

Emisja dwóch protonów jako granica spektroskopii jądrowej obraz całościowy

Marek Pfützner

Seminarium "Fizyka Jądra Atomowego", 15 maja 2014

Plan

- Mapa nuklidów i granice spektroskopii
- Emisja dwóch protonów (2p) stan obecny
- Uproszczone modele emisji 2p
- Emisja równoczesna a sekwencyjna
- Globalne przewidywania
 - → między cynkiem a telurem
 - → między telurem a ołowiem

The drip lines

The proton drip-line is close and almost fully delineated. In most cases, however, it is "invisible" when we cross it. The decay spectroscopy may stretch far beyond it.

The questions: how far beyond the proton drip-line we have to go to see the difference? How far is the limit?

The neutron drip-line is far from present experimental reach. It represents the real limit of decay spectroscopy – the region beyond, if accessible, is a domain of reactions.

N = 126

Beyond the proton drip-line

→ To find where the drip-line actually is and to predict which decay will happen, we need: a) atomic masses, b) decay models

The answer for even Z

> The limit of "existence" for even-Z elements is determined by two-proton emission

First 2p candidates

Light and medium masses can be precisely predicted by a trick based on the IMME:

 $BE(T_z = -T) = BE(T_z = T) - 2bT$

Binding energy of the neutrondeficient nuclide is calculated from the measured mass of its neutronrich analogue and from the calculated coefficient b (shell-model,

systematics...)

- Brown, PRC 43 (91) R1513
- Ormand, PRC 55 (97) 2407
- ★ exp
- Cole, PRC 54 (96) 1240
- Brown et al., PRC 65 (02) 045802

TPC with optical readout

→ Decay event ⁶He → α + *d* seen on the background of about 10⁴ beta rays

Three cases around Z=28

⁴⁵Fe

K. Miernik et al., PRL 99 (07) 192501

Pomorski et al., PRC 83 (2011) 061303(R)

⁵⁴Zn

Ascher et al., PRL 107 (2011) 102502

Grigorenko et al., PLB 677 (2009) 30

⁶Be and ¹⁹Mg

 $^{7}\text{Be} + \text{Be} \rightarrow ^{6}\text{Be} @ \text{NSCL}$

Egorova et al., PRL 109 (2012) 202502

 $^{20}Mg + Be \rightarrow ^{19}Mg @ GSI$

Mukha et al., PRL 99 (2007) 182501 Mukha et al., EPJA 42 (2009) 421

The current status of 2p emission

^{66,67}Kr Ground-state 2p radioactivity first observed ^{62,63}Se in ⁴⁵Fe. Later also in ⁵⁴Zn, ⁴⁸Ni and ¹⁹Mg ^{58,59}Ge ⁵⁴Zn In lighter nuclei due to small Coulomb ⁴⁸Ni barrier 2p emission is fast, $T_{1/2}(^{19}Mg) = 4 \text{ ps!}$ ⁴⁵Fe > Below ¹⁹Mg 2p are emitted ³⁴Ca from broad resonances, ³⁰Ar like ⁶Be ²⁶S ¹⁹Mg True 2p emitters ¹⁶Ne - expected/discussed ¹²O - established ⁶Be - p-p correlations determined

Heavier 2p candidates

>	Proton	drip-li	ne calo	ulatior	is for tl	ne rp-p	rocess	:	Sr 71 -0.02 (15 -2.06 (14	Sr 72	Sr 73 0.87 (78) 0.99 (19) 0.10 (34)	Sr 74 1.75 (70) 1.69 (21) 1.14 (29)	Sr 75 2.21 (78) 1.90 (73) 4.03 (17)	Sr 76 4.46 (30)
the measured masses combined with the									Rb70	Rb71	Rb 72	Rb73	Rb 74	
	Coulon	nb disp	laceme	ent ene	rgies				-2.04 (15 -0.93 (18) -1.38 (64)) -1.78 (19)) 0.36 (15)	-0.89 (38) -0.89 (35) 0.93 (39)	-0.59 (55) -0.55 (32) 4.26 (35)	2.13 (73)	
	calcula	ted by	HF wit	h the S	kX		🖌 Kr 67	Kr 68	Kr 69	Kr 70	Kr 71	Kr 72		l
Skyrme force							-0.05 (14) -1.76 (14)	1.28 (14) -0.62 (14)	1.11 (18 0.40 (18) 2.14 (19)) 1.41 (34)	1.81 (48) 4.39 (32)	4.01 (40)		
	,			I	Br 64	Br 65	Br 66	Br 67	Br 68	Br 69	Br 70			
				1	-2.89 (14) -2.78 (14)	-2.85 (14) -1.74 (14)	 -1.72 (14) -0.62 (14)	-1.63 (58) -1.90 (14) 0.54 (17)	-0.31 (57 -0.71 (20 1.36 (25) -0.45 (43)) -0.73 (32)) 4.06 (15)	2.58 (37)			
				Se 62	∕Se 63	Se 64	Se 65	Se 66	Se 67	Se 68				
				-0.10 (14) -2.76 (14)	0.11 (14) -1.51 (14)	1.11 (14) -0.29 (14)	0.69 (70) 1.09 (14) 0.81 (17)	2.43 (18) 2.00 (27)	2.07 (25 4.77 (17) 4.79 (31)))				
			As 60 -3.31 (66) -2.74 (14) -2.55 (14)	As 61 -2.43 (64) -2.66 (14) -1.60 (14)	As 62 -1.48 (42) -1.61 (14) -0.26 (14)	As 63 -1.13 (52) -1.40 (14) 1.13 (14)	As 64 -0.10 (41) -0.28 (17) 2.10 (10)	As 65 -0.08 (46) -0.43 (29) 4.59 (17)	As 66 2.70 (22)				
		Ge58 -0.24 (41) -0.16 (14) -2.38 (14)	Ge 59 0.30 (35) 0.19 (14) -1.16 (14)	Ge 60 0.94 (29) 1.06 (14) 0.09 (14)	Ge61 1.02 (32) 1.35 (14) 1.42 (14)	Ge 62 2.18 (24) 2.53 (14) 2.77 (10)	Ge 63 2.20 (20) 2.38 (14) 5.33 (14)	Ge64 5.02 (27)						
	Ga56 -2.89 (36) -2.63 (14) -1.99 (14)	Ga57 -2.54 (37) -2.22 (14) -0.79 (14)	Ga58 -1.41 (26) -1.35 (14) 0.19 (14)	Ga59 -0.88 (18) -0.97 (14) 1.36 (14)	Ga60 0.03 (12) 0.07 (14) 2.92 (10)	Ga61 0.45 (20) 0.24 (10) 5.36 (10)	Ga 62 2.94 (3)		S ⁻	trontium lement f	n (Z=38 [:] or whi) is the ch the	heavie precise	est
Zn 54 0.40 (48) 0.12 (14) -1.33 (14)	Zn 55 0.52 (33) 0.63 (14) 0.13 (14)	Zn 56 1.39 (40) 1.43 (14) 1.25 (14)	Zn 57 1.37 (20) 1.54 (14) 2.10 (14)	Zn 58 2.28 (5) 2.33 (14) 3.02 (10)	Zn 59 2.89 (4) 2.85 (10) 5.72 (10)	Zn 60 5.12 (1)			Q	Q_{2p} predictions were made				
Cu 53 I -1.90 (27) -1.45 (14) I.26 (14)	Cu 54 -0.40 (27) -0.50 (14) 2.20 (14)	Cu 55 -0.29 (30) -0.18 (14) 3.83 (14)	Cu 56 0.56 (14) 0.56 (14) 5.26 (10)	Cu 57 0.69 (2) 0.69 (10) 7.86 (10)	Cu 58 2.87 (0)				E	Brown et al	., PRC 65	(2002) 04	45802	

Nuclear landscape

Global mass predictions using density functional theory with 6 different Skyrme interactions

 \rightarrow There are 6900 ± 500 nuclei bound with Z \leq 120

Erler et al., Nature 486 (2012) 509

Simplified models

- By simplifying interactions describing the core+p+p system, the three-body decay can be reduced to the <u>combination of two-body processes</u>. With the simplified Hamiltonian, the problem can be solved exactly.
- → Two types of approximations are considered:

The simplified models are very useful to estimate decay rates and to verify numerical procedures used in the full three-body model.

Diproton model

➤ Jacobi T system → diproton model

The WKB approximation

The value of cluster overlap determined from the known half-lives of 2p emitters: ¹⁹Mg, ⁴⁵Fe, ⁴⁸Ni, and ⁵⁴Zn

Direct model

➤ Jacobi Y system → direct model

$$\Gamma_{2p,dir} = \frac{Q_{2p}}{2\pi} \left(Q_{2p} - 2E_p\right)^2 \int_0^1 d\varepsilon \frac{\Gamma_x \left(\varepsilon Q_{2p}\right)}{\left(\varepsilon Q_{2p} - E_p\right)^2 + \Gamma_x \left(\varepsilon Q_{2p}\right)^2 / 4} \times \frac{\Gamma_y \left((1 - \varepsilon) Q_{2p}\right)}{\left((1 - \varepsilon) Q_{2p} - E_p\right)^2 + \Gamma_y \left((1 - \varepsilon) Q_{2p}\right)^2 / 4}$$

Grigorenko and Zhukov, PRC 76 (07) 014009 M.P. et al, RMP (2012) 567

Direct model for known 2p emitters

2p-emission half-lives

Direct model

$$\Gamma_{2p,dir} \cong \frac{8Q_{2p}}{\pi \left(Q_{2p} - 2E_p\right)^2} \int_{0}^{1} d\varepsilon \Gamma_x \left(\varepsilon Q_{2p}\right) \Gamma_y \left((1 - \varepsilon)Q_{2p}\right)$$

$$\Gamma_{2p,dir} \cong \theta_x^2 \mathcal{N} \frac{\hbar^2}{2} \exp\left[-2\int_{0}^{r_{out}} k(r) dr\right]$$

Diproton model

$$\Gamma_{2p,dipr} = \theta_{dipr}^2 \mathcal{N} \frac{\hbar^2}{4\mu} \exp\left[-2 \int_{r_{in}}^{r_{out}} k(r) dr\right]$$

> The comparison of predicted half-lives with experiment

$$T_{1/2} = \frac{\ln 2\hbar}{\Gamma}$$

		$l_{\rm p}=0$	
Nucleus	Experiment	Direct	Diproton
¹⁹ Mg [7]	4.0(15) ps	6.2 ps	12.3 ps
⁴⁸ Ni [8]	3.7(4) ms $3.0^{+2.2}_{-1.2}$ ms	6.8 ms	8.7 ms 5.3 ms
⁵⁴ Zn [9]	$1.98^{+0.73}_{-0.41}$ ms	1.0 ms	0.8 ms

Predictions

- Nuclear binding energies: deformed DFT with six effective Skyrme interaction plus density-dependent zero-range pairing term (Erler et al., Nature 486 (2012) 509)
- The half-lives for 2p emission: estimated with the direct and diproton models. The α decay half-lives calculated using global, fenomenological formula by Koura, J. Nucl. Science and Tech. 49 (2012) 816

The adopted decay-time criterion (arbitrary):

we consider a nucleus to be a **2p decay candidate** predicted by a given mass (and decay) model when 100 ns < $T_{1/2}$ < 100 ms. Longer half-life will loose competition with β decay. Shorter will be difficult to detect using in-flight separation and implantation technique.

Counting:

a candidate has the model multiplicity m(Z,N) = kwhen it is predicted by k mass models.

Nickel and zinc in the direct model

Germanium

- > We predict ⁵⁷Ge to be 2p radioactive (m=2)
- Taking decay energies from Brown, the 2p half-life of ⁵⁸Ge comes shorter than 100 ns and that of ⁵⁹Ge longer than 100 ms
 Brown et al., PRC 65 (2002) 045802

⁵⁹Ge – do we have a chance?

> Observation of 2p decay of ⁵⁹Ge in rather unlikely, unless Brown et al. are wrong by 2σ ...

Heavy 2p landscape

Predictions of the direct model

True 2p landscape

Predicted candidates relative to the 2p dripline

 $100 \text{ ns} < T_{2p} < 100 \text{ ms}$

α -emission

> Global, fenomenological formula for α decay half-lives: H. Koura 2012

Koura, J. Nucl. Science and Tech. 49 (2012) 816

Tellurium

> At ¹⁰³Te a transition from the simultaneous 2p to the sequential emission occurs

> In addition, in ¹⁰³Te both decays, α and 2p may be observable!

Samarium

- When the energy condition for the true 2p decay is fulfilled, the predicted half-life is extremely long
- When the fast proton emission becomes possible, it proceeds as the sequential 2p decay

Hafnium

Between tellurium and lead

Full 2p landscape

Summary

- The direct (simultaneous) ground-state 2p emission established for ⁶Be, ¹⁹Mg, ⁴⁵Fe, ⁴⁸Ni, and ⁵⁴Zn. The hunt for other cases continues: ³⁰Ar, ⁵⁹Ge,....
- For every even-Z element between zinc and tellurium (Z=52) the isotopes decaying by 2p radioactivity in the time window 100 ns < $T_{1/2}$ < 100 ms are predicted.
- In ¹⁰³Te the competition between simultaneous 2p, sequential pp, and α emission may occur. For ¹⁴⁵Hf the competition between α and sequential pp is predicted.
- Above tellurium the limit of decay spectroscopy is represented by sequential pp emission, except for xenon (Z=54) where α decay dominates.
- Above lead (Z=82) α decay dominates, no 2p emission is expected to be observed.

Thank you!

