Central Invariants of the Drinfeld - Sokolov Bihamiltonian Structures

Zhang Youjin

Tsinghua University
August 8, 2008, Bedlewo

Based on joint works with Boris Dubrovin and Si-Qi Liu

Introduction

Definition of the Central invariants

The Drinfeld - Sokolov bihamiltonian structures

The associated Frobenius manifolds

The central invariants

Conclusion

1. Introduction

Classification of integrable systems of evolutionary PDEs

$$
\begin{aligned}
& \frac{\partial w^{i}}{\partial t}=K^{i}\left(w ; w_{x}, w_{x x}, \ldots\right), \quad i=1, \ldots, n \\
& w=\left(w^{1}, \ldots, w^{n}\right) \in M^{n}
\end{aligned}
$$

Integrability: Hamiltonian system with a complete family of commuting Hamiltonians

Bihamiltonian evolutionary PDEs

$$
K^{i}\left(w ; w_{x}, w_{x x}, \ldots\right)=\left\{w^{i}(x), H_{1}\right\}_{1}=\left\{w^{i}(x), H_{2}\right\}_{2}
$$

Consider bihamiltonian PDEs admitting a formal expansion w.r.t. a small parameter ϵ

$$
\begin{aligned}
w_{t}^{i}= & A_{j}^{i}(w) w_{x}^{j}+\epsilon\left[B_{j}^{i}(w) w_{x x}^{j}+C_{j k}^{i}(w) w_{x}^{j} w_{x}^{k}\right] \\
& +\epsilon^{2}\left[D_{j}^{i}(w) w_{x x x}^{j}+E_{j k}^{i}(w) w_{x}^{j} w_{x x}^{k}+F_{j k l}^{i}(w) w_{x}^{j} w_{x}^{k} w_{x}^{\prime}\right]+\ldots, \\
i= & 1, \ldots, n
\end{aligned}
$$

Classification w.r.t. certain extension of the group of local diffeomorphism of the manifold M, called the group of Miura-type transformations. We obtain the complete set of invariants of the bihamiltonian structure satisfying certain semisimplicity assumption.

The prototypical system: the Korteweg-de Vries

$$
w_{t}=w w_{x}+\frac{\epsilon^{2}}{12} w_{x x x}, \quad w=w(x, t)
$$

It has the first Hamiltonian structure (Faddeev \& Zakharov; Gardner)

$$
\{w(x), w(y)\}_{1}=\delta^{\prime}(x-y)
$$

and the second one (Magri)

$$
\{w(x), w(y)\}_{2}=w(x) \delta^{\prime}(x-y)+\frac{1}{2} w_{x} \delta(x-y)+\frac{\epsilon^{2}}{8} \delta^{\prime \prime \prime}(x-y)
$$

Another example: The Camassa-Holm equation:

$$
\left(q-\frac{\epsilon^{2}}{8} q_{x x}\right)_{t}=q q_{x}-\frac{\epsilon^{2}}{12} q_{x} q_{x x}-\frac{\epsilon^{2}}{24} q q_{x x x}
$$

Set

$$
w=q-\frac{\epsilon^{2}}{8} q_{x x} .
$$

It have the Bihamiltonian structure

$$
\begin{aligned}
& \{w(x), w(y)\}_{1}=\delta^{\prime}(x-y)-\frac{\epsilon^{2}}{8} \delta^{\prime \prime \prime}(x-y) \\
& \{w(x), w(y)\}_{2}=w(x) \delta^{\prime}(x-y)+\frac{1}{2} w_{x} \delta(x-y)
\end{aligned}
$$

The first part of these invariants: flat pencil of metrics
Defined on the manifold M, describes the bihamiltonian structure of the hydrodynamic limit

$$
w_{t}^{i}=A_{j}^{i}(w) w_{x}^{j}, \quad i=1, \ldots, n
$$

The first part of these invariants: flat pencil of metrics
Defined on the manifold M, describes the bihamiltonian structure of the hydrodynamic limit

$$
w_{t}^{i}=A_{j}^{i}(w) w_{x}^{j}, \quad i=1, \ldots, n
$$

The second part of the invariants: the central invariants
Comes from the deformation theory of the bihamiltonian structures of hydrodynamic type; it consists of n functions of one variable.

One of the motivations:
Relation of 2d TFT and Gromov-Witten theory with bihamiltonian integrable hierarchies

An important feature of such bihamiltonian structures:
For this class the flat pencil of metrics comes from a Frobenius structure on the manifold M and all the central invariants are constants equal to each other.

Problem: What are the flat pencils of metrics and the central invariants for the bihamiltonian hierarchies constructed by
V. Drinfeld and V. Sokolov.

2. Definition of the Central invariants

Let $w=\left(w^{1}, \ldots, w^{n}\right) \in M$ be local coordinates on M. Denote by \mathcal{B} the graded ring of polynomial functions on the jet bundle of M

$$
\mathcal{B}=\underset{k}{\lim } \mathcal{B}_{k}, \quad \mathcal{B}_{k}=\mathcal{C}^{\infty}(M)\left[w_{x}, w_{x x}, \ldots, w^{(k)}\right], \quad \operatorname{deg} \partial_{x}^{k} w^{i}=k
$$

The quotient space

$$
\overline{\mathcal{B}}:=\mathcal{B}[[\epsilon]] / \operatorname{Im} \partial_{x}
$$

will be called the space of local functionals. Here

$$
\partial_{x}=\sum_{k} w^{i, k+1} \frac{\partial}{\partial w^{i, k}}, \quad w^{i, k}:=\frac{\partial^{k} w^{i}}{\partial x^{k}} .
$$

Type of Poisson brackets:
For two local functionals

$$
\bar{P}=\int P\left(w ; w_{x}, \ldots ; \epsilon\right) d x, \quad \bar{Q}=\int Q\left(w ; w_{x}, \ldots ; \epsilon\right) d x, \quad P, Q \in \mathcal{B}[[\epsilon]]
$$

the Poisson bracket is a local functional of the form

$$
\{\bar{P}, \bar{Q}\}=\int \frac{\delta \bar{P}}{\delta w^{i}(x)} \Pi^{i j} \frac{\delta \bar{Q}}{\delta w^{j}(x)} d x .
$$

where

$$
\begin{aligned}
& \Pi^{i j}=g^{i j}(w) \partial_{x}+\Gamma_{k}^{i j}(w) w_{x}^{k}+\sum_{k \geq 1} \epsilon^{k} \sum_{l=0}^{k+1} A_{k, l}^{i j}\left(w ; w_{x}, \cdots, w^{(I)}\right) \partial_{x}^{k-l+1}, \\
& A_{k, I}^{i j} \in \mathcal{B}, \quad \operatorname{deg} A_{k, l}^{i j}=l . \quad \operatorname{det}\left(g^{i j}\right) \neq 0 .
\end{aligned}
$$

The Poisson bracket is also represented in the form

$$
\begin{aligned}
& \left\{w^{i}(x), w^{j}(y)\right\}=\left\{w^{i}(x), w^{j}(y)\right\}^{[0]}+\sum_{k \geq 1} \epsilon^{k}\left\{w^{i}(x), w^{j}(y)\right\}^{[k]} \\
& \quad\left\{w^{i}(x), w^{j}(y)\right\}^{[k]}=\sum_{l=0}^{k+1} A_{k, l}^{i j}\left(w(x) ; w_{x}, \cdots, w^{(I)}(x)\right) \delta^{(k-l+1)}(x-y)
\end{aligned}
$$

Given a local functional

$$
H=\int \sum_{k \geq 0} \epsilon^{k} P_{k}\left(w ; w_{x}, w_{x x}, \ldots, w^{(k)}\right) d x, \quad \operatorname{deg} P_{k}=k
$$

we have a Hamiltonian system of evolutionary PDEs

$$
w_{t}^{i}=\left\{w^{i}(x), H\right\}=\Pi^{i j} \frac{\delta H}{\delta w^{j}(x)}
$$

Poisson bracket of hydrodynamic type:

$$
\left\{w^{i}(x), w^{j}(y)\right\}^{[0]}=g^{i j}(w(x)) \delta^{\prime}(x-y)+\Gamma_{k}^{i j}(w(x)) w_{x}^{k} \delta(x-y) .
$$

Here $\operatorname{det}\left(g^{i j}\right) \neq 0$.
Anti-symmetry requires: $g^{i j}$ defines a symmetric non-degenerate bilinear form on $T^{*} M$. We call it a metric.

The Jacobi identity implies: the curvature of the metric vanishes, and

$$
\Gamma_{k}^{i j}=-g^{i s} \Gamma_{s k}^{j}
$$

(Dubrovin, Novikov 1983)

Miura-type transformations:

Definition.

A Miura-type transformation is a change of variables of the form
$w^{i} \mapsto \tilde{w}^{i}\left(w ; w_{x}, w_{x x}, \ldots ; \epsilon\right)=F_{0}^{i}(w)+\sum_{k \geq 1} \epsilon^{k} F_{k}^{i}\left(w ; w_{x}, \cdots, w^{(k)}\right)$
where $F_{k}^{i} \in \mathcal{B}$ with $\operatorname{deg} F_{k}^{i}=k$, and the map $w \mapsto F_{0}^{i}(w)$ is a diffeomorphism of M.

All Miura-type transformations form a group $\mathcal{G}(M)$. It acts by automorphisms on the graded ring $\mathcal{B}[[\epsilon]]$. The action of the group $\mathcal{G}(M)$ on the Poisson brackets is given by the formula

$$
\tilde{\Pi}^{k l}=L_{i}^{k} \Pi^{i j} L_{j}^{\dagger \dagger}
$$

Theorem. (Getzler; Degiovanni, Magri, Sciacca; Dubrovin, Z.) Any Poisson bracket of the above form can be reduced to a Poisson bracket of hydrodynamic type given by its leading terms by a Miura-type transformation.

Thus a Poisson bracket of the above form is equivalent, w.r.t. the action of the group $\mathcal{G}(M)$, to

$$
\left\{w^{i}(x), w^{j}(y)\right\}=\eta^{i j} \delta^{\prime}(x-y), \quad \eta^{i j}=\mathrm{constant}
$$

The signature of the metric $g^{i j}(w)$ is the only local invariant of a single Poisson bracket.

Definition.

A pair of Poisson brackets $\{,\}_{1},\{,\}_{2}$ is called to be compatible if any of their linear combinations
$\{,\}_{1}+\lambda\{,\}_{2}, \lambda \in \mathbb{R}$ is also a Poisson bracket. A pair of compatible Poisson brackets forms a bihamiltonian structure.

A system of evolutionary PDEs is called a bihamiltonian system if it can be represented as Hamiltonian systems w.r.t. to both Poisson bracket of a bihamiltonian structure

$$
\frac{\partial w^{i}}{\partial t}=\left\{w^{i}(x), H_{1}\right\}_{1}=\left\{w^{i}(x), H_{2}\right\}_{2}, \quad i=1, \ldots, n
$$

Flat pencil of metrics

The leading terms $\{,\}_{1}^{[0]},\{,\}_{2}^{[0]}$ of a bihamiltonian structure is determined by a pair of flat metrics $g_{1}^{i j}(w), g_{2}^{i j}(w)$ on M. They have the property that at any point $w \in M$ their arbitrary linear combination

$$
a_{1} g_{1}^{i j}(w)+a_{2} g_{2}^{i j}(w)
$$

has zero curvature, and the contravariant Christoffel coefficients for the above metric have the form of the same linear combination

$$
a_{1} \Gamma_{k 1}^{i j}+a_{2} \Gamma_{k 2}^{i j}
$$

Semisimplicity

Definition.

We say that a pair of metrics is strongly nondegenerate if for any $\lambda \in \mathbb{C}$ the symmetric matrix $\left(g_{2}^{i j}(w)-\lambda g_{1}^{i j}(w)\right)$ does not degenerate for generic $w \in M$.

Definition.

A bihamiltonian structure is called semisimple if the associated pair of metrics $\left(g_{1}^{i j}, g_{2}^{i j}\right)$ is strongly nondegenerate, and it is semisimple at generic points of M, i.e., at a generic point $w \in M$ the roots $\lambda=u^{1}(w), \ldots, \lambda=u^{n}(w)$ of the characteristic equation

$$
\operatorname{det}\left(g_{2}^{i j}(w)-\lambda g_{1}^{i j}(w)\right)=0
$$

are pairwise distinct.

Canonical coordinates:

The roots $\lambda=u^{1}(w), \ldots, \lambda=u^{n}(w)$ of the characteristic equation define a system of local coordinates (Ferapontov 2001). They are called the canonical coordinates of the bihamiltonian structure. In the canonical coordinates the two metrics are diagonal:

$$
g_{1}^{i j}(u)=f^{i}(u) \delta_{i j}, \quad g_{2}^{i j}(u)=u^{i} f^{i}(u) \delta_{i j}, \quad i, j=1, \cdots, n
$$

for some functions $f^{1}(u), \ldots, f^{n}(u), u=\left(u^{1}, \ldots, u^{n}\right) \in M$.

The central invariants
For a semisimple bihamiltonian structure

$$
\begin{aligned}
& \left\{w^{i}(x), w^{j}(y)\right\}_{a}=\left\{w^{i}(x), w^{j}(y)\right\}_{a}^{[0]}+\sum_{k \geq 1} \epsilon^{k}\left\{w^{i}(x), w^{j}(y)\right\}_{a}^{[k]} \\
& \quad\left\{w^{i}(x), w^{j}(y)\right\}_{a}^{[k]}=\sum_{l=0}^{k+1} A_{k, l ; a}^{i j}\left(w(x) ; w_{x}, \cdots, w^{(l)}(x)\right) \delta^{(k-l+1)}(x-y)
\end{aligned}
$$

Denote

$$
\pi_{a}^{i j}(p ; w):=\sum_{k=0}^{\infty} A_{k, 0 ; a}^{i j}(w) p^{k}, \quad a=1,2 .
$$

The roots of the characteristic equation

$$
\mathcal{R}(p, \lambda ; w):=\operatorname{det}\left(\pi_{2}^{i j}(p ; w)-\lambda \pi_{1}^{i j}(p ; w)\right)
$$

has the formal power series expansion in p

$$
\lambda^{i}(p ; w)=u^{i}(w)+\lambda_{2}^{i}(w) p^{2}+\mathcal{O}\left(p^{4}\right), \quad i=1, \ldots, n .
$$

Denote

$$
c_{i}(w):=\frac{1}{3} \frac{\lambda_{2}^{i}(w)}{f^{i}(w)}, \quad i=1, \ldots, n
$$

Theorem (Dubrovin, Liu, Z, 2006)
i) Each function $c_{i}(w)$ defined above depends only on $u^{i}(w)$,

$$
c_{i}(w)=c_{i}\left(u^{i}(w)\right), \quad i=1, \ldots, n .
$$

ii) Two semisimple bihamiltonian structures with the same leading terms $\{,\}_{a}^{[0]}, a=1,2$ are equivalent iff they have the same set of central invariants $c_{i}\left(u^{i}\right), i=1, \cdots, n$.

3. The Drinfeld - Sokolov bihamiltonian structures

Finite dimensional case:
Given a Poisson manifold \mathcal{M}, and a Poisson action of a simply connected Lie group G on \mathcal{M}. Let a family of Hamiltonians

$$
H_{1}(x), \ldots, H_{N}(x) \in \mathcal{C}^{\infty}(\mathcal{M})
$$

generates the Poisson action.
The moment map

$$
\mathcal{P}: \mathcal{M} \rightarrow \mathfrak{g}^{*}, \quad \mathcal{P}(x)=\left(H_{1}(x), \ldots, H_{N}(x)\right) \in \mathfrak{g}^{*}
$$

Given a Hamiltonian $H \in \mathcal{C}^{\infty}(\mathcal{M})$ invariant with respect to the action of the group G

$$
\left\{H, H_{i}\right\}=0, \quad i=1, \ldots, N
$$

the goal of the reduction procedure is to reduce the order of the Hamiltonian system

$$
\frac{d x}{d t}=\{x, H\}
$$

i.e., to find a Poisson manifold $\left(\mathcal{M}^{\text {red }},\{,\}_{\text {red }}\right)$ of a lower dimension and a Hamiltonian $H_{\text {red }} \in \mathcal{C}^{\infty}\left(\mathcal{M}^{\text {red }}\right)$ such that problem of integration of the Hamiltonian system is reduced to the one for

$$
\frac{d y}{d t}=\left\{y, H_{\mathrm{red}}\right\}_{\mathrm{red}}, \quad y \in \mathcal{M}^{\mathrm{red}}
$$

The reduced phase space

Consider a smooth common level surface of the Hamiltonians

$$
\mathcal{M}_{h}:=\mathcal{P}^{-1}(h)
$$

where

$$
h=\left(h_{1}, \ldots, h_{N}\right) \in \mathfrak{g}^{*}
$$

is a regular value of the moment map. Denote $G_{h} \subset G$ the stabilizer of h with respect to the coadjoint action of G on \mathfrak{g}^{*}.
The reduced phase space

$$
\mathcal{M}_{h}^{\mathrm{red}}:=\mathcal{M}_{h} / G_{h} .
$$

The reduced Poisson bracket

Assume that $G_{h}=G$
Functions on $\mathcal{M}_{h}^{\text {red }}$ can be identified with G-invariant functions on \mathcal{M}_{h}. For any two G-invariant functions α, β on \mathcal{M}_{h} denote $\hat{\alpha}, \hat{\beta}$ arbitrary extensions of these two functions on a neighborhood of \mathcal{M}_{h}. Then the Poisson bracket on the reduced phase space is given by

$$
\{\alpha, \beta\}_{\mathrm{red}}:=\left.\{\hat{\alpha}, \hat{\beta}\}\right|_{\mathcal{M}_{h}}
$$

Infinite dimensional case: the Drinfeld - Sokolov reduction
Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}, G the associated connected and simply connected Lie group. Fix a nondegenerate symmetric invariant bilinear form $\langle,\rangle_{\mathfrak{g}}$ on \mathfrak{g}. The central extension

$$
0 \rightarrow \mathbb{C k} \rightarrow \hat{\mathfrak{g}} \rightarrow L(\mathfrak{g}) \rightarrow 0
$$

of the loop algebra $L(\mathfrak{g}):=C^{\infty}\left(S^{1}, \mathfrak{g}\right)$ defined by the 2-cocycle

$$
\omega(q, p)=-\int_{S^{1}}\left\langle q(x), p^{\prime}(x)\right\rangle_{\mathfrak{g}} d x
$$

Denote by $\hat{\mathfrak{g}}^{*}$ be the space of linear functionals on $\hat{\mathfrak{g}}$ of the following form

$$
\ell_{q(x)+\mathrm{ak}}[p(x)+b \mathrm{k}]=\int_{S^{1}}\langle q(x), p(x)\rangle_{\mathfrak{g}} d x+a b
$$

where $q(x), p(x) \in L(\mathfrak{g}), a, b \in \mathbb{C}$. We identify $\hat{\mathfrak{g}}^{*}$ with $\hat{\mathfrak{g}}$.
Let

$$
\mathcal{M}=\{q(x)+\epsilon \mathrm{k} \mid q(x) \in L(\mathfrak{g})\} \subset \hat{\mathfrak{g}}^{*}
$$

be the subspace of the linear functionals taking value ϵ at the central element k. The Lie Poisson bracket on $\hat{\mathfrak{g}}^{*}$ induces a Poisson bracket on \mathcal{M}

$$
\left\{H_{a(x)}, H_{b(x)}\right\}[q]=\int_{S^{1}}\left\langle a(x),\left[b(x), \epsilon \frac{d}{d x}+q(x)\right]\right\rangle_{\mathfrak{g}} d x
$$

The space \mathcal{M} can be naturally identified with the following space of first order linear differential operators

$$
\mathcal{M}=\left\{\left.\epsilon \frac{d}{d x}+q(x) \right\rvert\, q(x) \in L(\mathfrak{g})\right\}
$$

in such a way that the coadjoint action of

$$
g=\exp (p(x)+b \mathrm{k}), p(x) \in L(\mathfrak{g})
$$

on \mathcal{M} is given by

$$
\operatorname{Ad}_{g}^{*}: \epsilon \frac{d}{d x}+q(x) \mapsto \exp \left(\operatorname{ad}_{p(x)}\right)\left(\epsilon \frac{d}{d x}+q(x)\right)
$$

we can regard it as an action of the loop group $L(G):=C^{\infty}\left(S^{1}, G\right)$ on \mathcal{M}.

We choose a Cartan subalgebra \mathfrak{h} of \mathfrak{g}, and denote by Φ the root system corresponding to \mathfrak{h}. Let $\Delta=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ be a base of Φ (where n is the rank of \mathfrak{g}), and Φ^{+}, Φ^{-}be the positive and negative root systems w.r.t. Δ, then we have the Cartan decomposition

$$
\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}=\left(\bigoplus_{\alpha \in \Phi^{+}} \mathfrak{g}_{\alpha}\right) \oplus \mathfrak{h} \oplus\left(\bigoplus_{\alpha \in \Phi^{+}} \mathfrak{g}_{-\alpha}\right)
$$

Denote

$$
\mathfrak{b}=\mathfrak{b}^{+}=\mathfrak{n}^{+} \oplus \mathfrak{h}, \mathfrak{b}^{-}=\mathfrak{n}^{-} \oplus \mathfrak{h}
$$

the Borel subalgebras w.r.t. \mathfrak{h}, and

$$
\mathfrak{n}=\mathfrak{n}^{+} .
$$

Let $N \subset G$ be the subgroup of the Lie group G associated with the Lie subalgebra $\mathfrak{n} \subset \mathfrak{g}$.

The coadjoint action defines a Poisson action of the loop group $L(N)$ on \mathcal{M}.

The moment map

$$
\mathcal{P}: \mathcal{M} \rightarrow L(\mathfrak{n})^{*}
$$

is given by

$$
\mathcal{P}(q(x))(p(x))=\int_{S^{1}}\langle p(x), q(x)\rangle_{\mathfrak{g}} d x
$$

where

$$
q(x) \in L(\mathfrak{g}), \quad p(x) \in L(\mathfrak{n})
$$

Now we choose a set of Weyl generators $X_{i}, H_{i}, Y_{i}(i=1, \cdots, n)$ w.r.t. the Cartan decomposition,

$$
X_{i} \in \mathfrak{g}_{\alpha_{i}}, H_{i} \in \mathfrak{h}, \quad Y_{i} \in \mathfrak{g}_{-\alpha_{i}}
$$

Let

$$
I=\sum_{i=1}^{n} Y_{i} \in \mathfrak{n}^{-}
$$

be a principal nilpotent element. Denote

$$
\mathcal{M}^{\prime}:=\mathcal{P}^{-1}(I)=\epsilon \frac{d}{d x}+I+L(\mathfrak{b})
$$

the level surface of \mathcal{P} considering I as a constant map $S^{1} \rightarrow \mathfrak{n}^{-}$.

We fix a subspace V of \mathfrak{b} such that

$$
\mathfrak{b}=V \oplus[I, \mathfrak{n}], \quad \operatorname{dim} V=\operatorname{dim} \mathfrak{b}-\operatorname{dim} \mathfrak{n}=n
$$

Proposition.

The Hamiltonian action of the loop group $L(N)$ on \mathcal{M}^{\prime} is free, namely, each orbit contains a unique operator of the form

$$
\epsilon \frac{d}{d x}+I+q^{\mathrm{can}}(x) \quad \text { with } \quad q^{\mathrm{can}}(x) \in L(V)=C^{\infty}\left(S^{1}, V\right)
$$

The reduced phase space

$$
\mathcal{M}^{\prime} / L(N) \simeq\left\{\left.\epsilon \frac{d}{d x}+I+q^{\mathrm{can}}(x) \right\rvert\, q^{\mathrm{can}}(x) \in L(V)\right\}
$$

The action of the group $L(N)$ leaves \mathcal{M}^{\prime} invariant. One can define a Poisson bracket on the reduced space

$$
\tilde{\mathcal{M}}=\mathcal{M}^{\prime} / L(N)
$$

as follows:
Identify the functionals on $\tilde{\mathcal{M}}$ with gauge invariant functionals F on \mathcal{M}^{\prime}, extend them arbitrary to functionals \tilde{F} of the ambient space \mathcal{M}.
For any two extensions of gauge invariant functionals F_{1}, F_{2} on \mathcal{M}^{\prime}, Define

$$
\left\{F_{1}, F_{2}\right\}:=\left.\left\{\tilde{F}_{1}, \tilde{F}_{2}\right\}\right|_{\mathcal{M}^{\prime}}
$$

The bihamiltonian structure
Choose a base element α of the center of the nilpotent subalgebra \mathfrak{n}.

The Drinfeld - Sokolov bihamiltonian structure

$$
\{,\}_{2}+\lambda\{,\}_{1}
$$

on the reduced space is obtained by the shift

$$
q(x) \mapsto q(x)+\lambda \alpha
$$

Fix a homogeneous basis $\gamma_{1}, \ldots, \gamma_{n}$ of $V=\oplus_{i=1}^{n} V_{i}$, we have

$$
q^{\mathrm{can}}(x)=\sum_{i=1}^{n} w^{i}(x) \gamma_{i} \in L(V)
$$

The bihamiltonian structures are expressed by differential polynomials of w^{1}, \ldots, w^{n}.

Example

The A_{1} case

$$
\begin{aligned}
& \{w(x), w(y)\}_{1}=\delta^{\prime}(x-y) \\
& \{w(x), w(y)\}_{2}=w(x) \delta^{\prime}(x-y)+\frac{1}{2} w_{x} \delta(x-y)+\frac{\epsilon^{2}}{8} \delta^{\prime \prime}(x-y)
\end{aligned}
$$

The bihamiltoian structure of the KdV hierarchy.
4. The associated Frobenius manifolds

Theorem. (Dubrovin, Liu, Z.)
The bihamiltonian structure of hydrodynamic type given by the leading terms of the Drinfeld - Sokolov bihamiltonian structure is equivalent to the one that is defined, in terms of the Frobenius manifold structure, on the loop space of the n-dimensional orbit space of the Weyl group of \mathfrak{g}.

Recall that the reduced phase space

$$
\mathcal{M}^{\prime} / L(N) \simeq\left\{\left.\epsilon \frac{d}{d x}+I+q^{\mathrm{can}}(x) \right\rvert\, q^{\mathrm{can}}(x) \in L(V)\right\}
$$

where

$$
\mathfrak{b}=V \oplus[I, \mathfrak{n}]
$$

$q^{\text {can }}(x)$ are gauge invariant differential polynomials of $q(x) \in L(\mathfrak{b})$

$$
S^{-1}(x)\left(\epsilon \frac{d}{d x}+q+I\right) S(x)=\epsilon \frac{d}{d x}+q^{\mathrm{can}}+I
$$

we have the isomorphism

The orbit space $M_{\mathfrak{g}}=\mathfrak{h} / W$ carries a flat pencil of metrics discovered in 1980 by K. Saito, T. Yano and J. Sekeguchi, this flat pencil of metrics defines a bihamiltonian structure on the loop space of $M_{\mathfrak{g}}$, and also a Frobenius manifold structure on $M_{\mathfrak{g}}$ by Dubrovin 1993.

The construction of Frobenius manifold structure on $M_{\mathfrak{g}}$
For the chosen basis of simple roots $\alpha_{1}, \ldots, \alpha_{n} \in \mathfrak{h}^{*}$ denote

$$
G_{a b}=\left\langle\alpha_{a}^{\vee}, \alpha_{b}^{\vee}\right\rangle_{\mathfrak{g}}, \quad a, b=1, \ldots, n
$$

the Gram matrix of the invariant bilinear form. Let

$$
\left(G^{a b}\right)=\left(G_{a b}\right)^{-1}
$$

be the inverse matrix. It gives a (constant) bilinear form on the cotangent bundle $T^{*} \mathfrak{h}$. The projection of the bilinear form onto the quotient \mathfrak{h} / W defines a bilinear form on $T^{*} M_{\mathfrak{g}}$ non-degenerate outside the locus $\Delta \subset M_{\mathfrak{g}}$ of singular orbits (the so-called discriminant of the Weyl group W).

The second flat metric on $M_{\mathfrak{g}}$
In order to represent this form in the coordinates let us choose a system of W-invariant homogeneous polynomials $y^{1}(\xi), \ldots$, $y^{n}(\xi)$ generating the ring $\mathbb{C}\left[\mathfrak{h}^{*}\right]^{W}$. Here $\xi=\xi^{a} \alpha_{a} \in \mathfrak{h}$. The polynomial function

$$
G^{a b} \frac{\partial y^{i}(\xi)}{\partial \xi^{a}} \frac{\partial y^{j}(\xi)}{\partial \xi^{b}}
$$

is W-invariant for every $i, j=1, \ldots, n$ and, thus, is a polynomial in y^{1}, \ldots, y^{n}. Denote $g_{2}^{i j}(y)$ these polynomials,

$$
g_{2}^{i j}(y(\xi))=G^{a b} \frac{\partial y^{i}(\xi)}{\partial \xi^{a}} \frac{\partial y^{j}(\xi)}{\partial \xi^{b}}
$$

The first flat metric

To define the first metric, let us assume that the invariant polynomial $y^{1}(\xi)$ has the maximal degree

$$
\operatorname{deg} y^{1}(\xi)=h
$$

Here h is the Coxeter number of the Lie algebra \mathfrak{g}. Put

$$
g_{1}^{i j}(y):=\frac{\partial g_{2}^{i j}(y)}{\partial y^{1}}
$$

The Frobenius manifold structure

Let $v^{1}(\xi), \ldots, v^{n}(\xi)$ be a system of flat coordinates for the first metric:

$$
\eta^{i j}:=\left(d v^{i}, d v^{j}\right)_{1}=\text { const. }
$$

Put

$$
g^{i j}(v):=\left(d v^{i}, d v^{j}\right)_{2}
$$

Then there exists an element $F(v)$ of the degree $2 h+2$ in the ring of W-invariant polynomials such that

$$
\eta^{i k} \eta^{j \prime} \frac{\partial^{2} F(v)}{\partial v^{k} \partial v^{\prime}}=\frac{h}{\operatorname{deg} v^{i}+\operatorname{deg} v^{j}-2} g^{i j}(v) .
$$

The third derivatives

$$
c_{i j}^{k}(v):=\eta^{k l} \frac{\partial^{3} F(v)}{\partial v^{\prime} \partial v^{i} \partial v^{j}}
$$

are the structure constants of the multiplication on the tangent space $T_{v} M_{\mathfrak{g}}$. This multiplication defines on $T_{v} M_{\mathfrak{g}}$ an associative commutative algebra with unity, and with a invariant bilinear form (A Frobenius algebra). The associativity condition is a nonlinear PDE for the function $F(v)$, called the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation.
Frobenius manifold is a coordinated free formulation of the WDVV equations.

A flat pencil of metrics on an arbitrary Frobenius manifold

A Frobenius manifold is equipped with a flat metric \langle,\rangle , a product of tangent vectors $(a, b) \mapsto a \cdot b$, and an Euler vector field E. We put

$$
(,)_{1}:=\langle,\rangle
$$

and define the second metric on the cotangent bundle by

$$
\left(\omega_{1}, \omega_{2}\right)_{2}=i_{E} \omega_{1} \cdot \omega_{2}
$$

that must be valid for an arbitrary pair of 1-forms on the Frobenius manifold. In this formula the identification of tangent and cotangent spaces at every point is done by means of the first metric $(,)_{1}$. By means of this identification one defines the product of 1-forms $\omega_{1} \cdot \omega_{2}$ via the product of tangent vectors.

5. The central invariants of the Drinfeld - Sokolov bihamiltonian structure

Theorem. (Dubrovin, Liu, Z.)
For the Drinfeld - Sokolov bihamiltonian structure associated to a simple Lie algebra \mathfrak{g} with an invariant bilinear form $\langle,\rangle_{\mathfrak{g}}$, the central invariants are given by the following formulae up to a permutation:

$$
c_{i}=\frac{1}{48}\left\langle\alpha_{i}^{\vee}, \alpha_{i}^{\vee}\right\rangle_{\mathfrak{g}}, \quad i=1, \ldots, n .
$$

In particular, if we fix the invariant bilinear form $\langle,\rangle_{\mathfrak{g}}$ as follows:

$$
\langle a, b\rangle_{\mathfrak{g}}:=\frac{1}{2 h^{\vee}} \operatorname{tr}(\operatorname{ad} a \cdot \operatorname{ad} b),
$$

where h^{\vee} is the dual Coxeter number of \mathfrak{g}, then the above theorem shows that the central invariants for the Drinfeld Sokolov bihamiltonian structures associated to the simple Lie algebras of A-D-E type are given by

$$
c_{1}=c_{2}=\cdots=c_{n}=\frac{1}{24}
$$

$$
\begin{array}{lcllll}
\mathfrak{g} & & c_{1} & \cdots & c_{n-1} & c_{n} \\
& & & & & \\
A_{n} & & \frac{1}{24} & \cdots & \frac{1}{24} & \frac{1}{24} \\
B_{n} & & \frac{1}{24} & \cdots & \frac{1}{24} & \frac{1}{12} \\
C_{n} & & \frac{1}{12} & \cdots & \frac{1}{12} & \frac{1}{24} \\
D_{n} & & \frac{1}{24} & \cdots & \frac{1}{24} & \frac{1}{24} \\
E_{n}, n=6,7,8 & \frac{1}{24} & \cdots & \frac{1}{24} & \frac{1}{24} \\
F_{n}, n=4 & \frac{1}{24} & \frac{1}{24} & \frac{1}{12} & \frac{1}{12} \\
G_{n}, n=2 & \frac{1}{8} & & & \frac{1}{24}
\end{array}
$$

"Proof of the theorem for A-B-C-D cases"
For the A-B-C-D case, the Drinfeld - Sokolov bihamiltonian structure can be represented by a differential or pseudo-differential operator.

For the A_{n} case, the differential operator has the form

$$
L=D^{n+1}+w_{n}(x) D^{n-1}+\cdots+w_{2}(x) D+w_{1}(x), D=\epsilon \frac{d}{d x} .
$$

Define

$$
\frac{\delta F}{\delta L}=\sum_{i=1}^{n} D^{-i} \frac{\delta F}{\delta w_{i}}
$$

and

$$
\operatorname{Tr} A=\int \operatorname{res} A d x \in \overline{\mathcal{B}}, \quad \operatorname{res}\left(\sum_{i \leq m} f_{i} D^{i}\right)=f_{-1}
$$

The Drinfeld - Sokolov bihamiltonian structure can be written as

$$
\begin{aligned}
& \{F, G\}_{\lambda}=\{F, G\}_{2}-\lambda\{F, G\}_{1} \\
& =\frac{1}{\epsilon} \operatorname{Tr}\left((L Y)_{+} L X-X L(Y L)_{+}+\frac{1}{n+1} X\left[L, g_{Y}\right]\right)-\lambda \frac{1}{\epsilon} \operatorname{Tr}([Y, X] L)
\end{aligned}
$$

where $X=\frac{\delta F}{\delta L}, Y=\frac{\delta G}{\delta L}$, and the positive part of a pseudo-differential operator $Z=\sum z_{i} D^{i}$ is defined by

$$
Z_{+}=\sum_{i \geq 0} z_{i} D^{i}
$$

The function g_{Y} is defined by

$$
g_{Y}=D^{-1}(\operatorname{res}[L, Y])
$$

Let

$$
\lambda(x, p)=p^{n+1}+w_{n}(x) p^{n-1}+\cdots+w_{2}(x) p+w_{1}(x)
$$

be the symbol of the Lax operator L. Then the dispersionless limit of the A_{n} Drinfeld - Sokolov bihamiltonian structure is given by the following formulae

$$
\begin{gathered}
\{\lambda(x, p), \lambda(y, q)\}_{1}=\frac{\lambda^{\prime}(p)-\lambda^{\prime}(q)}{p-q} \delta^{\prime}(x-y) \\
+\left[\frac{\lambda_{x}(p)-\lambda_{x}(q)}{(p-q)^{2}}-\frac{\lambda_{x}^{\prime}(q)}{p-q}\right] \delta(x-y) \\
\{\lambda(x, p), \lambda(y, q)\}_{2} \\
=\left(\frac{\lambda^{\prime}(p) \lambda(q)-\lambda^{\prime}(q) \lambda(p)}{p-q}+\frac{1}{n+1} \lambda^{\prime}(p) \lambda^{\prime}(q)\right) \delta^{\prime}(x-y) \\
+\left[\frac{\lambda_{x}(p) \lambda(q)-\lambda_{x}(q) \lambda(p)}{(p-q)^{2}}+\frac{\lambda_{x}(q) \lambda^{\prime}(p)-\lambda_{x}^{\prime}(q) \lambda(p)}{p-q}\right. \\
\left.\quad+\frac{1}{n+1} \lambda^{\prime}(p) \lambda_{x}^{\prime}(q)\right] \delta(x-y) .
\end{gathered}
$$

For the $B-C-D$ cases,

$$
\begin{array}{lll}
B_{n}: & L=D^{2 n+1}+\sum_{i=1}^{n} w_{i}(x) D^{2 i-1}+\sum_{i=1}^{n} v_{i}(x) D^{2 i-2}, & L+L^{\dagger}=0 \\
C_{n}: & L=D^{2 n}+\sum_{i=1}^{n} w_{i}(x) D^{2 i-2}+\sum_{i=2}^{n} v_{i}(x) D^{2 i-3}, & L=L^{\dagger} \\
D_{n}: & L=D^{2 n-1}+\sum_{i=2}^{n} w_{i}(x) D^{2 i-3}+\sum_{i=2}^{n} v_{i}(x) D^{2 i-4}+\rho(x) D^{-1} \rho(x), \\
& L+L^{\dagger}=0 .
\end{array}
$$

Here L^{\dagger} is the adjoint operator, the coefficients $v_{i}(x)$ are linear combinations of derivatives of $w_{i}(x)$ uniquely determined by the symmetry/antisymmetry conditions. We assume $w_{1}(x)=\rho^{2}(x)$ for the D_{n} case.

The variational derivative of a local functional w.r.t. L is now defined as

$$
\frac{\delta F}{\delta L}=\frac{1}{2} \sum_{i=1}^{n}\left(D^{-2 i+\nu} \frac{\delta F}{\delta w_{i}(x)}+\frac{\delta F}{\delta w_{i}(x)} D^{-2 i+\nu}\right)
$$

where $\nu=0,1,2$ for the B_{n}, C_{n} and D_{n} cases respectively.

$$
\{F, G\}_{2}=\frac{1}{\epsilon} \operatorname{Tr}\left[(L Y)_{+} L X-X L(Y L)_{+}\right]
$$

The first Poisson brackets are defined as the Lie derivatives of the second ones along the coordinate w_{i}, where $i=1$ for B_{n}, C_{n} and $i=2$ for D_{n},

$$
\{F, G\}_{2}\left(w_{i}, \cdots\right)-\lambda\{F, G\}_{1}\left(w_{i}, \cdots\right)=\{F, G\}_{2}\left(w_{i}-\lambda, \cdots\right)
$$

"Proof of the theorem for the $E_{6}, E_{7}, E_{8}, G_{2}, F_{4}$ exceptional cases" Dirac reduction formulation of the the DS reduction
[1] Boris Dubrovin, Si-Qi Liu, Youjin Zhang,
Frobenius Manifolds and Central Invariants for the Drinfeld -
Sokolov Bihamiltonian Structures, Adv. Math. (2008), doi:10.1016/j.aim.2008.06.009
[2] Si-Qi Liu, Youjin Zhang,
On quasi-triviality and integrability of a class of scalar evolutionary PDEs, J. Geom. Phys. 57(2006),101-119.
[3] Boris Dubrovin, Si-Qi Liu, Youjin Zhang,
On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasi-triviality of bi-Hamiltonian perturbations, Commun. Pure and Appl. Math. 59(2006), 559-615.

6. Conclusion

The Drinfeld - Sokolov bihamiltonian structures associated to the untwisted affine Lie algebras of $A-D-E$ type are topological deformations.

The A_{n} case: the Gelfand - Dickey hierarchy, corresponds to the A_{n}-topological minimal model
(a recent proof by C. Faber, S. Shadrin, D. Zvonkine, Tautological relations and the r-spin Witten conjecture, arXiv:math/0612510.)
The D-E case: A generalization of the intersection theory on the moduli space of r-spin curves was recently given to define 2d TFT corresponding to quasihomogenous hyper surface singularities. (Fan Huijun, Javis Tyler, Ruan Yongbin)

Problem:

Starting from a semisimple FM to construct, by generalizing the DS construction, the topological deformation of the bihamiltonian structure of hydrodynamic type.

Thanks

