Digital photography at limits of nuclear stability

100 years ago...

E. Rutherford (1871-1937)

Rutherford's first rough note on the nuclear theory of atomic structure; written, probably, in the winter of 1910-11

The scattering of the α rays...

The first public announcement of the atomic nucleus:

Fig1. Marsden-Geiger experiment.

The Scattering of the α and β Rays and the Structure of the Atom
by Professor E. Rutherford, F.R.S.
Proc. of the Manchester Literary and Philosophical Society, IV, 55, pp.18-20. presented on March 7, 1911

$$
P(\theta) \propto \frac{1}{\sin ^{4} \theta / 2}
$$

[669]
LXXIX. The Scattering of a and β Particles by Matter and the Structure of the Atom. By Professor E. Rutherford, F.R.S., University of Manchester*.
§ 1. TT is well known that the α and β particles suffer deflexions from their rectilinear paths by encounters with atoms of matter. This scattering is far more marked for the β than for the α particle on account of the much smaller momentum and energy of the former particle.

Philosophical Magazine, May 1911, ser.6, xxi, pp.669-88

Photography in subatomic physics

In the beginning...

> The whole new world has been discovered accidentally by Antoine Henri Becquerel in 1896 when he exposed a photographic plate to a piece of uranium salt.

- A.H. Becquerel - Nobel Prize 1903 (shared with M. Skłodowska-Curie and P. Curie)

Photos for fast counting

Photographic Registration of α Particles

by Dr. H. Geiger and Professor E. Rutherford, F.R.S.,
University of Manchester
Philosophical Magazine, October 1912, ser.6, xxiv, pp.618-23

The rapid jumps of an electrometer needle were captured on a moving photographic film (photo-mechanical oscilloscope!).
> Counting rates of up to 1000α particles per minute could be achieved.

Cloud chamber

In oversaturated vapour droplets condense on ions produced by passing charged particles.

A diagram of Wilson's apparatus. The cylindrical cloud chamber ($' \mathrm{~A}$ ') is 16.5 cm across by 3.4 cm deep.

First picture of a positron

- Charles Wilson - first cloud chamber 1900, Nobel Prize 1927
- Carl D. Anderson - discovery of a positron 1932, Nobel Prize 1936

α tracks in helium

Alpha particle strikes helium nucleus and they part at right angles (Blackett)

1923

Alpha particle enters nitrogen which ejects proton and becomes oxygen (Blackett)

1925
> To observe the nuclear reaction $\alpha+{ }^{14} \mathrm{~N} \rightarrow{ }^{17} \mathrm{O}+p$ P. Blackett has taken 23000 photographs and found 8 events.

Photographic emulsions

> Pions were discovered in a photographic emulsion exposed to cosmic rays at high altitude in 1947.

- Cecil Powell, Nobel Prize 1950

Hypernucleus

The discovery of a hypernucleus in a photografic emulsion

Danysz and Pniewski, 1952

Bubble chamber

In overheated liquid vapour bubbles form around ions produced by passing charged particles.

Production and decay of hiperon Λ^{0} from $K^{-}+p$ (CERN)

- Donald D. Glaser - construction of a chamber 1952, Nobel Prize 1960
- Emilio Segre, Owen Chamberlain - discovery of an antiproton, Nobel Prize 1959
- Luis W. Alvarez - discovery of many new particles, Nobel Prize 1968

Electronics takes over

- Georges Charpak - the first multiwire proportional chamber 1968, Nobel Prize 1992

Modern particle tracking

CMS event

New idea

G. Charpak, W. Dominik, J. P. Farbe, J. Gaudaen, F. Sauli, and M. Suzuki, "Studies of light emission by continuously sensitive avalanche chambers,"

NIM A269 (1988) 142

Image examples of α-particle tracks

$$
\text { TEA }=\text { Triethylamine } \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}
$$

Optical Time Projection Chamber

Event reconstruction

CCD image
tracks of the ion and emitted particle(s)

or only emitted particle(s)

PMT signal sampled

time sequence of events

The world of nuclides, 2010

2p radioactivity

- Observed for ${ }^{45} \mathrm{Fe},{ }^{54} \mathrm{Zn},{ }^{19} \mathrm{Mg}$
- Predicted for ${ }^{48} \mathrm{Ni}, \ldots$

Lifetime vs. energy

from L. Grigorenko
In the first experiments only the decay energy and time were measured
> A lot of information is still hidden in the correlations between protons!

OTPC at NSCL/MSU

Emission of $2 p$ from ${ }^{45} \mathrm{Fe}$

$2 p$ followed by βp

Synchronous mode \Rightarrow ion track not seen

$2 p$ events

$p-p$ correlations

$p-p$ correlations in ${ }^{45} \mathrm{Fe}$

L.V. Grigorenko et al., Phys. Lett. B 677 (2009) 30

... in ${ }^{19} \mathrm{Mg}, \ldots$

The tracking experiment at GSI/FRS

$$
\mathrm{T}_{1 / 2}=4.0(15) \mathrm{ps}
$$

I. Mukha et al., Phys. Rev. C 77 (2008) 061303(R)
I. Mukha et al., Phys. Rev. Lett. 99 (2007) 182501

...and in ${ }^{6} \mathrm{Be}$

${ }^{10} \mathrm{C}$ inelastic scattering at Texas A\&M University

K. Mercurio et al., Phys. Rev. C 78 (2008) 031602(R)
L. Grigorenko et al., Phys. Lett. B 677 (2009) 30

Three lifetime regimes

- Invariant mass method for broad resonanses

$$
\mathrm{T}_{1 / 2} \leq 10^{-19} \mathrm{~s}
$$

- In-flight decays

$$
\mathrm{T}_{1 / 2}=5 \mathrm{ps}-50 \mathrm{~ns} \quad \square
$$

- Implantation method

$$
\mathrm{T}_{1 / 2}>50 \mathrm{~ns}
$$

L.V. Grigorenko and M.V. Zhukov, PRC 68 (2003) 054005

()

"This could be the discovery of the century. Depending, of course, on how far down it goes."

Decays of ${ }^{45} \mathrm{Fe}$ and ${ }^{43} \mathrm{Cr}$

K. Miernik et al., Eur. Phys. J. A 42 (2009) 431

β^{+}decay of ${ }^{45} \mathrm{Fe}$

K. Miernik et al., Phys. Rev. C 76 (2007) 041304(R)

β^{+}decay of ${ }^{43} \mathrm{Cr}$

${ }^{45} \mathrm{Fe}: 2 / \mathrm{h}$
${ }^{43} \mathrm{Cr}: 8 / \mathrm{min}$.

We recorded about 40000 events of ${ }^{43} \mathrm{Cr}$

Example events in the asynchronous mode (incoming ${ }^{43} \mathrm{Cr}$ ion visible)
ß2p
M. Pomorski et al., to be published

${ }^{43} \mathrm{Cr}$ - the second case of $\beta 3 p$

an event in an asynchronous mode

an event in a synchronous mode (an ion not visible)
> In total 12 such events were observed (the Blackett style ©)

Decay channels of ${ }^{43} \mathrm{Cr}$

M. Pomorski et al., to be published

Neutron drip-line case: ${ }^{8} \mathrm{He}$

${ }^{8} \mathrm{He}$ - the most neutron-rich, particle-stable nucleus, attracts lot of interest (NNDC/NSR Data Base shows 225 papers!)

β-delayed t emission measured

$$
{ }^{8} \mathrm{He} \rightarrow{ }^{8} \mathrm{Li}^{*} \rightarrow \mathrm{t}+\alpha+\mathrm{n}
$$

$$
\begin{aligned}
& b_{t}=(8.0 \pm 0.5) \times 10^{-3} \\
\rightarrow & \mathrm{~B}_{\mathrm{GT}} \geq 5.2, \log f t=2.9!
\end{aligned}
$$

ISOLDE (1992)
M. Borge et al., NP A 560 (1993) 664

${ }^{8} \mathrm{He}$ decay study @ JINR, Dubna

We see the tritium channel

$$
{ }^{8} \mathrm{He} \rightarrow{ }^{8} \mathrm{Li}^{*} \rightarrow \alpha+\mathrm{n}+\mathrm{t}
$$

but also the recoil of ${ }^{7} \mathrm{Li}$!

$$
{ }^{8} \mathrm{He} \rightarrow{ }^{8} \mathrm{Li}^{*} \rightarrow{ }^{7} \mathrm{Li}+\mathrm{n}
$$

$E\left({ }^{7} \mathrm{Li}\right)=0.875 \mathrm{MeV}$
$\rightarrow \mathrm{Q}=7.0 \mathrm{MeV}$
$E\left({ }^{7} \mathrm{Li}\right)=0.95 \mathrm{MeV}$

$\rightarrow \mathrm{Q}=7.6 \mathrm{MeV}$

A new decay branch

preliminary!

The next case: ${ }^{6} \mathrm{He}$

${ }^{6} \mathrm{He}$ has a very weak decay branch to $\alpha+d$

> Due to β-background, it was not possible to determine the spectrum below $\mathrm{E}_{\mathrm{CM}} \cong 400 \mathrm{keV}$!

An idea for the OTPC

Using REX ISOLDE we plan to implant a bunch of $\cong 10^{5} 6 \mathrm{He}$ ions and wait for the decay signal. Sometimes we will see $\alpha+d$ particles.
> The OTPC is not sensitive to electrons!

Summary

- The idea of optical recording of charged particles' tracks does work! Return of photographic techniques to nuclear science!
- This idea implemented as OTPC brought new results
> p - p correlations in the decay of ${ }^{45} \mathrm{Fe}$
> $\beta 3 p$ emission in two nuclei
> possibly a new decay channel of ${ }^{8} \mathrm{He}$
- Remarkable sensitivity - one good event suffices!
- Much cheaper and simpler than electronic TPC
- Present version has limitations
> rather slow
> limited to simple decays (2 tracks can be reconstructed)
> not sensitive enough to see β particles
- Measurement on ${ }^{8} \mathrm{He}$ is being analyzed. A run on ${ }^{6} \mathrm{He}$ is planned

2011 - Year of Chemistry

The Nobel Prize in Chemistry 1911 was awarded to Marie Curie "in recognition of her services to the advancement of chemistry by the discovery of the elements radium and polonium, by the isolation of radium and the study of the nature and compounds of this remarkable element".
http://nobelprize.org/nobel_prizes/chemistry/laureates/1911/

Mivend + aspent $=10.3942$

$\lambda n_{1} \quad .601=0.10564$

Paris, 11 rue Pierre-et-Marie-Curie

Thank you for attention!

