Particle radioactivity of exotic nuclei

Marek Pfützner

Faculty of Physics, University of Warsaw GSI Helmholtzentrum

Outline

- Basic concepts
- In-flight at Coulomb barrier
 - Proton radioactivity
 - Alpha emission
- In-flight above Fermi energy
 - ♦ Two-proton radioactivity
 - Neutron radioactivity?

Basic concepts

Gamow picture

- Early puzzle of α decay: half-life is extremely dependent of on energy Solution by Gamow (1928) was a triumph of quantum mechanics!
- → Radioactive process is so slow (decaying state so narrow) that it can be approximated by a stationary picture:

$$\hat{H}\Phi(\vec{r},t) = i\hbar \frac{\partial \Phi(\vec{r},t)}{\partial t} , \Phi(\vec{r},t) = \Psi(\vec{r})e^{-iEt/\hbar}$$

but with the complex energy!

$$\hat{H} \Psi(\vec{r}) = E \Psi(\vec{r}) \qquad E = E_0 - i \Gamma/2$$
$$\left| \Phi(\vec{r}, t) \right|^2 = \left| \Psi(\vec{r}) \right|^2 e^{-i\Gamma t/\hbar}$$

Um diese Schwierigkeit zu überwinden, müssen wir annehmen, daß die Schwingungen gedämpft sind, und E komplex setzen:

$$E = E_0 + i \frac{h \lambda}{4 \pi},$$

Geiger-Nutall (1912)
$$\log T = a + \frac{b}{\sqrt{E_{\alpha}}}$$

Particle radioactivity

- The fundamental concept: potential barrier
- → The (Coulomb) barrier stops an unbound object (α , p, 2p, ¹⁴C,...) from flying out immediately.
- → Neutrons can still be hampered by the centrifugal barrier.
- → Beyond proton drip-line, there is always competition with β decay! $T_{1/2}^{p} \leq T_{1/2}^{\beta}$

Particle observable if

In spherical case, WKB-like method:

$$\Gamma/\hbar = S \nu \exp\left\{-\frac{2}{\hbar} \cdot \int_{r_{in}}^{r_{out}} \sqrt{2\mu[V(r) - Q_p]} \cdot dr\right\}$$

- V frequency of assaults *S* – spectroscopic factor (p) preformation factor (α)
- → This simple approach works surprizingly good and is still frequently used in the analysis of proton and α radioactivity.

Gurvitz and Kalbermann, PRL 59 (1987) 262

Production methods

To produce short-lived and very proton-rich radioactive nuclei in-flight techniques proved advantageous.

 Fusion-evaporation reactions between heavy-ions GSI, Argonne, Oak Ridge, Jyväskylä,... recoil separators

Low energy: \approx Coulomb barrier

- large beam intensity
- thin target
 - identification by decays

p and α radioactivity

Fragmentation
 of relativistic heavy-ions
 GSI, NSCL, GANIL, RIKEN,...

 fragment separators

High energy: ≈ above Fermi energy

- Iower beam intensity
- thick target
 - identification in-flight single ion sensitivity

2p radioactivity

In-flight technique at Coulomb barrier

Recoil separators

Recoil Mass Separator @ ORNL

DSSSD and **Digital**

	-								
	ні			HI, p					
				ні					

DSSSD – Double Sided Silicon Strip Detector

 Correlations between ion-implantation and its decay in space and in time

Grzywacz, NIM B 234(2007)

Karny et al., Phys. Rev. Lett. 90 (2003) 012502

Proton radioactivity

p radioactivity – the first case

Hofmann et al., Z. Phys. A 305 (1982) 111

p radioactivity – the status

More general model

- Cluster approximation (proton moves in the (deformed) potential of the daughter
- Parent wave function:

$$\Psi_{JM}(\vec{r}) = \frac{1}{r} \sum_{\alpha = \{\pi, \delta\}} u_{\alpha}(r) \left[\mathcal{Y}_{\pi} \otimes \Phi_{\delta} \right]_{JM}$$

radial part of relative motion

angular part

→ Schrödinger equation, integration over angles:

$$\left[\frac{d^2}{dr^2} - \frac{l_p(l_p+1)}{r^2} + \frac{2\mu}{\hbar^2}E_p\right]u_{\alpha}(r) = \frac{2\mu}{\hbar^2}\sum_{\alpha'}(\hat{V}_{\alpha,\alpha'})u_{\alpha'}(r) \quad \text{(coupled channels)}$$

• Solutions must fulfill conditions:

$$u_{\alpha}(r) \underset{r \to 0}{\to} 0$$
, $u_{\alpha}(r) \underset{r \to \infty}{\to} \sim G_{l_{p}}(\eta, kr) + i F_{l_{p}}(\eta, kr)$ (outgoing Coulomb wave)

→ From radial functions the width:
$$u_{\alpha}(r) \Rightarrow \Gamma_{\alpha}$$
, $\Gamma = \sum_{\alpha} \Gamma_{\alpha}$, $\Gamma_{\delta} = \sum_{\{\pi\}} \Gamma_{\{\pi,\delta\}}$

Proton emission from deformed ¹⁴¹Ho

Odd-odd example: ¹⁴⁶Tm

- The richest emitter known:5 proton lines observed!
- → In Z odd, N odd (s=2) nucleus the proton radioactivity provides data on neutron levels!

E_p	I_p^{\exp} (%)	Wave function composition	$I_p^{\rm cal}$	Δl	E_f
		Ground state			
		$I^{\pi} = 5^{-}, T_{1/2} = 68(5) \text{ ms}$			
938(4)	13.8(9)	$2\% \ \pi s_{1/2} \otimes \nu h_{11/2} \otimes 0^+$	$(15)^{a}$	0	253
1016(4)	18.3(11)	$4\% \ \pi f_{7/2} \otimes \nu s_{1/2} \otimes 2^+$	15	3	175
		41% $\pi h_{11/2} \otimes \nu s_{1/2} \otimes 2^+$	0.003	5	175
1191(1)	68.1(19)	53% $\pi h_{11/2} \otimes \nu s_{1/2} \otimes 0^+$	70	5	0
		Isomeric state			
		$I^{\pi} = 10^+, T_{1/2} = 198(3) \text{ ms}$			
889(8)	1.0(4)	$2.5\% \ \pi f_{7/2} \otimes \nu h_{11/2} \otimes 2^+$	1.2	3	484
		$42\% \ \pi h_{11/2} \otimes \nu h_{11/2} \otimes 2^+$	0.04	5	484
1120(1)	100(1)	55% $\pi h_{11/2} \otimes \nu h_{11/2} \otimes 0^+$	98.6	5	253
		$0.1\% \ \pi h_{9/2} \otimes \nu h_{11/2} \otimes 0^+$	0.2	5	253
		$0.4\% \ \pi(l > 5) \otimes \nu h_{11/2}$			

 Good agreement with the model assuming coupling of a particle to core vibrations (the c-c scheme)

Tantawy *et al.*, Phys. Rev. C 73 (2006) 024316 Hagino, Phys. Rev. C64 (2001) 041304(R)

Alpha radioactivity

Island of α emitters above ^{100}Sn

Superallowed α decay?

> Present α -decay reference: ²¹²Po

$^{212}Po = ^{208}Pb + \alpha$

 α made of protons and neutrons from different orbitals of opposite parity

Expected standard: ¹⁰⁴Te Macfarlane and Siivola, PRL 14 (1965) 114

104 Te = 100 Sn + α

α formed by protons and neutrons in the same orbitals

α decay of ¹⁰⁵Te

- Decay of ¹⁰⁵Te studied:
 - directly at FMA (Argonne) using ⁵⁰Cr(⁵⁸Ni, 3n)¹⁰⁵Te and fast recovery electronics
 - via decay of ¹⁰⁹Xe at HRIBF (ORNL) by ⁵⁴Fe(⁵⁸Ni, 3n)¹⁰⁹Xe and DSP
- → ¹⁰⁵Te decay: E_{α} = 4.7 MeV, $T_{1/2}$ = 0.6 µs

Seweryniak et al., PRC 73(2006) 061301(R) S.N. Liddick et al., PRL 97 (2006) 082501 I.G. Darby et al. PRL 105 (2010) 162502

Renormalized α decay width (*l* = 0 transitions)

Single particle states in ¹⁰¹Sn

- Details of α decay of ¹⁰⁹Xe (fine structure) yield surprising result on ¹⁰¹Sn! 5/2⁺ and 7/2⁺ levels are reversed between ¹⁰³Sn and ¹⁰¹Sn
- → Orbital dependent pairing, stronger for $(g_{7/2})^2$ then for $(d_{5/2})^2$, is responsible for $5/2^+$ g.s of ¹⁰³Sn and heavier odd tin isotopes

 $(7/2^{+})$

Termination of *rp*-process

- In some conditons rp-process could terminate by Sn-Sb-Te cycle. The details of this cycle depend critically on Q_p values of Sb-isotopes.
 - α -decay of ¹⁰⁹I yielded the $Q_p = 356$ keV for ¹⁰⁵Sb solving an old controversy.
 - Similarly, the search for α -decay of ¹¹²Cs produced a limit $Q_p > 150$ keV for ¹⁰⁴Sb.
 - The Q_p values of ¹⁰⁶Sb and heavier isotopes were measured in JYFLTRAP.

 \rightarrow The *rp*-process most likely dies out before reaching the Sn-Sb-Te cycle.

In-flight technique above Fermi energy

Fragmentation milestones

Schneider et al., Z. Phys. A 348 (1994) 241

Blank et al., PRL 77 (1996) 2893

Engelmann et al., Z. Phys. A352 (1995) 351

Pomorski et al., PRC 83 (2011) 061303(R)

Sensitivity

• Hunt for element 120 at SHIP

fusion ${}^{54}Cr + {}^{248}Cm \rightarrow {}^{302}120^*$

• Production of ⁴⁸Ni at NSCL

fragmentation

⁵⁸Ni + ^{nat}Ni → ⁴⁸Ni

Two-proton radioactivity

Two protons can be unbound!

It is possible that pair of protons is unbound while each of individual proton is bound!

- → True 2p decay is an essentially three-body phenomenon
- It offers more information: in addition to energy and half-life, there is a distribution of protons' momenta

True 2p emitters

- Ground-state 2p radioactivity first observed in ⁴⁵Fe. Later also in ⁵⁴Zn, ⁴⁸Ni and ¹⁹Mg
- > In lighter nuclei due to small Coulomb barrier 2p emission is fast, $T_{1/2}(^{19}Mg) = 4 \text{ ps!}$
- ▶ Below ¹⁹Mg 2p are emitted from broad resonances, like ⁶Be

^{66,67}Kr

First, with silicon detectors

Decay energy and time

The decay energy and the lifetime are enough to establish the 2p decay. Most models used for comparison, however, are based on two-body approximations.

➔ To explore fully the physics of the process, the correlations between proton's momenta must be determined! New detection technique is needed and a model capturing the three-body kinematics.

TPC principle

A "classical" Time Projection Chamber (TPC) constructed at CEN Bordeaux. It has fully electronic readout. The position on the x-y plane is detected by two ortogonal sets of 768 strips readout by ASIC-type electronics.

 \rightarrow Expensive and difficult to handle. Problems with information on z coordinate

Giovinazzo et al., PRL 99 (2007) 102501

New idea – TPC with optical readout

OTPC – Optical Time Projection Chamber

Miernik et al., NIM A581 (2007) 194

OTPC operation

The CCD picture yields 2D projection of tracks of particles The PMT provides information on sequence, timing, and z-coordinate

Pomorski et al., PRC 83 (2011) 061303(R)

2p decays of ⁴⁵Fe

M. Pfützner, NS-152, June 10-15, 2012 Gothenburg

Miernik et al., PRL 99 (2007) 192501

Jacobi coordinates

> Three-body kinematics is simpler in Jacobi coordinates. The *p*-*p* correlations are fully described by two variables: $\mathcal{E} = E_x / E_T$ and θ_k

In place of radius and solid angle we introduce the hyperradius and hyper solid angle:

$$r, \Omega \rightarrow \rho, \Omega_5 \qquad \Omega_5 = \left\{\theta_{\rho}, \Omega_X, \Omega_Y\right\} \qquad \rho = \frac{A_1 A_2 A_3}{A_1 + A_2 + A_3} \left(\frac{\vec{r}_{12}}{A_3} + \frac{\vec{r}_{23}}{A_1} + \frac{\vec{r}_{31}}{A_2}\right)$$

Three-body model

- Cluster approximation (two protons and the core)
- Parent wave function:

$$\Psi_{JM}(\rho,\Omega_5) = \frac{1}{\rho^{5/2}} \sum_{\alpha \in \{K,\ldots\}} \chi_{\alpha}(\rho) \mathcal{J}_{\alpha}^{JM}(\Omega_5)$$

radial functions

hyperspherical harmonics

→ Schrödinger equation, integration over angles:

$$\left[\frac{d^{2}}{d\rho^{2}}-\frac{\mathcal{L}_{K}(\mathcal{L}_{K}+1)}{\rho^{2}}+\frac{2\mu}{\hbar^{2}}E_{T}\right]\chi_{\alpha}(\rho)=\frac{2\mu}{\hbar^{2}}\sum_{\alpha'}\left(\hat{V}_{\alpha,\alpha'}\right)\chi_{\alpha'}(\rho) \quad \text{(coupled channels)}$$

Main problem: the asymptotic form of radial functions is not known!
 Solution of Grigorenko and Zhukov:

$$\chi_{\alpha}(\rho) \underset{\rho \to \infty}{\longrightarrow} \sim \sum_{\alpha'} \hat{A}_{\alpha,\alpha'} \Big[G_{\mathcal{L}_{0}}(\eta_{\alpha}, \kappa \rho) + i F_{\mathcal{L}_{0}}(\eta_{\alpha}, \kappa \rho) \Big]$$

 $\hat{A}_{\alpha,\alpha'}$ is the matrix which diagonalizes the Coulomb part of $\hat{V}_{lpha,lpha'}$

→ From radial functions the width and correlations :

 $\chi_{\alpha}(\rho) \Rightarrow \Gamma, dj/d\varepsilon d(\cos \theta_k)$

Grigorenko and Zhukov, PRC 68 (03) 054005 M.P. et al, RMP (2012) 567

Full picture for ⁴⁵Fe

> All observables are simultaneously well reproduced by the 3-body model

Grigorenko et al., PLB 677 (2009) 30

Full picture for ⁶Be

 Radioactive beam experiment at Texas A&M University

¹⁰C inelastic scattering

- **1** p (¹⁰B, ¹⁰C) n @15 MeV/u
- 2 11 MeV/u ¹⁰C + C/Be → $^{10}C^*$
- **3** ${}^{10}C^* \rightarrow {}^{6}Be + \alpha$

Mercurio et al., PRC 78 (08) 031602(R) Grigorenko et al., PLB 677 (2009) 30

Case of ¹⁹Mg

- Decay in-flight and tracking for very short-lived 2p decays at GSI
 Radioactive beam experiment
 ²⁴Mg @ 600 MeV/u + Be → ²⁰Mg
 ²⁰Mg + Be → ¹⁹Mg
- Only projection of proton's momenta on the plane could be determined.

Mukha et al., PRL. 99 (2007) 182501 Mukha et al., PR C 77 (2008) 061303(R)

2p decays of ⁴⁸Ni

Pomorski et al., Acta Phys. Pol. B 43 (2012) 267

p-p correlations in ⁵⁴Zn

> ⁵⁴Zn studied at GANIL with the Bordeaux TPC. Seven events reconstructed in 3D

Range of lifetimes

Neutron radioactivity

n, 2n, or 4n?

The xn emission estimated by a simplified version of 3-body model (direct decay model) and compared to proton emission

• Extremely small decay energy needed for a measurable decay time of 1n emission.

Very unlikely to find a candidate in the *s*-*d* shell.

• Broader energy window thus higher chances to find a good case.

²⁶O could be a candidate!

•••• Special energy configuration required (only $S_{4n} < 0$) but not impossible.

⁷H and ²⁸O are not excluded!

Grigorenko et al., PRC 84 (2011) 021303(R)

Summary

- The particle radioactivity (*p*, α) at the proton drip-line is very efficient tool in nuclear spectroscopy. Yield masses (separation energies) of very exotic systems, provides stringent tests for models of nuclear structure.
- More than **40 proton-emitting states** are known. 7 emitters exhibit **fine structure**. Observation of g.s. proton radioactivity for Z < 50 remains an experimental challenge.
- The observation of "superallowed" α -decay ¹⁰⁴Te \rightarrow ¹⁰⁰Sn is approaching.
- The direct ground-state *2p* emission established for ⁶Be, ¹⁹Mg, ⁴⁵Fe, ⁴⁸Ni, and ⁵⁴Zn.
 The hunt for other cases continues. ³⁰Ar and ⁵⁹Ge will be tried soon.
- The observation of full *p-p* correlation picture in ⁶Be and ⁴⁵Fe was the major breakthrough in the field. The 3-body model of Grigorenko and Zhukov was confirmed and the influence of nuclear structure on the 2*p* emission was demonstrated. Further theoretical work is needed to elucidate this issue.
- Observation of **two-neutron radioactivity** is probable in nuclei accesible already now.

Thank you!

What is radioactive?

> What is plotted on the chart? Present practice: all systems we know something about.

→ Suggestion: plot only long-lived, i.e. stable and radioactive (those which exist!)

Shape coexistence in ¹⁸⁶Pb

Alpha spectroscopy revealed surprizing nature of lowest excitations in ¹⁸⁶Pb: the three 0⁺ levels with different deformation. A unique case of interaction between proton *p*-*h* excitations across the closed shell (Z=82) and large number of mid-shell neutrons, N=(82+126)/2.

Andreyev et al., Nature 405 (2000) 430