Particle emission at the proton drip-line

NUCLEAR PHYSICS DIVISION UNIVERSITY OF WARSAW

Outline

- > Nuclei at the proton drip-line and beyond
- Optical TPC
- ➢ Reminder of ⁴⁵Fe
- Decay study of ⁴⁸Ni (and ⁴⁶Fe, ⁴⁴Cr)
- Attractive digression
- Search for new Ge isotopes

p drip-line is not a limit!

> The limit of "existence" beyond the proton drip-line is determined by emission of protons

The status of 2p emission

^{66,67}Kr Ground-state 2p radioactivity first observed ^{62,63}Se in ⁴⁵Fe. Later also in ⁵⁴Zn, ⁴⁸Ni and ¹⁹Mg ^{58,59}Ge ⁵⁴Zn In lighter nuclei due to small Coulomb ⁴⁸Ni barrier 2p emission is fast, $T_{1/2}(^{19}Mg) = 4 \text{ ps!}$ ⁴⁵Fe Below ¹⁹Mg 2p are emitted ³⁴Ca from broad resonances, ³⁰Ar like ⁶Be ²⁶S Reported by X. Xu (Tuesday) ¹⁹Mg and L. Grigorenko (Friday) True 2p emitters ^{15,16}Ne - expected/discussed 120- established 8**C** - *p*-*p* correlations determined ⁶Be

M. Pfützner@PROCON 2015, Lanzhou, China, 6-10 July, 2015

TPC detector

Time projection chamber with optical readout (OTPC)

Combination of the CCD image with the PMT waveform allows to fully reconstruct the track in three dimensions

Raw data and ion ID

Track reconstruction

> A track is reconstructed by comparing the data with the SRIM simulation

M. Pfützner@PROCON 2015, Lanzhou, China, 6-10 July, 2015

p-p correlations from ⁴⁵Fe

- 2p radioactivity offers more observables than 1p emission (correlations!)
- → Better test of nuclear models
- 3-body model consistently reproduces all observables for a certain composition of the initial wave function

Miernik et al., EPJA 42 (09) 431

Grigorenko *et al.,* PLB 677 (09) 30 M.P. et al., Rev. Mod. Phys. 84 (2012) 567

Study of ⁴⁸Ni

> NSCL/MSU, March 2011: ⁵⁸Ni at 160 MeV/u + ^{nat}Ni \rightarrow ⁴⁸Ni

Pomorski et al., PRC 90 (14) 014311

β -delayed protons from ⁴⁴Cr

β -delayed protons from ⁴⁶Fe

Pomorski et al., PRC 90 (14) 014311

2p decay of ⁴⁸Ni

Pomorski et al., PRC 90 (14) 014311

All decays of ⁴⁸Ni

M. Pfützner@PROCON 2015, Lanzhou, China, 6-10 July, 2015

2p decay of ⁴⁸Ni

A digression: decay of ⁶He

- A tiny decay branch into α + d ($\approx 10^{-6}$) provides insight into the halo of ⁶He
- Bunches of ⁶He ions were delivered by REX-ISOLDE and implanted into the OTPC
- Clear images of decay events with tracks of an α particle and a deuteron were recorded

A bunch of implanted ⁶He ions (red) and a ⁶He $\rightarrow \alpha$ + d decay plus background from thousands β electrons (green)

The spectrum of α + d

Raabe et al., PRC 80 (09) 054307 theory: Tursunov, Baye, Descouvemont, PRC73 (06) 014303

➔ By extending the spectrum to lower energy, we see 70% more intensity

M.P. et al., accepted by PRC

1650 decay events reconstructed

An advertisement

M. Pfützner@PROCON 2015, Lanzhou, China, 6-10 July, 2015

Ge isotopes at the proton drip-line

Stolz et al., Phys. Lett. B 627 (2005) 32

Lower cross section for the production of 60 Ge than expected \rightarrow does it indicate very short half-life?

Ten years after...

First observation of ⁵⁹Ge

Cross section for Ge isotopes

> Decay studies of ⁵⁹Ge possible. But at RIKEN one can go even further...

Summary

- The OTPC detector is a very efficient tool to search for very rare multiparticle decays or to investigate particle decays obscured by beta background.
- Can provide precise branching ratios for β-delayed particle channels. Although the energy resolution is worse than for Si detectors, yields complementary data for low-energy particles.
- Non-trivial 3-body character of 2p decay of ⁴⁵Fe discovered.
 2p decay of ⁴⁸Ni discovered.
- New decay channels, like β 3p (⁴⁵Fe, ⁴³Cr,...), observed for the first time. β 2p emission identified in ⁴⁶Fe based on one atom decay!
- New neutron-deficient isotope ⁵⁹Ge identified, first decay data for ⁶⁰Ge collected.
- Perhaps, one day we could use the OTPC at Lanzhou?

Thank you!

