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Theoretical Physics Department
Institute for Nuclear Studies

Warsaw, Poland
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Introduction

Two LQC methods:
standard LQC: ‘first quantize, then impose constraints’
non-standard LQC: ‘first solve constraints, then quantize’

Bianchi I with massless scalar field:
standard LQC: classical Big Bang is replaced by quantum Big
Bounce due to strong quantum effects at the Planck scales
non-standard LQC: modification of GR by loop geometry is
responsible for the resolution of the singularity
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Bianchi I model

Bianchi I model describes homogeneous and anisotropic universe.
The metric reads:

ds2 = −N2 dt2 +
3∑

i=1

a2
i (t) dx2

i ,

3∑
i=1

ki = 1,
3∑

i=1

k2
i + k2

φ = 1 (1)

where ai(t) = ai(0)

(
τ
τ0

)ki

, dτ = N dt , kφ describes matter density.

For kφ = 0 (vacuum) we have Kasner model.
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Modified Hamiltonian

We consider Bianchi I cosmology with massless scalar field in space
with R3-topology.

Hamiltonian reads:

Hg :=

∫
Σ

d3x(N iCi + NaCa + NC), (2)

where: Σ is the space-like part of spacetime R× Σ; (N i ,Na,N)
Lagrange multipliers; (Ci ,Ca,C) are Gauss, diffeomorphism and scalar
constraints; (a,b = 1,2,3), spatial indices; (i , j , k = 1,2,3) internal
SU(2) indices. The constrains must satisfy specific algebra.
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Modified Hamiltonian

Having fixed local gauge and diffeomorphism freedom we can rewrite
the gravitational part of the classical Hamiltonian in the form:

Hg = −γ−2
∫
V

d3x Ne−1εijkEajEbkF i
ab , (3)

where: γ is the Barbero-Immirzi parameter; V ⊂ Σ elementary cell; N
lapse function; εijk alternating tensor; Ea

i density weighted triad;
F k

ab = ∂aAk
b − ∂bAk

a + εkij A
i
aAj

b curvature of SU(2) connection Ai
a;

e :=
√
|det E |;
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Modified Hamiltonian
Rewriting the curvature in terms of holonomies:

F k
ab = −2 lim

Ar �ij→ 0
Tr
(h(µ)

�ij
− 1

Ar �ij

)
τ k oωi

a
oωj

a, (4)

where:
h�ij = h(µi )

i h(µj )

j (h(µi )
i )−1(h(µj )

j )−1 (5)

is the holonomy of the gravitational connection around the square loop
�ij , considered over a face of the elementary cell, each of whose sides
has length µjLj (and Vo := L1L2L3) with respect to the flat fiducial
metric oqab := δij

oωi
a

oωj
a.

In the fundamental, j = 1/2, representation of SU(2), reads

h(µi )
i = cos(µici/2) I + 2 sin(µici/2) τi (6)

where τi = −iσi/2 (σi are the Pauli spin matrices)
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Modified Hamiltonian

Making use of (3), (4) and the so-called Thiemann identity leads to Hg
in the form:

Hg = lim
µ1,µ2,µ3→ 0

H(µ1 µ2 µ3)
g , (7)

where:

H(µ1 µ2 µ3)
g = − sgn(p1p2p3)

2πGγ3µ1µ2µ3

∑
ijk

N εijk Tr
(

h(µi )
i h(µj )

j ×

× (h(µi )
i )−1(h(µj )

j )−1h(µk )
k {(h(µk )

k )−1,V}
)

(8)

and is the V = a1 a2 a3V0 volume of the elementary cell.
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Modified Hamiltonian

In considered model the hamiltonian reads:

H = Hg + Hφ ≈ 0, (9)

where Hg is defined by (7) and Hφ = N p2
φ|p|

− 3
2 /2. The relation H ≈ 0

defines the physical phase space of considered gravitational system
with constraints.
Making use of (6) we calculate (8) and get the modified total
Hamiltonian. The Hamiltonian modified by loop geometry (in the gauge
N =

√
|p1 p2 p3|) reads:

H(λ) = − 1
8πGγ2µ1µ2

[
|p1p2| sin(c1µ1) sin(c2µ2) + cyclic

]
+

p2
φ

2
(10)
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Modified Hamiltonian

We use so called µ scheme:
µi :=

√
1
|pi | λ and λ is a free parameter.

Now we introduce following canonical variables:
βi := ci√

|pi |
, vi := |pi |3/2 sgn(pi),

and the Poisson bracket:

{·, ·} := 12πGγ
∑3

k=1

[
∂·
∂βk

∂·
∂vk
− ∂·

∂vk

∂·
∂βk

]
+ ∂·

∂φ
∂·
∂pφ
− ∂·

∂pφ

∂·
∂φ

The Hamiltonian in new variables reads:

H(λ) =
p2
φ

2
− 1

8πGγ2

(
sin(λβ1) sin(λβ2)

λ2 v1v2+ (11)

+
sin(λβ1) sin(λβ3)

λ2 v1v3 +
sin(λβ2) sin(λβ3)

λ2 v2v3

)
It is classical modified Hamiltonian.
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Equations of motion

Equations of motion plus the constraint reads:

β̇i = −18πG
sin(λβi)

λ
(Oj + Ok ) (12)

v̇i = 18πG vi cos(λβi) (Oj + Ok ) (13)
ṗφ = 0 (14)
φ̇ = pφ (15)

H(λ) ≈ 0, (16)

where Oi := vi sin(λβi )
12πGγλ , Oi are constants of motion.

Worth of noting: φ plays the role of time.
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Equations of motion

Solution of equation, for example (13):

2 vi(φ) = exp
(

18πG
pφ

(Oj + Ok ) (φ− φ0
i )

)
+

+ (12πGγλ Oi)
2 · exp

(
− 18πG

pφ
(Oj + Ok ) (φ− φ0

i )

)
(17)

We can write this in a different form:

vi = 12πGγλOi cosh
(

18πG
pφ

(Oj +Ok ) (φ−φ0
i )− ln

∣∣12πGγλOi
∣∣) (18)

Because V = (v1v2v3)1/3 it is clear that for nonzero λ there is no
singularity for any value of φ.
Big Bounce already at classical level!
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Algebra of observables

Our aim : Singularity aspects of the model in terms of observables.

A function F defined on phase space is a Dirac observable if it is the
solution to the equation {

F ,H(λ)
}

= 0 (19)

We found that:

Adyn
i = ln

∣∣∣∣ tan
(
λβi

2

)∣∣∣∣+
3
√
πG sgn(pφ)

(
Oj + Ok

)
φ

√
O1O2 + O1O3 + O2O3

(20)

Oi =
vi sin(λβi)

12πGγλ
(21)

These are dynamical (satisfy the constraint) observables.
We can express by them any interesting physical function.
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Algebra of observables

These observables satisfy the Lie algebra:

{Oi ,Oj}dyn = 0, {Adyn
i ,Oi}dyn = 1,

{Adyn
i ,Oj}dyn = 0, {Adyn

i ,Adyn
j }dyn = 0. (22)

where:

{·, ·}dyn :=
3∑

i=1

(
∂·

∂Adyn
i

∂·
∂Oi
− ∂·
∂Oi

∂·
∂Adyn

i

)
(23)
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Functions on the physical space

Directional energy density:

ρi(λ, φ) :=
p2
φ

2 v2
i

(24)

The bounce in i-th direction occurs when ρi approaches its maximum
value1.

We would like to express above function in terms of observables and
an evolution parameter φ:

ρi(λ, φ) =
O1O2 + O1O3 + O2O3

8πGγ2 O2
i cosh2

(
3
√
πG sgn(pφ)

(
Oj +Ok

)
√

O1O2+O1O3+O2O3
φ− Adyn

i

) (25)

It will be an observable for each fixed value of φ, since in such case it
will be function of observables only.

1D.W. Chiou PRD (75), 24029 (2007)
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Functions on the physical space

Big bounce happens when vi takes its minimal value:
vmin

i = 12πGγλOi . Thus the maximum value of this density:

ρmax
i =

1
16πGγ2λ2

(
kφ
ki

)2

(26)

where kφ and ki taken from the metric.

λ is a free parameter of this formalism.
Let assume that λ = lPl . We get:

ρmax
i ' 0,35

(
kφ
ki

)2

ρPl (27)

So we fit the Planck scale.
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Conclusions

Modification of gravitational part of classical Hamiltonian, realized
by using the loop geometry turns big-bang into big-bounce.

λ is a free parameter of the theory as in the case of FRW model.

Next step: quantization of classical dynamics, examine spectra of
physical observables.
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