Jp).

Cofactor pair systems

Suppose that a non-conservative system (g, ) has two independent cofactor
representations, so:

e J and K are two scKts for g
® Dy = Dgp=0.

Then, the scKt properties of J and K imply that |J, K] = 0 and hence that
Pj and Py are compatible.



Furthermore, Va, b € IR we have that aJ + bK is also a scKt and the gauged
bi-differential operators Dy and Dy behave as commuting derivations of
degree 1, in the sense that

DJQZO, DK2:O and DjDyg + DgDj=0.

One can show then that there are n quadratic integrals, which are in involution
w.r.t. both Poisson structures. Also, rescaling one or the other representation
will lead to a quasi-bi-Hamiltonian system and Hamilton-Jacobi separability
results of that theory become applicable.



And now back to the driven cofactor systems ...

With K and K+ we have two complementary sub-bundles of T'M
(and corresponding sub-modules of X (7)). Put

glzg\mv 9229\K>

so that in adapted coordinates

g=ag1+ 9 = gij(y)dy' @ dy’ + gap(x)dz" @ da®.

Consider further the projection operators
P X(1)— K™, P X(r)— K,
and decompose the scKt J and the non-conservative forces u accordingly:
J=PoJoP, Jy=FoJoF, Jys=PFPoJoP, Jy=~PFPoJohP
pr=Pi(p),  po = Pap).



Effect of the submersiveness on J

In adapted coordinates, we have

0

0
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Jl — J]<y>ay2 0% d’y]’ JQ = Jb (I’)@ dx ,
Jio = J( x)i@)d:ca Jor = J( :z:)a ® dy’
12 — Jg4 y7 ayl ’ 21 — Yy y? axa y )
with . .
oJ¢ aJ} dJ, 0J;
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In addition,
Tk = 3(01gjk + 01;Gir), o1 = dtrJy,
Jab\c — %(O-Qagbc + Ongac>7 oy = dtr Ja,

meaning that J; and Jy are scKts for g1 and gy respectively.



A summary of results

The ‘driving system’, determined by (g1, 1) is of cofactor type in its own
right, with J; (assumed to be non-singular) as scKt, and thus has a quadratic
integral which in adapted coordinates reads

By = A5y + Wy),
with A! = cof J; and Ay = dW1.

The projector P, is a degenerate scKt tensor for the complete system, so that
we have a cofactor pair system in some sense.

The algorithm for generating integrals in involution of a cofactor pair system
can be suitably adapted to this degenerate situation of (J, P): if n = dim K,
it produces n + 1 integrals, one of which in fact is the E;y of the driving
system. The remaining n, say Hy,..., Hg,) will be first integrals of the

‘driven system’, along arbitrary solutions y'(¢) of the driving system.



Since det J; # 0, the block matrix structure of J can be decomposed as

JiJiz\ [ S0 1 J
Jo1 Jo Jor 1 0 Jy — JorJy H o

It follows that Jy = Jo — JorJy “Jps is non-singular and
det J = (det Jy)(det Jy).

Moreover, Js is a scKt for the metric g, and gives rise to a cofactor represen-
tation of the driven system. Since, by assumption, the driven system also has
a standard Hamiltonian representation, we seem to have the usual data for
Hamilton-Jacobi separability.

However, the driven system, which comes to life along solutions of the driving
system, is time-dependent!

The point is that, as in the Euclidean case, a cleverly chosen standard (time-
dependent) canonical transformation will transform the original Hamiltonian
into one of the form Hy)/ det J; say, where all the time-dependence goes into

the factor (det J;)~.



The fundamental technical assumption now is that the eqn
det(J — APy) =0,
which is a polynomial of degree n = dim K due to degeneracy of P, has n

functionally independent solutions u®(y, ).

One can show then that
jg(PQ(d”Lﬂ)) = ’LLa Pg(duCL),
which reveals eigenfunctions and eigenforms of Js.

The idea is to use the u® as new coordinates for the driven system. To dis-
cover the right canonical transformation (z% p,) < (u% s,), we first trans-
form the original quasi-Hamiltonian representation of the full system via re-
parametrisation with factor (det J), but extract from that only the effect on
the driven system, i.e.

Do = Jgﬁg = Py = ngprr...,
then we rescale the driven system with factor (det jz)_l

ﬁb:<j2_1>g]§c — pa:ﬁa+°--7



then, in the variables (2, p,), consider the standard canonical transformation
induced by the point transformation x® — u®(y(t), x), i.e.

ox Ozt

6’u@pb B ou®

and finally rescale again with factor (det.J;)™!. Since

(det J)/(det Jo) = det Ji,

Sg = (pb—l-...>,

this means that we in the end come back to the original time-variable.

But in the original time, the driven system had a standard Hamiltonian de-
scription, hence the canonical tf will preserve this.

It turns out that the new Hamiltonian is
K = Hpy(u", sq,t)/(det Jp)(2).

Since H(y) is a first integral of the driven system, it follows from K being a
Hamiltonian that H ;) cannot have explicit time dependence.

Hamilton-Jacobi separability now follows.



