Charged-particle spectroscopy with the Optical TPC

Marek Pfützner

NUCLEAR PHYSICS DIVISION UNIVERSITY OF WARSAW

Outline

- Nuclei at the proton drip-line and beyond
 - Two-proton radioactivity
- Optical TPC
- Decay study of ⁴⁵Fe (and ⁴³Cr)
- Decay study of ⁴⁸Ni (and ⁴⁶Fe, ⁴⁴Cr)
- Beta-delayed 3p emission from ³¹Ar
- Rare decay of ⁶He
- Beta decay of ⁸He
- New TPC for ELI-NP

Beyond the proton drip-line

- To find where the drip-line actually is and to predict which decay will happen, precise estimates of atomic masses are required!
- → To study particle radioactivity fast techniques are needed!

β -delayed particle emission

> When the β decay energy is large, many exotic channels are available

Blank and Borge, Progress in Part. Nucl. Phys. 60 (2008) 403

p and 2p emission

> The limit of "existence" beyond the proton drip-line is determined by emission of protons

Full 2p landscape

TPC detector

Time projection chamber with optical readout (OTPC)

Combination of the CCD image with the PMT waveform allows to fully reconstruct the track in three dimensions

Raw data and ion ID

Track reconstruction

> A track is reconstructed by comparing the data with the SRIM simulation

Study of ⁴⁵Fe

> NSCL/MSU, February 2007: ⁵⁸Ni at 161 MeV/u + ^{nat}Ni \rightarrow ⁴⁵Fe

p-p momentum correlations for ⁴⁵Fe

 Proton-proton momentum correlations measured for
⁴⁵Fe are complex and indicate a genuine 3-body phenomenon

 Good agreement with the 3-body model of Grigorenko et al.

Miernik et al., PRL 99 (07) 192501 Grigorenko et al., PLB 677 (2009) 30 MP, Karny, Grigorenko, Riisager, RMP 84 (12) 567

Decays of ⁴⁵Fe and ⁴³Cr

Study of ⁴⁸Ni

> NSCL/MSU, March 2011: ⁵⁸Ni at 160 MeV/u + ^{nat}Ni \rightarrow ⁴⁸Ni

Pomorski et al., PRC 90 (14) 014311

2p decay of ⁴⁸Ni

β -delayed protons from ⁴⁴Cr

β -delayed protons from ⁴⁶Fe

β 2p channel in ⁴⁶Fe

β 2p channel in ⁴⁶Fe

Both protons escaped the detector. From the length of tracks we know only that:

 $E_1 > 1.96 \text{ MeV}$ $E_2 > 1.67 \text{ MeV}$ $E_1 + E_2 > 3.63 \text{ MeV}$

Pomorski et al., PRC 90 (14) 014311

Decay scheme of ⁴⁸Ni

 β 3p in ³¹Ar

PHYSICAL REVIEW C

VOLUME 45, NUMBER 1

JANUARY 1992

Decay modes of ³¹Ar and first observation of β -delayed three-proton radioactivity

D. Bazin,* R. Del Moral, J. P. Dufour, A. Fleury, F. Hubert, and M. S. Pravikoff Centre d'Etudes Nucléaires de Bordeaux-Gradignan, Le Haut Vigneau 33175 Gradignan CEDEX, France

PHYSICAL REVIEW C

VOLUME 59, NUMBER 4

APRIL 1999

³¹Ar examined: New limit on the β -delayed three-proton branch

H. O. U. Fynbo,¹ L. Axelsson,² J. Äystö,³ M. J. G. Borge,⁴ L. M. Fraile,⁴ A. Honk A. Jokinen,³ B. Jonson,² I. Martel,^{5,†} I. Mukha,^{1,‡} T. Nilsson,^{2,§} G. Nyman,² M. Oin M. H. Smedberg,² O. Tengblad,⁴ F. Wenander,² and the ISOLDE

β 3p in ³¹Ar

> Experiment at FRS, August 2012

Lis et al., to be published

Koldste et al., PRC 89 (2014) 064315

Decay of ⁶He into α + *d*

> ⁶He has a very weak decay branch to $\alpha + d$

R. Raabe et al., Phys. Rev. C80 (2009) 054307

⁶He into OTPC at ISOLDE

Experiment at CERN-ISOLDE, August 2012

A bunch of $\approx 10^3$ - 10^4 ⁶He ions, accelerated to 3 MeV/u by REX-Isolde, is implanted into the OTPC

Data are taken for 650 ms exposure. Light from many beta decays is seen as a smeared cloud around the implantation points

> The difference in the depth of implantation corresponds to the energy loss of ⁶He in a layer of 5 μ m of Cu + 2 μ m of Au

Decay of ⁶He with OTPC at ISOLDE

CCD image, 650 ms exposure

PMT slow sampling, 1 MHz (rough history of what happened)

Practically no background in the PMT traces

Event reconstruction

Event reconstruction

The spectrum

β decay of ^8He

- The previous experiment on ⁸He β decay : ISOLDE (1992)
 M. Borge et al., NP A 560 (1993) 664
- > Observation of strong β -delayed triton channel

 $^{8}\text{He} \rightarrow ^{8}\text{Li}^{*} \rightarrow \alpha + t + n$

The branching: $(8.0 \pm 0.5) \times 10^{-3}$ $\Rightarrow B_{GT} \ge 5.2$, $\log ft = 2.9$!

Essentially, this is the tetra-neutron decay to a triton and a neutron! (If the clustering approximation is the good one).

Decays to particle bound states of ⁸Li

CCD

Dubna, Acculinna, 2009/2012

Final-state continuum in ⁸Li \rightarrow 2 α decay

Mianowski, PhD thesis Bhattacharya et al. PRC73(2006) 055802

Reconstruction of α -t-n decay event

Feeding of α -t-n decaying states

Helium burning problem

Understanding the ¹²C(α, γ)¹⁶O reaction is still one of the key open questions in nuclear astrophysics. It determines the carbon/oxygen ration which determines the fate of massive stars and the light curve of SN I a ("standard candles")

M. Gai, Phys. Rev. C88 (2013) 062801(R)

e-TPC

- > The proposed solution is to measure the reverse reaction: $\gamma + {}^{16}O \rightarrow {}^{12}C + \alpha$ using photon beams at ELI-NP.
- Advantages: very clean signal, no background issues, angular correlations alows E1/E2 decomposition

> Other reactions planned: ¹⁹ $F(\gamma, p)^{18}O$, ²² $Ne(\gamma, \alpha)^{18}O$, ²⁴ $Mg(\gamma, \alpha)^{20}Ne$, ... To have the full freedom of gas selection, a new detector with electronic readout is developed at University of Warsaw

See a talk by Jan Bihałowicz on Thursday!

Summary

- The OTPC detector is a very efficient tool to search for very rare multiparticle decays or to investigate particle decays obscured by beta background.
- Can provide precise branching ratios for β-delayed particle channels. Although the energy resolution is worse than for Si detectors, yields complementary data for low-energy particles.
- Non-trivial 3-body character of 2p decay of ⁴⁵Fe discovered. 2p decay of ⁴⁸Ni discovered.
- New decay channels, like β 3p (⁴⁵Fe, ⁴³Cr, ³¹Ar), observed for the first time. β 2p emission discovered in ⁴⁶Fe based on one atom decay!
- Low-energy part of d-spectrum will shed light on the halo structure of ⁶He
- Strong β -delayed triton emission confirmed for ⁸He. Will provide the B_{GT} strength for the t-emitting states.
- A new TPC with electronic read-out being developed for ELI-NP to solve the helim burning problem.

Thank you!

