Particle radioactivity

Marek Pfützner

Faculty of Physics, University of Warsaw

M. Pfützner, ISOLDE Seminar, 7.11.2012

Outline

- Basic concepts
- In-flight at Coulomb barrier
 - Proton radioactivity
 - Alpha emission
- In-flight above Fermi energy
 - Two-proton radioactivity
 - Neutron radioactivity?

M. Pfützner, ISOLDE Seminar, 7.11.2012

Particle radioactivity

- The fundamental concept: potential barrier
- → The (Coulomb) barrier stops an unbound object (α , p, 2p, ¹⁴C,...) from flying out immediately.
- → Neutrons can still be hampered by the centrifugal barrier.
- → Beyond proton drip-line, there is always competition with β decay! $T_{1/2}^{p} \leq T_{1/2}^{\beta}$

Particle observable if

In spherical case, WKB-like method:

$$\Gamma/\hbar = S \nu \exp\left\{-\frac{2}{\hbar} \cdot \int_{r_{in}}^{r_{out}} \sqrt{2\mu[V(r) - Q_p]} \cdot dr\right\}$$

 \rightarrow This simple approach works surprizingly good and is still frequently used in the analysis of proton and α radioactivity.

Gurvitz and Kalbermann, PRL 59 (1987) 262

Production methods

To produce short-lived and very proton-rich radioactive nuclei in-flight techniques proved advantageous.

 Fusion-evaporation reactions between heavy-ions GSI, Argonne, Oak Ridge, Jyväskylä,... recoil separators

Low energy: \approx Coulomb barrier

- large beam intensity
- thin target
 - identification by decays

p and α radioactivity

Fragmentation
 of relativistic heavy-ions
 GSI, NSCL, GANIL, RIKEN,...

fragment separators

High energy: ≈ above Fermi energy

- Iower beam intensity
- thick target
 - identification in-flight single ion sensitivity

2p radioactivity

Recoil separators

Recoil Mass Separator @ ORNL

lane

Target

Achromat

D

p radioactivity – the status

Proton emission from deformed ¹⁴¹Ho

Island of α emitters above ^{100}Sn

Superallowed α decay?

> Present α -decay reference: ²¹²Po

$^{212}Po = ^{208}Pb + \alpha$

 α made of protons and neutrons from different orbitals of opposite parity

Expected standard: ¹⁰⁴Te Macfarlane and Siivola, PRL 14 (1965) 114

104 Te = 100 Sn + α

α formed by protons and neutrons in the same orbitals

α decay of ¹⁰⁵Te

- Decay of ¹⁰⁵Te studied:
 - directly at FMA (Argonne) using ⁵⁰Cr(⁵⁸Ni, 3n)¹⁰⁵Te and fast recovery electronics
 - via decay of ¹⁰⁹Xe at HRIBF (ORNL) by ⁵⁴Fe(⁵⁸Ni, 3n)¹⁰⁹Xe and DSP
- → ¹⁰⁵Te decay: E_{α} = 4.7 MeV, $T_{1/2}$ = 0.6 µs

Seweryniak et al., PRC 73(2006) 061301(R) S.N. Liddick et al., PRL 97 (2006) 082501 I.G. Darby et al. PRL 105 (2010) 162502

Renormalized α decay width (*l* = 0 transitions)

Single particle states in ¹⁰¹Sn

- Details of α decay of ¹⁰⁹Xe (fine structure) yield surprising result on ¹⁰¹Sn! 5/2⁺ and 7/2⁺ levels are reversed between ¹⁰³Sn and ¹⁰¹Sn
- → Orbital dependent pairing, stronger for $(g_{7/2})^2$ then for $(d_{5/2})^2$, is responsible for $5/2^+$ g.s of ¹⁰³Sn and heavier odd tin isotopes

 $(7/2^{+})$

Fragment separators

Time-of-flight \rightarrow vPositions + B field \rightarrow BpEnergy loss Δ E in ionization chamber \rightarrow Z

Example of identification

▶ First observation of three new nuclides : ⁴²Cr, ⁴⁵Fe i ⁴⁹Ni

FRS, GSI, 1996

Two protons can be unbound!

It is possible that pair of protons is unbound while each of individual proton is bound!

- → True 2p decay is an essentially three-body phenomenon
- It offers more information: in addition to energy and half-life, there is a distribution of protons' momenta

Goldansky, Nucl. Phys. 19 (1960) 482

M. Pfützner, ISOLDE Seminar, 7.11.2012

True 2p emitters

- Ground-state 2p radioactivity first observed in ⁴⁵Fe. Later also in ⁵⁴Zn, ⁴⁸Ni and ¹⁹Mg
- > In lighter nuclei due to small Coulomb barrier 2p emission is fast, $T_{1/2}(^{19}Mg) = 4 \text{ ps!}$
- ▶ Below ¹⁹Mg 2p are emitted from broad resonances, like ⁶Be

^{66,67}Kr

First, with silicon detectors

Decay energy and time

The decay energy and the lifetime are enough to establish the 2p decay. Most models used for comparison, however, are based on two-body approximations.

➔ To explore fully the physics of the process, the correlations between proton's momenta must be determined! The three-body model by Grigorenko and Zhukov is the only one which predicts these correlations.

TPC with optical readout

OTPC – Optical Time Projection Chamber

Miernik et al., NIM A581 (2007) 194

2p event

NSCL/MSU, 2011

The PMT provides information on sequence, timing, and z-coordinate

Pomorski et al., PRC 83 (2011) 061303(R)

M. Pfützner, ISOLDE Seminar, 7.11.2012

Decays of ⁴⁵Fe and ⁴³Cr

p-p correlations in ⁴⁵Fe

 $W(p^2) = 24\%$

> All observables are simultaneously well reproduced by the 3-body model

Grigorenko et al., PLB 677 (2009) 30

p-p correlations in ⁶Be

 Radioactive beam experiment at Texas A&M University

¹⁰C inelastic scattering

- **1** p (¹⁰B, ¹⁰C) n @15 MeV/u
- 2 11 MeV/u 10 C + C/Be → 10 C*
- **6** ${}^{10}C^* \rightarrow {}^{6}Be + \alpha$

Mercurio et al., PRC 78 (08) 031602(R) Grigorenko et al., PLB 677 (2009) 30

Case of ¹⁹Mg

- > Decay in-flight and tracking for very short-lived 2p decays at GSI Radioactive beam experiment **1** 24 Mg @ 600 MeV/u + Be → 20 Mg $2^{20}Mg + Be \rightarrow {}^{19}Mg$
- Only projection of proton's momenta on the plane could be determined.

Mukha et al., PRL. 99 (2007) 182501 Mukha et al., PR C 77 (2008) 061303(R)

2p decays of ⁴⁸Ni

Decay scheme of ⁴⁸Ni

p-p correlations in ⁵⁴Zn

> ⁵⁴Zn studied at GANIL with the Bordeaux TPC. Seven events reconstructed in 3D

Range of lifetimes

n, 2n, or 4n?

The xn emission estimated by a simplified version of 3-body model (direct decay model) and compared to proton emission

• Extremely small decay energy needed for a measurable decay time of 1n emission.

Very unlikely to find a candidate in the *s*-*d* shell.

• Broader energy window thus higher chances to find a good case.

²⁶O could be a candidate!

•••• Special energy configuration required (only $S_{4n} < 0$) but not impossible.

⁷H and ²⁸O are not excluded!

Grigorenko et al., PRC 84 (2011) 021303(R)

Summary

- The particle radioactivity (*p*, α) at the proton drip-line is very efficient tool in nuclear spectroscopy. Yields masses (separation energies) of very exotic systems, provides stringent tests for models of nuclear structure.
- More than **40 proton-emitting states** are known. 7 emitters exhibit **fine structure**. Observation of g.s. proton radioactivity for Z < 50 remains an experimental challenge.
- The observation of "superallowed" α -decay ¹⁰⁴Te \rightarrow ¹⁰⁰Sn is approaching.
- The direct ground-state **2p** emission established for ⁶Be, ¹⁹Mg, ⁴⁵Fe, ⁴⁸Ni, and ⁵⁴Zn. The hunt for other cases continues. ³⁰Ar and ⁵⁹Ge will be tried soon.
- The observation of full p-p correlation picture in ⁶Be and ⁴⁵Fe was the major breakthrough in the field. The 3-body model of Grigorenko and Zhukov was confirmed and the influence of nuclear structure on the 2p emission was demonstrated. 2p radioactivity appears to be a genuine 3-body phenomenon.
- Observation of **two-neutron radioactivity** is probable in nuclei accesible already now.

Thank you!

