Particle radioactivity

Lecture 1

Marek Pfützner

Faculty of Physics, University of Warsaw

Outline

- Basic introduction
- Experimental techniques
 - ♦ reactions
 - ♦ separators
 - ♦ detection
- Theoretical models
 - ♦ Gamow idea
 - p, and 2p emission
 - ♦ 3-body model

What is radioactive?

> What is plotted on the chart? Present practice: all systems we know something about.

> Should they plot only those which exist, i.e. long-lived (stable and radioactive)?

M. Pfützner, ISOLDE Lecture 1/2

Mass parabola

β -delayed particle emission

> When the decay energy is large, many exotic decay channels open

B. Blank, M. Borge, Progress in Part. Nucl. Phys. 60 (2008) 403

Beyond the proton drip-line

➔ To find where the drip-line actually is and to predict which decay will happen,

precise estimates of atomic masses are required!

➔ To study particle radioactivity fast techniques are needed!

Methods of production

Two schemes of radioactive beam production

Two classes of in-flight facilities

	Low energy	High energy	
Projectile energy, (MeV/nucleon)	$\cong 10$	50 - 1000	
Accelerator	linac, cyclotron,	coupled cyclotrons,	
	tandem	synchrotron	
Reaction mechanism	fusion-evaporation	fragmentation,	
		spallation, fission	
Target thickness, (mg/cm^2)	≈ 1	≈ 1000	
Separator type	recoil mass separator,	fragment separator with	
	velocity filter	a wedge degrader	
Ion identification	by its decay	in-flight, $B\varrho$ -TOF- ΔE	
Example facilities	SHIP [17]	LISE [22]	
	FMA [23]	A1900 [19]	
	RMS [24]	FRS [25]	
	RITU [26]	BigRIPS [27]	

Production mechanism: a) fusion

- Projectile energy has to be precisely tuned: if too small, there will be no contact, if too large, the compound system wil not form. The typical energy is around 8 MeV/u (Coulomb barrier).
- The projectile-target combination must be selected to get the right product. This limits the number of possibilities.
- → Reaction very useful for production of neutron deficient nuclei (proton radioactivity). The only reaction leading to synthesis of superheavy elements!

(fusion)

b) fragmentation

- At large energy (> 100 MeV/nucleon) in peripheral collision a part of projectile (fragment) continue flying with the same velocity.
- Reaction is universal any nucleus can be produced which has less nucleons than the projectile. Fragments form a beam, which can be directed to experiments.
- → Very useful for studies of most exotic nuclei. Used for example in two-proton radioactivity studies.

c) spallation

- Light projectile (p, d) at large energy (> 100 Mev/nucleon) initiates a cascade of collisions between nucleons in the target. Some nucleons evaporate leading to formation of a final fragment or fission.
- → Reaction is universal, any nucleon can be formed which has less nucleons than target.
 Fragments do not apear as a beam one has to extract them from target.
- Main advantage: it is relatively easy to make a proton beam of large energy and large intensity.

Reverse kinematics

final fragment Multinucleon cascade projectile target u_0 $i = u_0$ or fission fragments

- → When a massive projectile at large energy hits a light target (p, d) the spallation also occurs.
- → "Reverse" spallation is very similar to fragmentation. The difference is in the excitation mechanism of the intermediate system.

> Spallation in reverse kinematics

Examples of fragmentation/spallation

Recoil separator

Münzenberg et al., NIM 161 (1979) 65

(dipole magnet)

$$B\rho \text{ [Tm]} = \frac{p}{q} = 3.107 \gamma \beta \frac{A}{Q}$$

Uniform magnetic field

Crossed magnetic and electric fields (velocity filter)

$$F_B = q \mathbf{v} B, \quad F_E = q E$$

Recoil separator 2

Recoil Mass Separator @ ORNL

lane

Achromat

Target

D

Fragment separator

Example: FRS at GSI Darmstadt

FRS – ion optics and particle ID

Example of identification

▶ First observation of three new nuclides : ⁴²Cr, ⁴⁵Fe i ⁴⁹Ni

FRS, GSI, 1996

Example 2: GANIL

Mueller and Anne, NIM B56 (1991) 559

Example 3: A1900 @ NSCL/MSU

National Superconducting Cyclotron Laboratory at Michigan State University, East Lansing, USA

Fragmentation milestones

Schneider et al., Z. Phys. A 348 (1994) 241

B. Blank et al., PRL 84 (00) 1116

Engelmann et al., Z. Phys. A352 (1995) 351

Pomorski et al., PRC 83 (2011) 061303(R)

Production efficiency

Hunt for element 120 at SHIP

fusion ${}^{54}Cr + {}^{248}Cm \rightarrow {}^{302}120^*$

• Production of ⁴⁸Ni at NSCL

fragmentation

⁵⁸Ni + ^{nat}Ni → ⁴⁸Ni

DSSSD

DSSSD – Double Sided Silicon Strip Detector

 Correlations between ion-implantation and its decay in space and in time

Digital tricks

Multiparticle decays

- Correlations between emitted particles contain important information
- Sometimes p-p correlations can be measured by arrays of Si detectors Example: β2p decay of ³¹Ar @ISOLDE
 HOLL Embed of (Muchaer H

However, after the fragment separator ions have large energy spread and a thick detector must be used to stop them

The experimental challenge of 2p decay

Total decay energy and half-life can be precisely measured after implantation into a thick Si detector. Then, information on individual proton's momenta is lost!

The goal: detect both protons separately, measure their energies, and determine their angular distribution

L. Grigorenko : simulation for 200 events

TPC principle

A "classical" Time Projection Chamber (TPC) constructed at CEN Bordeaux. It has fully electronic readout. The position on the *x*-*y* plane is detected by two ortogonal sets of 768 strips readout by ASIC-type electronics.

A decay event of ⁴³Fe

Very expensive and difficult to handle. Problems with information on z coordinate

J. Giovinazzo et al., PRL 99 (2007) 102501

Novel idea

G. Charpak, W. Dominik, J. P. Farbe, J. Gaudaen, F. Sauli, and M. Suzuki, "Studies of light emission by continuously sensitive avalanche chambers," NIM A269 (1988) 142

Optical TPC

> OTPC: Optical Time Projection Chamber

M. Ćwiok et al., IEEE TNS, 52 (2005) 2895

K. Miernik et al., NIM A581 (2007) 194

OTPC data acquisition

CCD 2/3"

- 1000 × 1000 pix.
- 12-bits
- image ampl. (×2000)

Principle of operation

CCD image

tracks of the ion and emitted particle(s)

decay.

or only emitted particle(s)

M. Pfützner, ISOLDE Lecture 1/2

PMT signal sampled

time sequence of events

Event reconstruction

Testing with decays of implanted ions

Acculinna separator, JINR, Dubna, 2006

²⁰Ne (50 MeV/u) + Be →...

Experiment at NSCL/MSU

February 2007

Gas mixture:

66% He + 32% Ar + 1% N₂ + 1% CH₄

- > range of 550 keV proton \approx 2.3 cm
- ▶ range spread of 45 Fe ion \approx 50 cm

Active volume: 20×20×42 cm³

Reaction: ⁵⁸Ni at 161 MeV/u + ^{nat}Ni \rightarrow ⁴⁵Fe

Separation and in-flight identification ($\Delta E + TOF$) in A1900 with two-wedge system

M. Pfützner, ISOLDE Lecture 1/2

Ion identification

2p events from ⁴⁵Fe

M. Pfützner, ISOLDE Lecture 1/2

3D reconstruction

Full p-p corellation pattern could be established

$\vartheta_1 = (104 \pm 2)^\circ,$	ϑ_1	$= (70 \pm 3)^{\circ}$
$\Delta \phi = (142 \pm 3)^{\circ}$	→	$\theta_{pp} = (143 \pm 5)^{o}$

M. Pfützner, ISOLDE Lecture 1/2

β delayed protons from ⁴⁵Fe

Thanks and see you tomorrow ③

"This could be the discovery of the century. Depending, of course, on how far down it goes."