

Marek Pfützner Faculty of Physics University of Warsaw

Justus Liebig Universität Giessen Physikalisches Kolloquium,12.12.2011

Outline

- Decays at the limit of stability
- Production and identification
- Observation of rare decays
- Confrontation with models
- Very fast decays
- Outlook

Decays at the limit of stability

Drip lines

Mass parabola

β-decay and delayed particle emission

> When the decay energy is large, many exotic decay channels open

Beyond the proton drip-line

➔ To find where the drip-line actually is and to predict which decay will happen, precise estimates of atomic masses are required!

Predicting masses

Global mass models are not precise enough to determine the decay mode. However, there is a trick based on the Isobaric Multiplet Mass Equation (IMME):

$$BE(A,T,T_z) = a(A,T) + b(A,T)T_z + c(A,T)T_z^2$$

20

 $BE(T_z = -T) = BE(T_z = T) - 2bT$

To get the mass (binding energy) of the neutron-deficient nuclide, we need the measured mass of its neutron-rich analogue and the value of the coefficient b from the theory (shell-model, systematics...)

 $T_z = (N - Z)/2$

2p candidates

Predicted 1p and 2p separation energies

Pattern predicted by Goldansky

- B.A. Brown, PRC 43 (91) R1513
- W.E. Ormand, PRC 55 (97) 2407
- B.J. Cole, PRC 54 (96) 1240

V.I. Goldanskii, Nucl. Phys. 19 (60) 482

Production and Identification of exotic ions

Production methods

To produce short-lived radioactive nuclei at the proton drip-line two nuclear reactions are useful

 fusion-evaporation reactions between heavy-ions GSI, Argonne, Oak Ridge, Jyväskylä,... recoil separators

- Low energy: ~ Coulomb barrier
- large beam intensity
- thin target identification by decays

fragmentation

 fragmentation
 of relativistic heavy-ions
 GSI, NSCL, GANIL, RIKEN,...
 fragment separators

High energy: ~ above Fermi energy

- Iower beam intensity
- thick target identification in-flight single ion sensitivity

Fragmentation milestones

R. Schneider et al., Z. Phys. A 348 (94) 241

B. Blank et al., PRL 77 (96) 2893

Ch. Engelmann et al., Z. Phys. A352 (95) 351

B. Blank et al., PRL 84 (00) 1116

⁴⁸Ni benchmark

Experiment in March 2011, A1900 fragment separator at NSCL/MSU

⁵⁸Ni @ 160 A⋅MeV + ^{nat}Ni → ⁴⁸Ni

M. Pomorski et al., PRC 83 (11) 061303(R)

Sensitivity

• Hunt for element 120 at SHIP fusion ${}^{54}Cr + {}^{248}Cm \rightarrow {}^{302}120^*$

Cross section: \approx 90 fbBeam intensity:750 pnARunning time (1 event): \approx 100 daysTotal dose: \approx 4.10¹⁹ part.Target thickness:0.5 mg/cm²

Production of ⁴⁸Ni at NSCL
 fragmentation ⁵⁸Ni + ^{nat}Ni → ⁴⁸Ni

Observation of rare decay channels

First evidence of 2p emission

M. P. et al., EPJ A 14 (02) 279

J. Giovinazzo et al., PRL 89 (02) 102501

Other 2p candidates

GANIL: fragmentation of ⁵⁸Ni beam @ 75 MeV/u 8 ⁵⁴Zn ions implanted in a Si strip detector

B. Blank et al., PRL 94 (05) 232501

GANIL: fragmentation of ⁵⁸Ni beam @ 75 MeV/u 4 ⁴⁸Ni ions implanted in a Si strip detector

C. Dossat et al., PRC 72 (05) 054315

Interpretation is made by comparing measured decay energy and half-life with models. There is no direct proof for the emission of two protons!

Search for β -delayed 3p

PHYSICAL REVIEW C

VOLUME 45, NUMBER 1

JANUARY 1992

Decay modes of ³¹Ar and first observation of β -delayed three-proton radioactivity

D. Bazin,* R. Del Moral, J. P. Dufour, A. Fleury, F. Hubert, and M. S. Pravikoff Centre d'Etudes Nucléaires de Bordeaux-Gradignan, Le Haut Vigneau 33175 Gradignan CEDEX, France

PHYSICAL REVIEW C

VOLUME 59, NUMBER 4

APRIL 1999

³¹Ar examined: New limit on the β -delayed three-proton branch

H. O. U. Fynbo,¹ L. Axelsson,² J. Äystö,³ M. J. G. Borge,⁴ L. M. Fraile,⁴ A. Honk A. Jokinen,³ B. Jonson,² I. Martel,^{5,†} I. Mukha,^{1,‡} T. Nilsson,^{2,§} G. Nyman,² M. Oin M. H. Smedberg,² O. Tengblad,⁴ F. Wenander,² and the ISOLDE

TPC principle

A "classical" Time Projection Chamber (TPC) constructed at CEN Bordeaux. It has fully electronic readout. The position on the x-y plane is detected by two ortogonal sets of 768 strips readout by ASIC-type electronics.

Very expensive and difficult to handle. Problems with information on *z* coordinate J. Giovinazzo et al., PRL 99 (2007) 102501

Photography in subatomic physics

Radioactivity (Becquerel, 1896)

Pion (Powell, 1947)

α tracks in helium

P. Blackett has taken 23 000 photographs and found 8 events.

New idea – TPC with optical readout

OTPC – Optical Time Projection Chamber

K. Miernik et al., NIM A581 (07) 194

Principle of operation

CCD image

tracks of the ion and emitted particle(s)

or only emitted particle(s)

PMT signal sampled

time sequence of events

Images of 2p from ⁴⁵Fe

NSCL/MSU, February 2007

Discovery of β -delayed 3p

K. Miernik et al., PRC 76 (07) 041304(R)

$${}^{43}_{24}\text{Cr}_{19} \rightarrow {}^{43}_{23}\text{V}^*_{20} + e^+ + \nu_e$$

0.08% ${}^{40}_{20}\text{Ca}_{20} + 3p$

12 β**3**p

M. Pomorski et al., PRC 83 (11) 014306(R)

2p radioactivity of ⁴⁸Ni

NSCL/MSU, March 2011

Other decays of ⁴⁸Ni

Confrontation with models

2p decay: energy vs. time

p-p angular correlation

K. Miernik et al., PRL 99 (07) 192501

3-body model in Jacobi coordinates

p-p correlations in ⁴⁵Fe

- 2p radioactivity offers more observables than 1p emission (correlations!)
 Better test of nuclear models
- 3-body model consistently reproduces all observables for certain composition of an initial wave function

Full picture for ⁴⁵Fe

L.V. Grigorenko et al., PLB 677 (09) 30

p-p correlations in ⁴⁸Ni

Very fast decays

Light 2p emitters

- > 2p emission is not an isolated process!
- > In lighter nuclei the Coulomb barrier is smaller and the 2p emission proceeds much faster
- > Below ¹⁹Mg we can not speak of 2p radioactivity there is 2p decay of resonances

A short-lived case of ¹⁹Mg

The tracking technique for very short-lived 2p decays was pioneered at GSI

Decay of ⁶Be resonance

Outlook

Heavier 2p emitters

Search for ⁵⁹Ge planned in RIKEN and NSCL

Search for ³⁰Ar

GSI/FRS Experimental Proposal S388

"Search for two-proton decay of ³⁰Ar in flight by the tracking technique"

By I. Mukha

Three lifetime regimes

Summary

- The idea of optical recording of charged particles' tracks proved to be very successful.
- This idea implemented in the OTPC brought new results
 - p-p correlations in the decay of ⁴⁵Fe
 - > first observation of $\beta 3p$ emission in ⁴⁵Fe and ⁴³Cr
 - first observation of 2p decay of ⁴⁸Ni
- The direct ground-state 2p emission established for ⁶Be, ¹⁶Ne, ¹⁹Mg, ⁴⁵Fe, ⁴⁸Ni, and ⁵⁴Zn
- The *p*-*p* correlations obtained for ⁶Be, ¹⁹Mg, ⁴⁵Fe are in good agreement with the 3-body model of Grigorenko and Zhukov
- The 3-body model is presently the only one predicting the correlations, however, it has to be refined to describe the initial state in a realistic way
- The field is progressing, search for other cases of 2p emission continues...

Thank you for attention!

