Particle radioactivity of exotic nuclei

Marek Pfützner

Faculty of Physics, University of Warsaw GSI Helmholtzentrum

Outline

- Basic concepts

- In-flight at Coulomb barrier
\diamond Proton radioactivity
\diamond Alpha emission
- In-flight above Fermi energy
\diamond Two-proton radioactivity
\diamond Neutron radioactivity?

Basic concepts

Gamow picture

> Early puzzle of α decay: half-life is extremely dependent of on energy
Solution by Gamow (1928) was a triumph of quantum mechanics!

Geiger-Nutall (1912)

$$
\log T=a+\frac{b}{\sqrt{E_{\alpha}}}
$$

\rightarrow Radioactive process is so slow (decaying state so narrow)
that it can be approximated by a stationary picture:

$$
\hat{H} \Phi(\vec{r}, t)=i \hbar \frac{\partial \Phi(\vec{r}, t)}{\partial t}, \Phi(\vec{r}, t)=\Psi(\vec{r}) \mathrm{e}^{-i E t / \hbar}
$$

but with the complex energy!

$$
\begin{aligned}
& \hat{H} \Psi(\vec{r})=E \Psi(\vec{r}) \quad E=E_{0}-i \Gamma / 2 \\
& |\Phi(\vec{r}, t)|^{2}=|\Psi(\vec{r})|^{2} \mathrm{e}^{-i \Gamma t / \hbar}
\end{aligned}
$$

Um diese Schwierigkeit zu überwinden, müssen wir annehmen, daß die Schwingungen gedämpft sind, und \boldsymbol{E} komplex setzen:

$$
E=E_{0}+i \frac{h \lambda}{4 \pi},
$$

Particle radioactivity

> The fundamental concept: potential barrier
\rightarrow The (Coulomb) barrier stops an unbound object ($\alpha, p, 2 p,{ }^{14} \mathrm{C}, .$.) from flying out immediately.
\rightarrow Neutrons can still be hampered by the centrifugal barrier.
\rightarrow Beyond proton drip-line, there is always competition with β decay!

$$
\text { Particle observable if } \quad T_{1 / 2}^{p} \leq T_{1 / 2}^{\beta}
$$

> In spherical case, WKB-like method:

$$
\Gamma / \hbar=S v \exp \left\{-\frac{2}{\hbar} \cdot \int_{r_{\text {in }}}^{r_{\text {out }}} \sqrt{2 \mu\left[V(r)-Q_{p}\right]} \cdot d r\right\}
$$

$$
\begin{aligned}
& V-\text { frequency of assaults } \\
& S \text { - spectroscopic factor (p) } \\
& \quad \text { preformation factor (} \alpha \text {) }
\end{aligned}
$$

\rightarrow This simple approach works surprizingly good and is still frequently used in the analysis of proton and α radioactivity.

Production methods

> To produce short-lived and very proton-rich radioactive nuclei
in-flight techniques proved advantageous.

- Fusion-evaporation reactions between heavy-ions GSI, Argonne, Oak Ridge, Jyväskylä,... recoil separators

Low energy: \approx Coulomb barrier

- large beam intensity
- thin target
identification by decays
p and α radioactivity
- Fragmentation
of relativistic heavy-ions GSI, NSCL, GANIL, RIKEN,...
fragment separators

High energy: \approx above Fermi energy

- lower beam intensity
- thick target
identification in-flight
single ion sensitivity
$2 p$ radioactivity

In-flight technique at Coulomb barrier

Recoil separators

Recoil Mass Separator @ ORNL

DSSSD and Digital

DSSSD - Double Sided Silicon Strip Detector

Correlations between ion-implantation and its decay in space and in time

Grzywacz, NIM B 234(2007)
M. Pfützner, NS-152, June 10-15, 2012 Gothenburg

Karny et al., Phys. Rev. Lett. 90 (2003) 012502

Proton radioactivity

p radioactivity - the first case

Hofmann et al., Z. Phys. A 305 (1982) 111

p radioactivity - the status

- Presently 46 proton emitters (g.s. or m) identified in 34 nuclei.
- All g.s. p-emitters between $Z=50$ and 83
- In 7 emitters fine structure was observed
M.P. et al, RMP (2012) 567

More general model

- Cluster approximation (proton moves in the (deformed) potential of the daughter
- Parent wave function:
$\Psi_{J M}(\vec{r})=\frac{1}{r} \sum_{\alpha=\{\pi, \delta\}} u_{\alpha}(r)\left[\mathscr{Y}_{\pi} \otimes \Phi_{\delta}\right]_{J M}$
radial part of relative motion angular part
\rightarrow Schrödinger equation, integration over angles:

$$
\left[\frac{d^{2}}{d r^{2}}-\frac{l_{p}\left(l_{p}+1\right)}{r^{2}}+\frac{2 \mu}{\hbar^{2}} E_{p}\right] u_{\alpha}(r)=\frac{2 \mu}{\hbar^{2}} \sum_{\alpha^{\prime}}\left(\hat{V}_{\alpha, \alpha^{\prime}}\right) u_{\alpha^{\prime}}(r) \quad \text { (coupled channels) }
$$

- Solutions must fulfill conditions:

$$
u_{\alpha}(r) \underset{r \rightarrow 0}{\rightarrow} 0, \quad u_{\alpha}(r) \underset{r \rightarrow \infty}{\rightarrow} \sim G_{l_{p}}(\eta, k r)+i F_{l_{p}}(\eta, k r) \quad \text { (outgoing Coulomb wave) }
$$

\rightarrow From radial functions the width:

$$
u_{\alpha}(r) \Rightarrow \Gamma_{\alpha}, \Gamma=\sum_{\alpha} \Gamma_{\alpha}, \Gamma_{\delta}=\sum_{\{\pi\}} \Gamma_{\{\pi, \delta\}}
$$

Proton emission from deformed ${ }^{141} \mathrm{Ho}$

${ }^{140 \mathrm{~m}} \mathrm{Dy}$
${ }^{140 g s}$ Dy

4 ms ${ }^{141 \mathrm{gs}} \mathrm{Ho}$ proton decay

$7.2 \mu \mathrm{~s}{ }^{141 \mathrm{~m}} \mathrm{Ho}$ proton decay

$$
\begin{array}{l|c}
\begin{array}{l}
\text { Coupled-channels approach } \\
\text { Kruppa et al., PRL } 84 \text { (2000) } 4549
\end{array} & \boldsymbol{\beta}_{\mathbf{2}}=\mathbf{0 . 3 5} \\
\hline
\end{array}
$$

$$
7.4 \mu \mathrm{~s}
$$

Odd-odd example: ${ }^{146} \mathrm{Tm}$

The richest emitter known:
5 proton lines observed!
$\rightarrow \ln \mathrm{Z}$ - odd, N - odd (s=2)
nucleus the proton radioactivity
provides data on neutron levels!

$>$ Good agreement with the model assuming coupling of a particle to core vibrations (the c-c scheme)

Tantawy et al., Phys. Rev. C 73 (2006) 024316
Hagino, Phys. Rev. C64 (2001) 041304(R)

Alpha radioactivity

Island of α emitters above ${ }^{100}$ n n

- Search for „superallowed" α decay
- Probing single-particle levels and shell effects
- Determination of masses and separation energies
- Conditions for astrophysical processes

Superallowed α decay?

> Present α-decay reference: ${ }^{212}$ Po

$$
{ }^{212} \mathrm{Po}={ }^{208} \mathrm{~Pb}+\alpha
$$

α made of protons and neutrons from different orbitals of opposite parity

> Expected standard: ${ }^{104} \mathrm{Te}$
Macfarlane and Siivola, PRL 14 (1965) 114

$$
{ }^{104} \mathrm{Te}={ }^{100} \mathrm{Sn}+\alpha
$$

α formed by protons and neutrons in the same orbitals

Predictions for ${ }^{104} \mathrm{Te} \rightarrow{ }^{100} \mathrm{Sn}$ decay $E_{\alpha}>5 \mathrm{MeV}, T_{1 / 2}<50 \mathrm{~ns}!$

α decay of ${ }^{105} \mathrm{Te}$

> Decay of ${ }^{105}$ Te studied:

- directly at FMA (Argonne) using ${ }^{50} \mathrm{Cr}\left({ }^{58} \mathrm{Ni}, 3 \mathrm{n}\right){ }^{105} \mathrm{Te}$ and fast recovery electronics
- via decay of ${ }^{109} \mathrm{Xe}$ at HRIBF (ORNL) by ${ }^{54} \mathrm{Fe}\left({ }^{58} \mathrm{Ni}, 3 n\right){ }^{109} \mathrm{Xe}$ and DSP
$\rightarrow{ }^{105} \mathrm{Te}$ decay: $E_{\alpha}=4.7 \mathrm{MeV}, T_{1 / 2}=0.6 \mu \mathrm{~s}$
Seweryniak et al., PRC 73(2006) 061301(R)
S.N. Liddick et al., PRL 97 (2006) 082501
I.G. Darby et al. PRL 105 (2010) 162502

Renormalized α decay width ($l=0$ transitions)

Single particle states in ${ }^{101} \mathrm{Sn}$

> Details of α decay of ${ }^{109} \mathrm{Xe}$ (fine structure) yield surprizing result on ${ }^{101} \mathrm{Sn}$! $5 / 2^{+}$and $7 / 2^{+}$levels are reversed between ${ }^{103} \mathrm{Sn}$ and ${ }^{101} \mathrm{Sn}$
\rightarrow Orbital dependent pairing, stronger for $\left(g_{7 / 2}\right)^{2}$ then for $\left(d_{5 / 2}\right)^{2}$, is responsible for $5 / 2^{+}$g.s of ${ }^{103} \mathrm{Sn}$ and heavier odd tin isotopes

I.G. Darby et al. PRL 105 (2010) 162502

Termination of $r p$-process

> In some conditons rp-process could terminate by Sn -Sb-Te cycle. The details of this cycle depend critically on Q_{p} values of Sb -isotopes.

- α-decay of ${ }^{109}$ yielded the $Q_{p}=356 \mathrm{keV}$ for ${ }^{105} \mathrm{Sb}$ solving an old controversy.
- Similarly, the search for α-decay of ${ }^{112} \mathrm{Cs}$ produced a limit $Q_{p}>150 \mathrm{keV}$ for ${ }^{104} \mathrm{Sb}$.
- The Q_{p} values of ${ }^{106} \mathrm{Sb}$ and heavier isotopes were measured in JYFLTRAP.
\rightarrow The rp-process most likely dies out before reaching the Sn - $\mathrm{Sb}-\mathrm{Te}$ cycle.

[^0]
In-flight technique above Fermi energy

Fragmentation milestones

Schneider et al., Z. Phys. A 348 (1994) 241

Blank et al., PRL 77 (1996) 2893

Engelmann et al., Z. Phys. A352 (1995) 351

Pomorski et al., PRC 83 (2011) 061303(R)

Sensitivity

- Hunt for element 120 at SHIP
fusion ${ }^{54} \mathrm{Cr}+{ }^{248} \mathrm{Cm} \rightarrow{ }^{302} 120$ *

Cross section:
Beam intensity:
Running time (1 event):
Total dose:

Target thickness:
$\approx 90 \mathrm{fb}$
750 pnA
≈ 100 days
$\approx 4 \cdot 10^{19}$ part.
$0.5 \mathrm{mg} / \mathrm{cm}^{2}$

- Production of ${ }^{48} \mathrm{Ni}$ at NSCL
fragmentation $\quad{ }^{58} \mathrm{Ni}+{ }^{n a t} \mathrm{Ni} \rightarrow{ }^{48} \mathrm{Ni}$

$$
\begin{array}{r}
\approx 100 \mathrm{fb} \\
20 \mathrm{pnA} \\
\approx 1 \mathrm{day}
\end{array}
$$

38 times weaker
100 times shorter

$$
\approx 1 \cdot 10^{16} \text { part. }
$$

$$
4000 \text { times smaller }
$$

4000 times smaller
$580 \mathrm{mg} / \mathrm{cm}^{2}$

Two-proton radioactivity

Two protons can be unbound!

It is possible that pair of protons is unbound while each of individual proton is bound!

\rightarrow True $2 p$ decay is an essentially three-body phenomenon
\rightarrow It offers more information: in addition to energy and half-life, there is a distribution of protons' momenta

Goldansky, Nucl. Phys. 19 (1960) 482

True $2 p$ emitters

Ground-state $2 p$ radioactivity first observed in ${ }^{45} \mathrm{Fe}$. Later also in ${ }^{54} \mathrm{Zn},{ }^{48} \mathrm{Ni}$ and ${ }^{19} \mathrm{Mg}$
> In lighter nuclei due to small Coulomb barrier $2 p$ emission is fast, $T_{1 / 2}\left({ }^{19} \mathrm{Mg}\right)=4 \mathrm{ps}$!

Below ${ }^{19} \mathrm{Mg} 2 p$ are emitted from broad resonances, like ${ }^{6} \mathrm{Be}$

[^1]
First, with silicon detectors

MP et al., EPJ A 14 (2002) 279

Blank et al., PRL 94 (2005) 232501

Giovinazzo et al., PRL 89 (2002) 102501

Dossat et al., PRC 72 (2005) 054315

[^2]
Decay energy and time

The decay energy and the lifetime are enough to establish the $2 p$ decay.
Most models used for comparison, however, are based on two-body approximations.

\rightarrow To explore fully the physics of the process, the correlations between proton's momenta must be determined! New detection technique is needed and a model capturing the three-body kinematics

TPC principle

A „classical" Time Projection Chamber (TPC) constructed at CEN Bordeaux.
It has fully electronic readout.The position on the x - y plane is detected by two ortogonal sets of 768 strips readout by ASIC-type electronics.

\rightarrow Expensive and difficult to handle. Problems with information on z coordinate

New idea - TPC with optical readout

OTPC - Optical Time Projection Chamber

Miernik et al., NIM A581 (2007) 194

OTPC operation

> The CCD picture yields 2D projection of tracks of particles

> The PMT provides information on sequence, timing, and z-coordinate

$2 p$ decays of ${ }^{45} \mathrm{Fe}$

Jacobi coordinates

Three-body kinematics is simpler in Jacobi coordinates.
The p - p correlations are fully described by two variables: $\varepsilon=E_{X} / E_{T}$ and θ_{k}

Transition from CM to
 Jacobi „T" system

\vec{k}_{1}, \vec{k}_{2} - protons' momenta in CM

$$
E_{X}=\left(\vec{k}_{1}-\vec{k}_{2}\right)^{2} / 4 m_{p}
$$

θ_{k} is the angle between vectors:

$$
\left(\vec{k}_{1}-\vec{k}_{2}\right) \text { and }\left(\vec{k}_{1}+\vec{k}_{2}\right)
$$

In place of radius and solid angle we introduce the hyperradius and hyper solid angle:

$$
r, \Omega \rightarrow \rho, \Omega_{5} \quad \Omega_{5}=\left\{\theta_{\rho}, \Omega_{X}, \Omega_{Y}\right\} \quad \rho=\frac{A_{1} A_{2} A_{3}}{A_{1}+A_{2}+A_{3}}\left(\frac{\vec{r}_{12}^{2}}{A_{3}}+\frac{\vec{r}_{23}^{2}}{A_{1}}+\frac{\vec{r}_{31}^{2}}{A_{2}}\right)
$$

Three-body model

- Cluster approximation (two protons and the core)
- Parent wave function:
$\Psi_{J M}\left(\rho, \Omega_{5}\right)=\frac{1}{\rho^{5 / 2}} \sum_{\alpha=\{K \ldots\}} \chi_{\alpha}(\rho) \mathcal{J}_{\alpha}^{J M}\left(\Omega_{5}\right)$
radial functions hyperspherical harmonics
\rightarrow Schrödinger equation, integration over angles:

$$
\left[\frac{d^{2}}{d \rho^{2}}-\frac{\mathcal{L}_{K}\left(\mathcal{L}_{K}+1\right)}{\rho^{2}}+\frac{2 \mu}{\hbar^{2}} E_{T}\right] \chi_{\alpha}(\rho)=\frac{2 \mu}{\hbar^{2}} \sum_{\alpha^{\prime}}\left(\hat{V}_{\alpha, \alpha^{\prime}}\right) \chi_{\alpha^{\prime}}(\rho) \quad \text { (coupled channels) }
$$

- Main problem: the asymptotic form of radial functions is not known!

Solution of Grigorenko and Zhukov:

$$
\chi_{\alpha}(\rho) \underset{\rho \rightarrow \infty}{\rightarrow} \sim \sum_{\alpha^{\prime}} \hat{A}_{\alpha, \alpha^{\prime}}\left[G_{\mathcal{L}_{0}}\left(\eta_{\alpha}, \kappa \rho\right)+i F_{\mathcal{L}_{0}}\left(\eta_{\alpha}, \kappa \rho\right)\right]
$$

$\hat{A}_{\alpha, \alpha^{\prime}}$ is the matrix which diagonalizes the Coulomb part of $\hat{V}_{\alpha, \alpha^{\prime}}$
\rightarrow From radial functions the width and correlations:

$$
\chi_{\alpha}(\rho) \Rightarrow \Gamma, d j / d \varepsilon d\left(\cos \theta_{k}\right)
$$

Full picture for ${ }^{45} \mathrm{Fe}$

> All observables are simultaneously well reproduced by the 3-body model

Full picture for ${ }^{6} \mathrm{Be}$

Radioactive beam experiment at Texas A\&M University
${ }^{10} \mathrm{C}$ inelastic scattering
(1) $\mathrm{p}\left({ }^{10} \mathrm{~B},{ }^{10} \mathrm{C}\right) \mathrm{n} @ 15 \mathrm{MeV} / \mathrm{u}$
(2) $11 \mathrm{MeV} / \mathrm{u}{ }^{10} \mathrm{C}+\mathrm{C} / \mathrm{Be} \rightarrow{ }^{10} \mathrm{C}^{*}$
(3) ${ }^{10} \mathrm{C}^{*} \rightarrow{ }^{6} \mathrm{Be}+\alpha$

Mercurio et al., PRC 78 (08) 031602(R) Grigorenko et al., PLB 677 (2009) 30

Case of ${ }^{19} \mathrm{Mg}$

Decay in-flight and tracking for very short-lived $2 p$ decays at GSI

Radioactive beam experiment
(1) ${ }^{24} \mathrm{Mg} @ 600 \mathrm{MeV} / \mathrm{u}+\mathrm{Be} \rightarrow{ }^{20} \mathrm{Mg}$ (2) ${ }^{20} \mathrm{Mg}+\mathrm{Be} \rightarrow{ }^{19} \mathrm{Mg}$
>Only projection of proton's momenta on the plane could be determined.

Mukha et al., PRL. 99 (2007) 182501
Mukha et al., PR C 77 (2008) 061303(R)

$2 p$ decays of ${ }^{48} \mathrm{Ni}$

Pomorski et al., Acta Phys. Pol. B 43 (2012) 267

$p-p$ correlations in ${ }^{54} \mathrm{Zn}$

$>{ }^{54} \mathrm{Zn}$ studied at GANIL with the Bordeaux TPC. Seven events reconstructed in 3D

Range of lifetimes

- The three-body model seems to work in the range of half-lives covering 18 orders of magnitude!
- Invariant mass method for broad resonanses

$$
\mathrm{T}_{1 / 2} \leq 10^{-19} \mathrm{~s}
$$

- In-flight decays

$$
\mathrm{T}_{1 / 2}=1 \mathrm{ps}-50 \mathrm{~ns}
$$

- Implantation method

$$
\mathrm{T}_{1 / 2}>50 \mathrm{~ns}
$$

Neutron radioactivity

$n, 2 n$, or $4 n$?

The xn emission estimated by a simplified version of 3-body model (direct decay model) and compared to proton emission

- Extremely small decay energy needed for a measurable decay time of 1 n emission.

Very unlikely to find a candidate in the s - d shell.

- Broader energy window thus higher chances to find a good case.
${ }^{26} \mathrm{O}$ could be a candidate!
-•• Special energy configuration required (only $S_{4 \mathrm{n}}<0$) but not impossible.
${ }^{7} \mathrm{H}$ and ${ }^{28} \mathrm{O}$ are not excluded!

Summary

- The particle radioactivity (p, α) at the proton drip-line is very efficient tool in nuclear spectroscopy. Yield masses (separation energies) of very exotic systems, provides stringent tests for models of nuclear structure.
- More than 40 proton-emitting states are known. 7 emitters exhibit fine structure.

Observation of g.s. proton radioactivity for $Z<50$ remains an experimental challenge.

- The observation of „superallowed" α-decay ${ }^{104} \mathrm{Te} \rightarrow{ }^{100} \mathrm{Sn}$ is approaching.
- The direct ground-state $\mathbf{2 p}$ emission established for ${ }^{6} \mathrm{Be},{ }^{19} \mathrm{Mg},{ }^{45} \mathrm{Fe},{ }^{48} \mathrm{Ni}$, and ${ }^{54} \mathrm{Zn}$. The hunt for other cases continues. ${ }^{30} \mathrm{Ar}$ and ${ }^{59} \mathrm{Ge}$ will be tried soon.
- The observation of full $\boldsymbol{p}-\boldsymbol{p}$ correlation picture in ${ }^{6} \mathrm{Be}$ and ${ }^{45} \mathrm{Fe}$ was the major breakthrough in the field. The 3-body model of Grigorenko and Zhukov was confirmed and the influence of nuclear structure on the $2 p$ emission was demonstrated. Further theoretical work is needed to elucidate this issue.
- Observation of two-neutron radioactivity is probable in nuclei accesible already now.

Thank you!

Radioactive decays

"Classical" era
α, β - Rutherford, 1899
β^{+}- Curie \& Joliot, 1934
EC - Alvarez, 1937
SF - Flerov \& Petrzhak, 1940

M. Pfützner, NS-152, June 10-15, 2012 Gothenburg

What is radioactive?

What is plotted on the chart? Present practice: all systems we know something about.
\rightarrow Suggestion: plot only long-lived, i.e. stable and radioactive (those which exist!)

Radioactivity

- Slow enough to form neutral atoms
- Characteristic time measured directly
- Independent of formation mechanism $T_{1 / 2} \geq 10^{-14} \mathrm{~s}$

Reactions/Resonances

- Fast on atomic scale
- Characteristic width measured directly
- Influenced by reaction mechanism

$$
\Gamma \geq 1 \mathrm{meV}
$$

Shape coexistence in ${ }^{186} \mathrm{~Pb}$

Alpha spectroscopy revealed surprizing nature of lowest excitations in ${ }^{186} \mathrm{~Pb}$: the three 0^{+}levels with different deformation. A unique case of interaction between proton p - h excitations across the closed shell $(Z=82)$ and large number of mid-shell neutrons, $N=(82+126) / 2$.

Andreyev et al., Nature 405 (2000) 430
M. Pfützner, NS-152, June 10-15, 2012 Gothenburg

[^0]: M. Pfützner, NS-152, June 10-15, 2012 Gothenburg

[^1]: M. Pfützner, NS-152, June 10-15, 2012 Gothenburg

[^2]: M. Pfützner, NS-152, June 10-15, 2012 Gothenburg

