

Promieniotwórczość dwuprotonowa status i perspektywy

Marek Pfützner

Zakład Fizyki Jądrowej Uniwersytet Warszawski

Katedra Fizyki Teoretycznej, IF UMCS, Lublin, 10 stycznia 2017

Plan

Wstęp

- Mapa nuklidów i granice spektroskopii
- Emisja dwóch protonów (2p) stan obecny

Eksperymenty

- Potrzeba dokładnych mas
- Pierwsze obserwacje: energia i czas rozpadu
- Detektor warszawski i korelacje p-p
- Najnowsze wyniki

Modele

- Model trójciałowy (Grigorenko Zhukov)
- Przybliżenia dwuciałowe (direct i diproton)
- Globalne przewidywania

Podsumowanie

The drip lines

Beyond the proton drip-line

→ To find where the drip-line actually is and to predict which decay will happen, we need: a) atomic masses, b) decay models

p drip-line is not a limit!

> The limit of "existence" beyond the proton drip-line is determined by emission of protons

The current status of 2p emission

First 2p candidates

Light and medium masses can be precisely predicted by a trick based on the IMME:

 $BE(T_z = -T) = BE(T_z = T) - 2bT$

Binding energy of the neutrondeficient nuclide is calculated from the measured mass of its neutronrich analogue and from the calculated coefficient b (shell-model,

systematics...)

- Brown, PRC 43 (91) R1513
- Ormand, PRC 55 (97) 2407

- Cole, PRC 54 (96) 1240
- Brown et al., PRC 65 (02) 045802

First evidence for 2p emission

Total decay energy and time

The decay energy and the lifetime are enough to establish the 2p decay. Most models used for comparison are based on two-body approximations.

→ To explore fully the physics of the process, the correlations between proton's momenta must be determined! New detection technique is needed and a model capturing the three-body kinematics.

New idea – TPC with optical readout

OTPC – Optical Time Projection Chamber Wojciech Dominik, HEP Warsaw

Miernik et al., NIM A581 (2007) 194

OTPC operation

The CCD picture yields 2D projection of tracks of particles The PMT provides information on sequence, timing, and z-coordinate

Pomorski et al., PRC 83 (2011) 061303(R)

Three cases around Z=28

⁴⁵Fe

⁵⁴Zn

K. Miernik et al., PRL 99 (07) 192501 ≈ 80 events

Pomorski et al., PRC 83 (2011) 061303(R) **4 events**

Ascher et al., PRL 107 (2011) 102502 7 events

For ⁴⁵Fe the p-p momentum correlations has been established

Grigorenko *et al.*, PLB 677 (09) 30 M.P. et al., Rev. Mod. Phys. 84 (2012) 567

Heavier 2p candidates

>	Proton	drip-li	ne calc	ulatior	ns for tl	ne rp-p	rocess	:	Sr 71	Sr 72	Sr 73 0.87 (78) 0.99 (19) 0.10 (34)	Sr 74 1.75 (70) 1.69 (21) 1.14 (29)	Sr 75 2.21 (78) 1.90 (73) 4.03 (17)	Sr 76 4.46 (30)
the measured masses combined with the									Rb70	Rb71	Rb 72	Rb73	Rb 74	
Coulomb displacement energies								, -2.04 (15 -0.93 (18) -1.78 (19)) 0.36 (15)	-0.89 (38) -0.89 (35) 0.93 (39)	-0.55 (32) -0.25 (32) 4.26 (35)	2.13 (73)		
calculated by HF with the SkX						🖊 Kr 67	Kr 68	Kr 69 0.70 (74	Kr 70	Kr 71 1.80 (47)	Kr 72		I	
Skyrme force							-0.05 (14) -1.76 (14)	1.28 (14) -0.62 (14)	1.11 (18 0.40 (18) 2.14 (19)) 1.41 (34)	1.81 (48) 4.39 (32)			
	•			1	Br 64	Br 65	Br 66	Br 67	Br 68	Br 69	Br 70		,	
				1	-2.89 (14) -2.78 (14)	-2.85 (14) -1.74 (14)	 -1.72 (14) -0.62 (14)	-1.63 (58) -1.90 (14) 0.54 (17)	-0.31 (57 -0.71 (20 1.36 (25) -0.45 (43)) -0.73 (32)) 4.06 (15)	2.58 (37)			
				Se 62	✓ Se 63	Se 64	Se 65	Se 66	Se 67	Se 68				
				-0.10 (14) -2.76 (14)	0.11 (14) -1.51 (14)	1.11 (14) -0.29 (14)	0.69 (70) 1.09 (14) 0.81 (17)	1.96 (49) 2.43 (18) 2.00 (27)	1.96 (28 2.07 (25 4.77 (17) 4.79 (31)))				
			As 60 -3.31 (66) -2.74 (14) -2.55 (14)	As 61 -2.43 (64) -2.66 (14) -1.60 (14)	As 62 -1.48 (42) -1.61 (14) -0.26 (14)	As 63 -1.13 (52) -1.40 (14) 1.13 (14)	As 64 -0.10 (41) -0.28 (17) 2.10 (10)	As 65 -0.08 (46) -0.43 (29) 4.59 (17)	As 66 2.70 (22)				
		Ge58 -0.24 (41) -0.16 (14) -2.38 (14)	Ge 59 0.30 (35) 0.19 (14) -1.16 (14)	Ge 60 0.94 (29) 1.06 (14) 0.09 (14)	Ge61 1.02 (32) 1.35 (14) 1.42 (14)	Ge 62 2.18 (24) 2.53 (14) 2.77 (10)	Ge 63 2.20 (20) 2.38 (14) 5.33 (14)	Ge64 5.02 (27)						
	Ga56 -2.89 (36) -2.63 (14) -1.99 (14)	Ga57 -2.54 (37) -2.22 (14) -0.79 (14)	Ga58 -1.41 (26) -1.35 (14) 0.19 (14)	Ga59 -0.88 (18) -0.97 (14) 1.36 (14)	Ga60 0.03 (12) 0.07 (14) 2.92 (10)	Ga61 0.45 (20) 0.24 (10) 5.36 (10)	Ga 62 2.94 (3)		St	trontium lement f	n (Z=38 or whi) is the ch the	heavie precise	est
Zn 54 0.40 (48) 0.12 (14) -1.33 (14)	Zn 55 0.52 (33) 0.63 (14) 0.13 (14)	Zn 56 1.39 (40) 1.43 (14) 1.25 (14)	Zn 57 1.37 (20) 1.54 (14) 2.10 (14)	Zn 58 2.28 (5) 2.33 (14) 3.02 (10)	Zn 59 2.89 (4) 2.85 (10) 5.72 (10)	Zn 60 5.12 (1)		-	Q	Q_{2p} predictions were made				
Cu 53 -1.90 (27) -1.45 (14) 1.26 (14)	Cu 54 -0.40 (27) -0.50 (14) 2.20 (14)	Cu 55 -0.29 (30) -0.18 (14) 3.83 (14)	Cu 56 0.56 (14) 0.56 (14) 5.26 (10)	Cu 57 0.69 (2) 0.69 (10) 7.86 (10)	Cu 58 2.87 (0)		-		В	brown et al	., PRC 65	(2002) 04	45802	

First observation of ⁵⁹Ge

New results from RIKEN

French group at RIKEN, spring 2015

BigRIPS: ⁷⁸Kr @ 345 MeV/u + Be

- First observation of ⁶³Se, ⁶⁷Kr, and ⁶⁸Kr
- 1220 events of ⁵⁹Ge (!) and none for ⁵⁸Ge → unbound
- 2p emission in ⁶⁷Kr clearly observed $\rightarrow Q_{2p} = 1690(17) \text{ keV}, T_{1/2} = 7.4(30) \text{ ms}, b_{2p} = 37(14)\%$

Blank et al., PRC 93 (2016) 061301(R)

Jacobi coordinates

> Three-body kinematics is simpler in Jacobi coordinates. The *p*-*p* correlations are fully described by two variables: $\mathcal{E} = E_x / E_T$ and θ_k

In place of radius and solid angle we introduce the hyperradius and hyper solid angle:

$$r, \ \Omega \ \to \ \rho, \ \Omega_5 = \left\{\theta_{\rho}, \Omega_X, \Omega_Y\right\} \qquad \rho = \frac{A_1 A_2 A_3}{A_1 + A_2 + A_3} \left(\frac{\vec{r}_{12}}{A_3} + \frac{\vec{r}_{23}}{A_1} + \frac{\vec{r}_{31}}{A_2}\right)$$

Three-body model

- Cluster approximation (two protons and the core)
- Parent wave function:

$$\Psi_{JM}(\rho,\Omega_5) = \frac{1}{\rho^{5/2}} \sum_{\alpha = \{K,\ldots\}} \chi_{\alpha}(\rho) \mathcal{J}_{\alpha}^{JM}(\Omega_5)$$

radial functions

hyperspherical harmonics

→ Schrödinger equation, integration over angles:

$$\left[\frac{d^{2}}{d\rho^{2}}-\frac{\mathcal{L}_{K}(\mathcal{L}_{K}+1)}{\rho^{2}}+\frac{2\mu}{\hbar^{2}}E_{T}\right]\chi_{\alpha}(\rho)=\frac{2\mu}{\hbar^{2}}\sum_{\alpha'}\left(\hat{V}_{\alpha,\alpha'}\right)\chi_{\alpha'}(\rho) \quad \text{(coupled channels)}$$

Main problem: the asymptotic form of radial functions is not known!
 Solution of Grigorenko and Zhukov:

$$\chi^{+}_{\alpha}(\rho) \underset{\rho \to \infty}{\longrightarrow} \sim \sum_{\alpha'} \hat{A}_{\alpha,\alpha'} \Big[G_{\mathcal{L}_{0}}(\eta_{\alpha'}, \kappa \rho) + i F_{\mathcal{L}_{0}}(\eta_{\alpha'}, \kappa \rho) \Big]$$

 $\hat{A}_{\alpha, \alpha'}$ is the matrix which diagonalizes the Coulomb part of $\hat{V}_{lpha,lpha'}$

→From radial functions the width and correlations :

 $\chi^{+}_{\alpha}(\rho) \Rightarrow \Gamma, dj/d\varepsilon d(\cos\theta_k)$

Grigorenko and Zhukov, PRC 68 (03) 054005 M.P. et al, RMP (2012) 567

⁴⁵Fe: the wave function

The 3-body wave function can be expressed as a sum of terms having defined l^2 configuration: $\Psi_{JM} = \sum_i W_i \left[l_i^2 \right]_0$

By adjusting the potentials, the weights of different l^2 configurations can be modified

The ⁴⁵Fe wave function density $|\Psi|^2$ in the T system for $W(f^2) = 98\%$, $W(p^2) = 2\%$

p-p correlations in ⁴⁵Fe

Grigorenko et al., PLB 677 (2009) 30

M.P. et al., Rev. Mod. Phys. 84 (2012) 567

⁶Be and ¹⁹Mg

 $^{7}\text{Be} + \text{Be} \rightarrow ^{6}\text{Be} @ \text{NSCL}$

Egorova et al., PRL 109 (2012) 202502

 $^{20}Mg + Be \rightarrow ^{19}Mg @ GSI$

Mukha et al., PRL 99 (2007) 182501 Mukha et al., EPJA 42 (2009) 421

Simplified models

- By simplifying interactions describing the core+p+p system, the three-body decay can be reduced to the combination of two-body processes. With the simplified Hamiltonian, the problem can be solved exactly.
- → Two types of approximations are considered:

The simplified models are very useful to estimate decay rates and to verify numerical procedures used in the full three-body model.

Diproton model

➤ Jacobi T system → diproton model

The WKB approximation

The value of cluster overlap determined from the known half-lives of 2p emitters: ¹⁹Mg, ⁴⁵Fe, ⁴⁸Ni, and ⁵⁴Zn

Direct model

➤ Jacobi Y system → direct model

$$\Gamma_{2p,dir} = \frac{Q_{2p}}{2\pi} \left(Q_{2p} - 2E_p\right)^2 \int_0^1 d\varepsilon \frac{\Gamma_x \left(\varepsilon Q_{2p}\right)}{\left(\varepsilon Q_{2p} - E_p\right)^2 + \Gamma_x \left(\varepsilon Q_{2p}\right)^2 / 4} \times \frac{\Gamma_y \left((1 - \varepsilon) Q_{2p}\right)}{\left((1 - \varepsilon) Q_{2p} - E_p\right)^2 + \Gamma_y \left((1 - \varepsilon) Q_{2p}\right)^2 / 4}$$

Grigorenko and Zhukov, PRC 76 (07) 014009 M.P. et al, RMP (2012) 567

Direct model for known 2p emitters

Up to tellurium

Between tellurium and lead

Models of 2p emission

- > 3-body Grigorenko & Zhukov; Grigorenko et al., Phys. Rev. C 82 (2010) 014615
- R-matrix Brown & Barker Phys. Rev. C 67 (2003) 041304(R)
- SMEC (Shell Model Embedded in Continnum) Rotureau, Okołowicz, Płoszajczak, Nucl. Phys. A 767 (2006) 13
- > TDM (Time Dependent Method) Oishi, Hagino, Sagawa, Phys. Rev. C 90 (2014) 034303
- SATPE (simple approach, emission from a BCS pairing state) Delion, Liotta, Wyss, Phys. Rev. C 87 (2013) 034328
- RMF+BCS (only masses for candidates 20 < Z < 40) Singh & Saxena, Int. J. on Modern Phys. E 21 (2012) 1250076
- Femtoscopy in 2p decay Bertulani, Hussein, Verde, Phys. Lett B 666 (2008) 86

Review papers:

- "Two-proton radioactivity" Blank & Płoszajczak, Rep. Prog. Phys. 71 (2008) 046301
- "Radioactive decays at limits of nuclear stability" MP, Karny, Grigorenko, Riisager, Rev. Mod. Phys. 84 (2012) 567

Summary

- The simultaneous ground-state 2p emission established for ⁶Be, ¹⁶Ne, ¹⁹Mg, ⁴⁵Fe, ⁴⁸Ni, ⁵⁴Zn, and ⁶⁷Kr The hunt for other cases continues.
- For every even-Z element between zinc and tellurium (Z=52) the isotopes decaying by 2p radioactivity in the time window 100 ns < $T_{1/2}$ < 100 ms are predicted.
- Correlations between protons offer a new way to investigate nuclear structure. This feature is not yet explored. The only model predicting these correlations suggests the dependence on the initial wave function.
- Better theoretical description of 2p emission is strongly needed!
 It should combine a realistic description of the initial state with the correct
 3-body asymptotics.

Thank you!

Additional slides

2p decays of ⁴⁵Fe

Miernik et al., PRL 99 (2007) 192501 35/33

All decays of ⁴⁸Ni

2p decay of ⁴⁸Ni

Comparison with predictions

Grigorenko and Zhukov, PRC 68 (2003) 054005 Brown and Barker, PRC 67 (2003) 041304 Rotureau, Okołowicz, Płoszajczak, NPA 767 (2006) 13

→ Unfortunately, there are no predictions for the *p*-*p* correlations in ⁴⁸Ni \otimes

First observation of β 3p decay

⁴⁵Fe, NSCL 2007 Miernik et al., PRC 76 (07) 041304(R)

The only 3 cases known up to now

⁴³Cr, NSCL 2007 Pomorski et al., PRC 83 (2011) 014306

³¹Ar, GSI 2012

Lis et al., PRC 91, 064309 (2015)

Probing the 2n halo of ⁶He

- Weak decay branch (≈10⁻⁶) ⁶He → α + d provides insight into the 2n halo of ⁶He
- Bunches of ⁶He ions were delivered by REX-ISOLDE and implanted into the OTPC
- Clear images of decay events with tracks of an α particle and a deuteron were recorded by a CCD camera

A CCD image showing a bunch of implanted ⁶He ions (red) and a ⁶He $\rightarrow \alpha$ + d decay (green)

→ The spectrum extended to lower energy, reveals 70% more intensity.

Pfützner et al., PRC 92 (15) 014316

2p-emission half-lives

Direct model

$$\Gamma_{2p,dir} \cong \frac{8Q_{2p}}{\pi \left(Q_{2p} - 2E_p\right)^2} \int_{0}^{1} d\varepsilon \, \Gamma_x \left(\varepsilon Q_{2p}\right) \Gamma_y \left((1 - \varepsilon) Q_{2p}\right)$$

$$\Gamma_{2p,dir} \equiv \theta_x^2 \, \mathcal{N} \frac{\hbar^2}{2} \exp\left[-2\int_{0}^{r_{out}} k(r) \, dr\right]$$

Diproton model

$$\Gamma_{2p,dipr} = \theta_{dipr}^2 \mathcal{N} \frac{\hbar^2}{4\mu} \exp\left[-2 \int_{r_{in}}^{r_{out}} k(r) dr\right]$$

> The comparison of predicted half-lives with experiment

$$T_{1/2} = \frac{\ln 2\hbar}{\Gamma}$$

		$l_{\rm p}=0$	
Nucleus	Experiment	Direct	Diproton
¹⁹ Mg [7]	4.0(15) ps	6.2 ps	12.3 ps
⁴⁵ Fe [10]	3.7(4) ms	1.1 ms	8.7 ms
⁴⁸ Ni [8]	$3.0^{+2.2}_{-1.2}$ ms	6.8 ms	5.3 ms
⁵⁴ Zn [9]	$1.98^{+0.73}_{-0.41}$ ms	1.0 ms	0.8 ms

Full 2p landscape

α -emission

> Global, fenomenological formula for α decay half-lives: H. Koura 2012

Koura, J. Nucl. Science and Tech. 49 (2012) 816