Exotic nuclear decays in digital photography

Marek Pfützner Physics Department

University of Warsaw

CERN - ISOLDE, February 3, 2010

Outline

- 2p radioactivity the original challenge
- Idea of the optical detection and a prototype
- Tests with β -delayed particles
- *p-p* correlations in the decay of ⁴⁵Fe
- New results for the ⁴³Cr decay
- A new test: ⁸He $-\beta$ -decay of the halo?

...and all illustrated with photos 🙂

2p decay of ⁴⁵Fe

3-body : L.V. Grigorenko, I.G. Mukha, M.V. Zhukov, NP A714 (2003) 425

R-matrix : B.A. Brown, F.C. Barker, PRC 67 (2003) 041304(R)

SMEC : J. Rotureau, J. Okołowicz, M. Płoszajczak, Nucl. Phys. A767 (2006) 13

Main goals

Experimental challenge: in addition to decay energy and half-life, measure momenta of both protons and determine their correlations!

The questions: can we disentangle the 3-body decay dynamics from the structure of the initial state? Can we learn anything on the latter?

L. Grigorenko : simulation for 200 events

A great idea

G. Charpak, W. Dominik, J. P. Farbe, J. Gaudaen, F. Sauli, and M. Suzuki, "Studies of light emission by continuously sensitive avalanche chambers," NIM A269 (1988) 142

TEA = Triethylamine $N(C_2H_5)_3$

Optical Time Projection Chamber

Active volume

He + Ar + $\approx 1\%N_2$ + $\approx 1\%CH_4$

Gating electrode

Amplification

UV / VIS conversion

VIS light detection

M. Ćwiok et al., IEEE TNS, 52 (2005) 2895 K. Miernik et al., NIM A581 (2007) 194

The prototype

Chamber active volume:

20 x 20 x 15 cm³

Materials used:

Stesalit fibreglass

PCB plates

Pyrex optical window

Optical Time Projection Chamber

CCD 2/3"

- 1000 × 1000 pix.
- 12-bits
- image ampl. (×2000)

Event reconstruction

α particles from the Th chain

Test at JINR, Dubna

Measurement sequence

PMT signal

Protons after ¹³O β decay

K. Miernik et al., NIM A581 (2007) 194

Is one proton emission isotropic?

3α decay of $^{12}C^*$

Decay of ⁸Be

Experiment on ⁴⁵Fe @ NSCL/MSU

February 2007

Reaction: ⁵⁸Ni at 161 MeV/u + ^{nat}Ni \rightarrow ⁴⁵Fe

Ion identification in-flight : $\Delta E + TOF$

The "cannon"

Thin gas:

66% He + 32% Ar + 1% N₂ + 1% CH₄
as a compromize for the active length:
range of 550 keV proton ≈ 2.3 cm

> range of 45 Fe ion ≈ 50 cm

Active volume: 20×20×42 cm³

Set-up at the beam line

Ion identification

2p event!

decay 0.53 ms after implantation

2p followed by βp

Synchronous mode ⇒ ion track not seen

Selection of 2p events

β^+ decay of ⁴⁵Fe

K. Miernik et al., Phys. Rev. C 76 (2007) 041304(R)

Decay channels observed

Decay time of ⁴⁵Fe

2p energy vs. half-life

3-body model: L.V. Grigorenko and M.V. Zhukov, PRC 68 (2003) 054005
SMEC: Rotureau, Okołowicz, Płoszajczak, Nucl. Phys. A 767 (2006) 13
R-matrix: Brown, Barker, Phys. Rev. C 67 (2003) 041304

p-*p* opening angle ($\Delta \phi$)

The distribution characteristic for the 3-body mechanism !!!

3D reconstruction

3D reconstruction

p-*p* opening angle

K. Miernik et al., Phys. Rev. Lett. 99, 192501 (2007)

p-*p* correlations in the 3-body model

0.6

 E_{r}/E_{T}

0.8

1.0

0.4

0.0⊾ 0.0

0.2

L.V. Grigorenko and M.V. Zhukov, PRC 68 (2003) 054005

p-p correlations in the "T" system

Full picture in the "T" system

2p decay and nuclear structure

> 2p radioactivity offers more observables than 1p emission (correlations!) Better test of nuclear models

- 3-body model consistently reproduces all observables for ⁴⁵Fe which evidently depend on the initial state of two protons.
- Perhaps one can separate the 3-body decay dynamics from the correct description of the detailed structure of the decaying nucleus?

3-body decay with correct FS and Coulomb interactions

Next 2p experiments

GANIL: fragmentation of ⁵⁸Ni beam @ 75 MeV/u

- 4⁴⁸Ni ions implanted in a Si strip detector
- C. Dossat et al., PRC 72 (2005) 054315
- > 2p branching possibly small ($\approx 25\%$)
- closed shell!
- good estimate of x-sec.
 - 6 atoms/day @ 30 pnA

NSCL experiment soon

GANIL: fragmentation of ⁵⁸Ni beam @ 75 MeV/u 8 ⁵⁴Zn ions implanted in a Si strip detector B. Blank et al., PRL 94 (2005) 232501

- > known to be 2p emitter (b(2p) \approx 90%)
- > probably dominated by p^2

A byproduct: ⁴³Cr

We recorded about 40 000 events of ⁴³Cr

A lot is already known

Implantantion method at GANIL

- The branching for p emission is determined to be 92.5 %
- Only 33 % is seen in peaks in the p spectrum

What new could we possibly add with an OTPC measurement?

βp and $\beta 2p$ events are there

Example events in the asynchronous mode (incoming ⁴³Cr ion visible)

M. Pomorski et al., to be published

But β *3p* are there, too!

an event in an asynchronous mode

an event in a synchronous mode (an ion not visible)

In total 12 such events were observed

Decay channels observed

Counting invisible

> The key lies in the asynchronous events when ion is seen but it doesn't decay

→ Either the ion decayed after the known active time or it decayed within this time but with no protons, the probability is: $P_{\text{no proton}} = \exp(-\lambda \tau) + (1 - b_e) [1 - \exp(-\lambda \tau)]$

Absolute branchings

preliminary!

Taking into account many events with and without protons, we build the *likelihood function* and maximize it with respect to the absolute branching.

$$\mathscr{L} = \prod_{i=0}^{N_e} \left\{ b_e \left[1 - \exp\left(-\lambda\tau^i\right) \right] \right\} \prod_{j=0}^{N_{ne}} \left\{ \exp\left(-\lambda\tau^j\right) + (1 - b_e) \left[1 - \exp\left(-\lambda\tau^j\right) \right] \right\}$$

Number Absolute Dossat of branching et al. protons [%] ? 26(2) 7.5(3) 0 68(2) > 28(1) 1 2 5.9(6) 5.6(7) 3 0.07(2)

M. Pomorski et al., to be published

C. Dossat et al., Nucl. Phys. A 792 (2007) 18

A spark ③

Mini explosions are spectacular but we need to get rid of them!

OTPC development

- 'Natural' geometry (implantation perpendicular to field lines):
- → increased efficiency
- → no ion-induced sparks
- → no diffusion problem

- First amplification stage replaced by 3 GEM foils:
- → lower voltages
- → less sparking
- → larger amplification
- → larger dynamic range

 α tracks from a source !

Testing new version

- The new OTPC version needs testing with real charged-particle decays.
- An ideal case: combine a test with a real physics experiment

Our choice **BHe**

⁸He – the most neutron-rich, particle-stable nucleus, attracts lot of interest (NNDC/NSR Data Base shows 225 papers!)

Most recent highlights, all presented at ENAM'08 conference:

- ⇒ P. Mueller et al., Phys. Rev. Lett. 99 (2007) 252501 "Nuclear Charge Radius of ⁸He"
- ⇒ V.L. Ryjkov et al., Phys. Rev. Lett. 101 (2008) 012501 "Direct Mass Measurement of the Four-Neutron Halo Nuclide ⁸He"
- ⇒ M.S. Golovkov et al., Phys. Lett. B 672 (2009) 22
- "The ⁸He and ¹⁰He spectra studied in the (t,p) reaction"

Still not all is known in the β - decay of ⁸He !

β -decay of ⁸He

Questions

- What really is the feeding of the 9.67 MeV state?
- Is there a strong feeding to a predicted *halo analogue* state?
 M. Zhukov et al., PRC 52 (1995) 2641
 L.V. Grigorenko et al., NP A607 (1996) 277
- Can we see the branch with the deuteron emission?

If yes, is it sensitive to the halo structure (compare ⁶He, ¹¹Li)?

A decay event

A new decay channel! preliminary!

Another event

β-delayed triton emission

Summary

- The idea of optical recording of charged particles' tracks does work! Return of photographic techniques to nuclear science!
- This idea implemented as OTPC brought new results
 - > *p-p* correlations in the decay of ⁴⁵Fe
 - > β 3p emission in two nuclei
 - > possibly a new decay channel of ⁸He
- Remarkable sensitivity one good event suffices!
- Much cheaper and simpler than electronic TPC
- Present version has limitations
 - rather slow
 - Imited to simple decays (2 tracks can be reconstructed)
 - not sensitive enough to see b particles
- Experiment in Dubna on ⁸He should start this week

Collaboration

Oak Ridge National Laboratory

• K. Rykaczewski

And what's that ???

