# Egzotyczne przemiany jądrowe na fotografiach z OTPC

### Marek Pfützner





Zakład Fizyki Jądrowej Uniwersytet Warszawski



M. Pfützner, konwersatorium NCBJ, Świerk, 24 listopada 2015



### Plan



- Promieniotwórczość 2p początki
- Detektor OTPC
- ➢ Korelacje 2p w <sup>45</sup>Fe
- Badanie <sup>48</sup>Ni
- > Protony opóźnione: odkrycie  $\beta$ *3p*
- $\succ$  Rozpad <sup>6</sup>He na  $\alpha$  i d
- Podsumowanie





Interpretacja podstawie porównania energii i czasu z modelami jądrowymi. Brak bezpośredniego dowodu na emisję dwóch protonów!

# Jaki jest mechanizm emisji 2p?

- Aby w pełni poznać proces emisji 2p, trzeba zbadać korelacje między pędami emitowanych protonów!
- Model 3-ciałowy Grigorenki i Zhukova przewiduje nietrywialny obraz tych korelacji
  - Cel: zarejestrować oba protony oddzielnie, zmierzyć ich energie i wyznaczyć kąt między nimi.



L. Grigorenko : symulacja dla 200 zdarzeń

### Główna idea

G. Charpak, W. Dominik, J. P. Farbe, J. Gaudaen, F. Sauli, and M. Suzuki, "Studies of light emission by continuously sensitive avalanche chambers," NIM A269 (1988) 142



# Komora dryfowa z odczytem optycznym

#### OTPC: Optical Time Projection Chamber



Ćwiok et al., IEEE TNS, 52 (2005) 2895 Miernik et al., NIM A581 (2007) 194 Pomorski et al., PRC90 (2014) 014311



### Schemat budowy



#### **CCD Texas Instruments**

- 1000 × 1000 pix.
- 12-bits
- image ampl. (×2000)

#### **CCD** Hamamatsu

- 512 × 512 pix.
- 16-bits
- image ampl. (×2000)



### Co rejestrujemy?

### obraz CCD

### tory jonu i emitowanych cząstek





### próbkowany sygnał z PMT



#### czasowa sekwencja zdarzeń



### Pierwsza wersja w NSCL/MSU

### Luty 2007, National Superconducting Cyclotron Laboratory/Michigan State University



Mieszanka:

66% He + 32% Ar + 1% N<sub>2</sub> + 1% CH<sub>4</sub>

- ➤ zasięg protonów 550 keV ≈ 2.3 cm
- ▶ rozrzut jonów  $^{45}$ Fe ≈ 50 cm

Objętość aktywna: 20×20×42 cm<sup>3</sup>



Reakcja: <sup>58</sup>Ni at 161 MeV/u + <sup>nat</sup>Ni  $\rightarrow$  <sup>45</sup>Fe

Separacja i identyfikacja w locie ( $\Delta E + TOF$ ) w separatorze A1900 z dwoma degraderami



### Identyfikacja jonów w locie





# Zdarzenia emisji *2p* z <sup>45</sup>Fe













M. Pfützner, konwersatorium NCBJ, Świerk, 24 listopada 2015



### Rekonstrukcja w 3D



 Łącząc informacje z CCD i PMT można zrekonstruować tory cząstek w przestrzeni



Udało się to zrobić dla 75 zdarzeń

Miernik et al., PRL 99 (07) 192501





### Wyładowanie



Rozbłyski bywają spektakularne ale są szkodliwe!



### Nowa, lepsza wersja detektora



- 'Naturalna' geometria (implantacja prostopadle do linii pola):
- → większa wydajność
- → brak wyładowań wywołanych jonami
- → mniejszy problem dyfuzji





- Pierwszy stopień wzmocnienia zastąpiony 3-4 foliami GEM
- → mniejsze napięcia
- → mniej wyładowań
- → większe wzmocnienie
- → większa rozpiętość dynamiczna



### Tory cząstek $\alpha$ ze źródła !





### Badanie <sup>48</sup>Ni

> NSCL/MSU, marzec 2011: <sup>58</sup>Ni @ 160 MeV/u + <sup>nat</sup>Ni  $\rightarrow$  <sup>48</sup>Ni



Pomorski et al., PRC 90 (14) 014311



### Promieniotwórczość 2p<sup>48</sup>Ni

Pierwsza obserwacja emisji 2p z <sup>48</sup>Ni



Pomorski et al., PRC 83 (2011) 061303(R)



M. Pfützner, konwersatorium NCBJ, Świerk, 24 listopada 2015

19

### Stan badań nad emisją 2p

<sup>66,67</sup>Kr Promieniotwórczość 2p obserwowana <sup>62,63</sup>Se w <sup>45</sup>Fe, <sup>54</sup>Zn, <sup>48</sup>Ni i <sup>19</sup>Mg <sup>58,59</sup>Ge <sup>54</sup>Zn > W lekkich jądrach wsutek małej bariery <sup>48</sup>Ni kulombowskiej emisja 2p jest b. szybka,  $(T_{1/2}(^{19}Mg) \approx 4 \text{ ps})$ , lub natychmia-<sup>45</sup>Fe stowa (stany rezonansowe) <sup>34</sup>Ca <sup>30</sup>Ar <sup>26</sup>S <sup>19</sup>Mg Emitery 2p <sup>15,16</sup>Ne - przewidywane <sup>12</sup>O - potwierdzone <sup>6</sup>Be - korelacje *p-p* wyznaczone

### Emisja cząstek opóźnionych

Nuklidy dalekie od trwałości mają bardzo duże energie przemiany β!
 Przejścia β zasilają stany o dużej energii, powyżej progu na separację cząstek.



Blank and Borge, Progress in Part. Nucl. Phys. 60 (2008) 403



### Opóźnione protony







Miernik et al., PRC 76 (07) 041304(R)

$$\frac{^{45}_{26}}{^{19}_{20}} = \frac{^{45}_{25}}{^{11}_{20}} = \frac{^{42}_{22}}{^{12}_{22}} = \frac{^{125}_{12}}{^{125}_{22}} = \frac{^{125}_$$

Pomorski et al., PRC 83 (11) 014306(R)



M. Pfützner, konwersatorium NCBJ, Świerk, 24 listopada 2015



### $\beta 3p \text{ w}^{31}\text{Ar}?$

PHYSICAL REVIEW C

**VOLUME 45, NUMBER 1** 

JANUARY 1992

#### Decay modes of <sup>31</sup>Ar and first observation of $\beta$ -delayed three-proton radioactivity

D. Bazin,\* R. Del Moral, J. P. Dufour, A. Fleury, F. Hubert, and M. S. Pravikoff Centre d'Etudes Nucléaires de Bordeaux-Gradignan, Le Haut Vigneau 33175 Gradignan CEDEX, France

PHYSICAL REVIEW C

VOLUME 59, NUMBER 4

APRIL 1999

#### <sup>31</sup>Ar examined: New limit on the $\beta$ -delayed three-proton branch

H. O. U. Fynbo,<sup>1</sup> L. Axelsson,<sup>2</sup> J. Äystö,<sup>3</sup> M. J. G. Borge,<sup>4</sup> L. M. Fraile,<sup>4</sup> A. Honk A. Jokinen,<sup>3</sup> B. Jonson,<sup>2</sup> I. Martel,<sup>5,†</sup> I. Mukha,<sup>1,‡</sup> T. Nilsson,<sup>2,§</sup> G. Nyman,<sup>2</sup> M. Oin M. H. Smedberg,<sup>2</sup> O. Tengblad,<sup>4</sup> F. Wenander,<sup>2</sup> and the ISOLDE





25

### <sup>31</sup>Ar na separatorze FRS

Eksperyment w GSI-FRS, sierpień 2012

"Search for two-proton decay of <sup>30</sup>Ar in flight by the tracking technique" by I. Mukha







# $\beta 3p$ w <sup>31</sup>Ar



#### Lis et al., PRC 91, 064309 (2015)

### > 13 zdarzeń rozpadu $\beta$ 3p <sup>31</sup>Ar

TABLE I. The total branching ratios for the observed decays of  $^{31}$ Ar. The given uncertainties are statistical.

| Channel    | Events | Branching [%] |
|------------|--------|---------------|
| $\beta 0p$ | 5984   | $22.6(3)^a$   |
| $\beta 1p$ | 13157  | 68.3(3)       |
| $\beta 2p$ | 1729   | 9.0(2)        |
| $\beta 3p$ | 13     | 0.07(2)       |

Znane są tylko 3 przypadki przemiany  $\beta$ 3p:

- <sup>45</sup>Fe (Miernik et al., PRC76, 2007)
- <sup>43</sup>Cr (Pomorski et al., PRC83, 2011)
- <sup>31</sup>Ar (Lis et al., PRC, 2015)

Wszystkie odkryte przy pomocy OTPC!



### Potwierdzenie $\beta 3p$ w <sup>31</sup>Ar

> Kanał  $\beta$ 3p w <sup>31</sup>Ar potwierdzony

w ISOLDE przy użyciu Si Cube







Koldste et al., PRC 89 (2014) 064315

→Oszacowany branching  $\beta$ 3p: 0.08(4)%

→ Przemiana  $\beta$ 3p odpowiedzialna za 30% całkowitego nasilenia Gamowa-Tellera w <sup>31</sup>Ar!

### Badanie halo 2n w <sup>6</sup>He

 $\rightarrow$  <sup>6</sup>He z bardzo małym prawdopodobieństwem rozpada się na  $\alpha$  + d



R. Raabe et al., Phys. Rev. C80 (2009) 054307



### <sup>6</sup>He w OTPC

Eksperyment w CERN-ISOLDE, sierpień 2012

Paczka zawierająca ok. 10<sup>4</sup> jonów <sup>6</sup>He, przyspieszonych do 3 MeV/u przez REX-ISOLDE, jest zatrzymywana w OTPC (czerwone)

Po implantacji rozpoczynamy ekspozycję 650 ms w oczekiwaniu na rozpady. Światło od wielu elektronów widoczne jest jako rozmazana chmura. Widać też jeden rozpad <sup>6</sup>He  $\rightarrow \alpha + d$  (zielone)



Różnica w głębokości implantacji odpowiada stracie energii <sup>6</sup>He w pasku 5 μm Cu + 2 μm Au na oknie wejściowym



### Widmo $\alpha$ + *d*



ekonstruowac 1050 zuarzen

M.P. et al., PRC92 (2015) 014316



### Podsumowanie

- Detektor OTPC zbudowaliśmy z myślą o badaniu promieniotwórczości 2p (korelacje p-p).
- Zabadaliśmy dokładnie emisję 2p <sup>45</sup>Fe i odkrylismy trzyciałowy charakter tej przemiany. Odkryliśmy emisję 2p w <sup>48</sup>Ni. Planujemy badanie korelacji *p-p* w <sup>54</sup>Zn.
- OTPC okazał się doskonałym instrumentem do badania innych rzadkich procesów z emisją cząstek naładowanych. Jego energetyczna zdolność rozdzielcza jest gorsza niż detektorów Si, ale pozwala mierzyć współczynniki rozgałęzienia z wiekszą dokładnością i nie jest czuły na tło elektronów β.
- Po raz pierwszy zaobserwowaliśmy nowe kanały rozpadu, jak β3p (<sup>45</sup>Fe, <sup>43</sup>Cr, <sup>31</sup>Ar), czy β2p w <sup>46</sup>Fe (obserwacja jednego zdarzenia!).
- Zmierzyliśmy widmo deuteronów opóźnionych z <sup>6</sup>He.
- Uzyskaliśmy nowe informacje o rozpadzie  $\beta$  <sup>8</sup>He (doktorat S. Mianowskiego na ukończeniu).
- Uzyskaliśmy pierwsze informacje o rozpadzie  $\beta$  <sup>60</sup>Ge (A. Ciemny w trakcie analizy).



# Dziękuję!

