Two-proton radioactivity

Lecture 2

Marek Pfützner

Faculty of Physics, University of Warsaw

Outline

- Basic introduction
- The story of ⁴⁵Fe
 - \otimes mass predictions
 - \otimes production method
 - ♦ discovery of 2p decay
- Quest for p-p correlations
 - ♦ OTPC detector
 - ♦ images of ⁴⁵Fe decay
- Introduction to theory
 - ♦ Jacobi coordinates
 - Simplified models
- Momentum correlations
- Decays of ⁶Be, ¹⁹Mg, ⁴⁸Ni and ⁵⁴Zn
- Predictions of heavier emitters and the full 2p landscape
- Summary

Jacobi coordinates, positions

> Three-body kinematics is simpler in Jacobi coordinates

In place of the radius and solid angle of one particle, the three particles are described by the *hyperradius* and *hyper solid angle*:

$$r, \ \Omega \to \rho, \ \Omega_5$$

$$\Omega_5 = \left\{ \theta_{\rho}, \Omega_X, \Omega_Y \right\} \quad \rho^2 = \frac{A_1 A_2 A_3}{A_1 + A_2 + A_3} \left(\frac{\vec{r}_{12}}{A_3} + \frac{\vec{r}_{23}}{A_1} + \frac{\vec{r}_{31}}{A_2} \right)$$

$$\tan\left(\theta_{\rho}\right) = \sqrt{M_X/M_y} \ X/Y \qquad M_X = \frac{A_1 A_2}{A_1 + A_2} u \ , \ M_y = \frac{(A_1 + A_2) A_3}{A_1 + A_2 + A_3} u$$

M. Pfützner, Euroschool on Exotic Beams, Dubna 2013, Lecture 2/2

Jacobi coordinates, momenta

Simplified models

- By simplifying interactions describing the core+p+p system, the three-body decay can be reduced to the combination of two-body processes. With the simplified Hamiltonian, the problem can be solved exactly.
- → Two types of approximations are considered:

The simplified models are very useful to estimate decay rates and to verify numerical procedures used in the full three-body model.

Diproton model

➤ Jacobi T system → diproton model

The WKB approximation

M. Pfützner, Euroschool on Exotic Beams, Dubna 2013, Lecture 2/2

Direct model

> In the Y Jacobi system:
$$\vec{k}_x = \vec{k}_1 + \frac{\mu}{M}\vec{k}_3$$
, $\vec{k}_y = -\vec{k}_3$, $E_x = \frac{k_x^2}{2\mu}$ $\mu = \frac{mM}{m+M}$
• Assume: $M >> m \rightarrow \mu \cong m \rightarrow \vec{k}_x \cong \vec{k}_1$, $E_x = \frac{k_1^2}{2m}$

→ Then ε is the fraction of the decay energy taken by one proton and θ_k is the angle between momenta of both protons + π

2 Assume: both protons occupy the same orbital with angular momentum l_p

Direct model

The 2p decay width in the direct model is given by:

$$\Gamma_{2p,dir} = \frac{E_T}{2\pi} \left(E_T - 2E_p \right)^2 \int_0^1 d\varepsilon \frac{\Gamma_x \left(\varepsilon E_T\right)}{\left(\varepsilon E_T - E_p\right)^2 + \Gamma_x \left(\varepsilon E_T\right)^2 / 4} \times \frac{\Gamma_y \left((1-\varepsilon)E_T\right)}{\left((1-\varepsilon)E_T - E_p\right)^2 + \Gamma_y \left((1-\varepsilon)E_T\right)^2 / 4}$$

$$\Gamma_{2p,dir} \cong \frac{8E_T}{\pi \left(E_T - 2E_p\right)^2} \int_0^1 d\varepsilon \, \Gamma_x \left(\varepsilon E_T\right) \Gamma_y \left(\left(1 - \varepsilon\right) E_T\right)$$

where Γ_i is the width of the two-body subsystem: $\Gamma_i(E) = 2 \gamma_i^2 P_{l_p}(E, R, Z_i)$

reduced width:
$$\gamma_i^2 = \frac{\hbar^2}{2\mu_i R^2} \theta_i^2$$

penetrability: $P_{l_p}(E, R, Z_i) = \frac{kR}{F_{l_p}^2(\eta, kR) + G_{l_p}^2(\eta, kR)}$
 $Z_x = Z_{core}$
 $Z_y = Z_{core} + 1$
radius: $R = 1.4 (A_{core} + 1)^{1/3}$ fm
Sommerfeld parameter: $\eta = \mu Z e^2 / \hbar^2 k$ wave number: $k = \sqrt{2\mu E} / \hbar$

M. Pfützner, Euroschool on Exotic Beams, Dubna 2013, Lecture 2/2

Grigorenko and Zhukov, PRC 76 (07) 014009 M.P. et al, RMP (2012) 567

Direct model for known 2p emitters

Direct model

- The direct model is a very convenient tool to estimate the half-life of the 2p decay.
- > With one set of parameters, l = 0 and $\theta^2 = 0.173$, the model reproduces the four measured half-lives within a factor of 2-3
- The model yields the realistic shape of the proton's energy spectrum

$$\frac{d\Gamma_{dir}}{d\varepsilon}(\varepsilon) \sim \frac{\Gamma_{x}(\varepsilon E_{T})}{\left(\varepsilon E_{T}-E_{p}\right)^{2}+\Gamma_{x}\left(\varepsilon E_{T}\right)^{2}/4} \times \frac{\Gamma_{y}\left((1-\varepsilon)E_{T}\right)}{\left((1-\varepsilon)E_{T}-E_{p}\right)^{2}+\Gamma_{y}\left((1-\varepsilon)E_{T}\right)^{2}/4}$$

This feature allows to inspect how the position of the intermediate state influences the shape of the spectrum. In particular, one can study the transition from the simultaneous to the sequential emission

Illustration ⇒ *Mathematica_Adds-on*

3-body model

> The full three-body model of the 2p radioactivity has been constructed by Grigorenko and Zhukov. Presently it is the only model which predicts the momentum correlations between emitted protons.

See the next two lectures by Leonid Grigorenko!

The ⁴⁵Fe wave function density in the T system for the configuration $98\% f^2 + 2\% p^2$

3-body model and ⁴⁵Fe

 3-body model consistently reproduces all observables for certain composition of an initial wave function

Full correlation picture for ⁴⁵Fe

Grigorenko and Zhukov, Phys. Rev. C 68 (2003) 054005 Grigorenko *et al.*, PLB 677 (09) 30

Decay of ⁶Be

> The high resolution study the unbound ⁶Be was recently done at NSCL/MSU

Egorova et al., PRL 109 (12) 202502

A short-lived case of ¹⁹Mg

> The tracking technique for very short-lived 2p decays was pioneered at GSI

Study of ⁴⁸Ni

Experiment in March 2011, A1900 fragment separator at NSCL/MSU

In superheavies 100 fb corresponds to 5 events in 1 year! (yesterday lecture of A. Popeko)

Pomorski et al., PRC 83 (11) 061303(R)

2p radioactivity of ⁴⁸Ni

> The first direct observation of 2p radioactivity of ⁴⁸Ni

Pomorski et al., PRC 83 (2011) 061303(R)

2p decay events of ⁴⁸Ni

M. Pfützner, Euroschool on Exotic Beams, Dubna 2013, Lecture 2/2

Pomorski et al., Acta Phys. Pol. B 43 (2012) 267

Decay scheme of ⁴⁸Ni

p-p correlations in ⁵⁴Zn

> ⁵⁴Zn studied at GANIL with the Bordeaux TPC. Seven events reconstructed in 3D

True 2p emitters

^{66,67}Kr

^{62,63}Se

- Ground-state 2p radioactivity first observed in ⁴⁵Fe. Later also in ⁵⁴Zn, ⁴⁸Ni and ¹⁹Mg
- > In lighter nuclei due to small Coulomb barrier 2p emission is fast, $T_{1/2}(^{19}Mg) = 4 \text{ ps!}$
- ▶ Below ¹⁹Mg 2p are emitted from broad resonances, like ⁶Be

Range of lifetimes

Heavier 2p candidates

 Proton drip-line calculations for the rp-process: the measured masses combined with the Coulomb displacement energies 					Sr 72 1.18 (15) -0.60 (19) - Rb 71 -1.38 (64) -1.78 (19) 0.36 (15) Kr 70	Sr 73 0.87 (78) 0.99 (19) 0.10 (34) Rb 72 -0.69 (58) -0.89 (35) 0.93 (39) Kr 71	Sr 74 1.75 (70) 1.69 (21) 1.14 (29) Rb 73 -0.59 (55) -0.55 (32) 4.26 (35) Kr 72	Sr 75 2.21 (78) 1.90 (73) 4.03 (17) Rb 74 2.13 (73)	Sr 76 4.46 (30)
calculated by HF with the SkX			1.28 (14)	0.70 (74)	1.86 (51)	1.80 (47)	4.81 (40)		
Skyrme force	,	-1.76 (14)	-0.62 (14)	0.40 (18)	1.41 (34)	4.39 (32)			
	Br64 Br65	Br66	Br 67 -1.63 (58)	Br 68 -0.31 (57)	Br 69 -0.45 (43)	Br 70 2.58 (37)			
	-2.89 (14) -2.85 (14) -2.78 (14) -1.74 (14)	-1.72 (14) -0.62 (14)	-1.90 (14) 0.54 (17)	-0.71 (20) 1.36 (25)	-0.73 (32) 4.06 (15)				
Se 62	Se 63 Se 64	Se 65	Se 66	Se 67	Se 68		•		
-0.10 (14) -2.76 (14)	0.11 (14) 1.11 (14) -1.51 (14) -0.29 (14)	1.09 (14) 0.81 (17)	2.43 (18) 2.00 (27)	2.07 (25) 4.77 (17)	4.70 (01)				
As 60 As 61	As 62 As 63	As 64	As 65	As 66		1			
-3.31 (66) -2.43 (64) -2.74 (14) -2.66 (14) -2.55 (14) -1.60 (14)	-1.48 (42) -1.13 (52) -1.61 (14) -1.40 (14) -0.26 (14) 1.13 (14)	-0.10 (41) -0.28 (17) 2.10 (10)	-0.08 (46) -0.43 (29) 4.59 (17)	2.70 (22)					
Ge 58Ge 59Ge 60-0.24 (41)0.30 (35)0.94 (29)-0.16 (14)0.19 (14)1.06 (14)-2.38 (14)-1.16 (14)0.09 (14)	Ge 61 Ge 62 1.02 (32) 2.18 (24) 1.35 (14) 2.53 (14) 1.42 (14) 2.77 (10)	Ge 63 2.20 (20) 2.38 (14) 5.33 (14)	Ge64 5.02 (27)						
Ga56 Ga57 Ga58 Ga59	Ga60 Ga61	Ga62		Str	Strontium (Z=38) is the heaviest				
-2.63 (14) -2.22 (14) -1.35 (14) -0.97 (14) -1.99 (14) -0.79 (14) 0.19 (14) 1.36 (14)	0.03 (12) 0.43 (20) 0.07 (14) 0.24 (10) 2.92 (10) 5.36 (10)	2.34(3)		ele	element for which the precise				
Zn 54 Zn 55 Zn 56 Zn 57 Zn 58 0.40 (48) 0.52 (33) 1.39 (40) 1.37 (20) 2.28 (5) 0.12 (14) 0.63 (14) 1.43 (14) 1.54 (14) 2.33 (14) -1.33 (14) 0.13 (14) 1.25 (14) 2.10 (14) 3.02 (10)	Zn 59 Zn 60 2.89 (4) 5.12 (1) 2.85 (10) 5.72 (10)			Q_2	Q_{2p} predictions were made				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cu 58 2.87 (0)			Bro	own et al	., PRC 65	(2002) 0 [,]	45802	

M. Pfützner, Euroschool on Exotic Beams, Dubna 2013, Lecture 2/2

Nuclear landscape

> Global mass predictions using density functional theory with 6 different Skyrme interactions

2p-emission models

Direct model

Diproton model

$$\Gamma_{2p,dipr} = \theta_{dipr}^2 \mathcal{N} \frac{\hbar^2}{4\mu} \exp\left[-2\int_{r_2}^{r_3} k(r) dr\right] \qquad \mathcal{O}^2 = 0.015$$

The spectroscopic factors determined from the experimental half-lives of known 2p emitters: ¹⁹Mg, ⁴⁵Fe, ⁴⁸Ni, and ⁵⁴Zn

Nucleus	Experiment	Direct	Diproton
¹⁹ Mg [7]	4.0(15) ps	6.2 ps	12.3 ps
⁴⁵ Fe [10]	3.7(4) ms	1.1 ms	8.7 ms
⁴⁸ Ni [8]	$3.0^{+2.2}_{-1.2}$ ms	6.8 ms	5.3 ms
⁵⁴ Zn [9]	$1.98^{+0.73}_{-0.41}$ ms	1.0 ms	0.8 ms

The comparison of predicted half-lives with experiment

M. Pfützner, Euroschool on Exotic Beams, Dubna 2013, Lecture 2/2

 $T_{1/2} = \frac{\ln 2\hbar}{\Gamma}$

Predictions for nickel and zinc

Tellurium

formula by Koura, J. Nucl. Science and Tech. 49 (2012) 816

- > At ¹⁰³Te a transition from the simultaneous 2p to the sequential emission occurs
- > In addition, in ¹⁰³Te both decays, α and 2p may be observable!

No 2p above tellurium!?

- When the energy condition for the true 2p decay is fulfilled, the predicted half-life is extremely long
- > When the fast proton emission becomes possible, it proceeds as the sequential 2p decay

Heavy 2p landscape

Heavy 2p landscape

> Selection criteria:

 $100 \text{ ns} < T_{2p} < 100 \text{ ms}$

Olsen et al., PRL 110 (2013) 222501

 $T_{2p} < 10 \cdot T_{\alpha}$

Full 2p landscape

Literature

Review papers

Blank and Borge, Progress in Part. Nucl. Phys. 60 (2008) 403 Blank and Płoszajczak, Rep. Prog. Phys. 71 (2008) 046301 Pfützner, Karny, Grigorenko, and Riisager, Rev. Mod. Phys. 84 (2012) 567 Pfützner, Phys. Scr. T152 (2013) 014014

Goldansky

Goldansky, Nucl. Phys. 19 (1960) 482 Goldansky, Nucl. Phys. 27 (1961) 648 Goldansky, Nuovo Cimento 25, Suppl. 2 (1962) 123

Mass predictions

Brown, PRC 43 (91) R1513 Ormand, PRC 55 (97) 2407 Cole, PRC 54 (96) 1240 Brown *et al.*, PRC 65 (02) 045802

⁴⁵Fe

Pfützner et al., EPJ A 14 (2002) 279 Giovinazzo et al., PRL 89 (2002) 102501 Giovinazzo et al., PRL 99 (2007) 102501 Miernik et al., PRL 99 (07) 192501 Miernik et al., EPJ A 42 (2009) 431

⁶Be

Mercurio et al., PRC 78 (08) 031602(R) Grigorenko et al., PLB 677 (2009) 30 Egorova *et al.*, PRL 109 (12) 202502

M. Pfützner, Euroschool on Exotic Beams, Dubna 2013, Lecture 2/2

¹⁹Mg

Mukha et al., PRL. 99 (2007) 182501 Mukha et al., PRC 77 (2008) 061303(R) Mukha et al., EPJA 42 (2009) 421

⁴⁸Ni

Dossat et al., PRC 72 (05) 054315 Pomorski et al., PRC 83 (2011) 061303(R) Pomorski et al., Acta Phys. Pol. B 43 (2012) 267

⁵⁴Zn

Blank et al., PRL 94 (05) 232501 Ascher et al., PRL 107 (2011) 102502

2p models

Brown and Barker, PRC 67 (2003) 041304(R) Rotureau et al., Nucl. Phys. A767 (2006) 13 Grigorenko et al., PRC 64 (2001) 054002 Grigorenko and Zhukov, PRC 68 (2003) 054005 Grigorenko and Zhukov, PRC 76 (2007) 014008 Grigorenko and Zhukov, PRC 76 (2007) 014009 Grigorenko et al,. PRC 82 (2010) 014615

2p landscape

Erler et al., Nature 486 (2012) 509 Olsen et al., PRL 110 (2013) 222501 +Errata 😕

Thank you!

