

Egzotyczne nuklidy i promieniotwórczość dwuprotonowa

Marek Pfützner (Uniwerstet Warszawski)

Jądro atomowe

Mapa nuklidów

M. Pfützner, 100 lat PTF, Warszawa, 16-18 X 2020

Historia mapy nuklidów

1920

Michael Thoennessen

Discovery of Nuclides Project

https://people.nscl.msu.edu/~thoennes/isotopes/

Historia mapy nuklidów

Michael Thoennessen

Discovery of Nuclides Project

https://people.nscl.msu.edu/~thoennes/isotopes/

Fragmentacja pocisków

• implantację w materiał detektora

Odkrycie ⁴⁵Fe

VOLUME 77, NUMBER 14

PHYSICAL REVIEW LETTERS

30 September 1996

First Observation of the $T_z = -7/2$ Nuclei ⁴⁵Fe and ⁴⁹Ni

B. Blank, S. Czajkowski, F. Davi, R. Del Moral, J. P. Dufour, A. Fleury, C. Marchand, and M. S. Pravikoff Centre d'Etudes Nucléaires de Bordeaux-Gradignan, F-33175 Gradignan Cedex, France

J. Benlliure, F. Boué, R. Collatz, A. Heinz, M. Hellström, Z. Hu, E. Roeckl, M. Shibata, and K. Sümmerer Gesellschaft für Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany

Z. Janas, M. Karny, and M. Pfützner

Institute of Experimental Physics, University of Warsaw, PI 00 681 Warsaw, Hota 60 Poland

M. Lewitowicz Grand Accélérateur National des Ions Lourds, B.P. 502 (Received 25 July 1996)

A primary beam of ⁵⁸Ni at 600 MeV/nucleon from the produce proton-rich isotopes in the titanium-to-nickel region by target. The fragments were separated by a projectile-fragement We report here the first observation of the $T_z = -7/2$ nu rich nuclei ever synthesized with an excess of seven proton $(T_z = -3)$ was identified. According to commonly used m unbound with respect to two-proton emission from their grc of ³⁸Ti ($T_z = -3$) in this experiment, an upper limit of 120 isotope. [S0031-9007(96)01355-5]

Promieniotwórczość 2p

Odkrycie emisji 2*p* w ⁴⁵Fe

Jaki jest mechanizm emisji 2p?

Rozkład kąta między protonami (L. Grigorenko)

Warszawski detektor OTPC

0.125 · 0.1 · 0.1 ·

0.05

0.025 -

-0.025

-22u

-18u

-20u

-14u

-12u

-10u

-16u

- CCD → obraz rzutu torów na płaszczyznę poziomą
- PMT → a) czasowa sekwencja zdarzeń,
 - b) rozkład jonizacji w kierunku pionowym

Emisja 2*p* przez ⁴⁵Fe

NSCL/MSU, 2007: ⁵⁸Ni @ 161 MeV/u + ^{nat}Ni → ⁴⁵Fe

Miernik et al., PRL 99 (2007) 192501

87 zdarzeń emisji 2p

udało się zrekonstruować

Korelacje między protonami dla ⁴⁵Fe

Grigorenko and Zhukov, Phys. Rev. C 68 (2003) 054005

Miernik et al., EPJA 42 (2009) 431

Emisja 2p ma charakter trójciałowy

Obraz korelacji zależy od struktury stanu początkowego

Odkrycie emisji 2*p* w ⁴⁸Ni

NSCL/MSU, 2011: ⁵⁸Ni @ 161 MeV/u + ^{nat}Ni → ⁴⁸Ni

Pomorski et al., PRC 83 (2011) 061303(R)

Physical Review C 50th Anniversary Milestones

First observation of two-proton radioactivity in ⁴⁸Ni

A rare form of radioactivity, in which a proton-laden nucleus decays toward stability via the simultaneous emission of two protons, was observed for ⁴⁸Ni. Using an optical time-projection chamber, the two-proton emission of four ⁴⁸Ni nuclei produced at the National Superconducting Cyclotron Laboratory was captured for the first time on CCD camera, marking a new era of optical detection of sub-atomic charged-particle processes in nuclear physics.

First observation of two-proton radioactivity in ⁴⁸Ni

M. Pomorski, M. Pfützner, W. Dominik, R. Grzywacz, T. Baumann, J. S. Berryman, H. Czyrkowski, R. Dąbrowski, T. Ginter, J. Johnson, G. Kamiński, A. Kuźniak, N. Larson, S. N. Liddick, M. Madurga, C. Mazzocchi, S. Mianowski, K. Miernik, D. Miller, S. Paulauskas, J. Pereira, K. P. Rykaczewski, A. Stolz, and S. Suchyta

Badanie emisji 2*p* w ⁵⁴Zn

RIKEN, 2019: ⁷⁸Kr @ 350 MeV/u + ⁹Be → ⁵⁴Zn

Kubiela et al., to be published

Zebrana statystyka dla ⁴⁸Ni i ⁵⁴Zn jest zbyt mała Czekamy na laboratoria kolejnej generacji (FRIB, FAIR?)

Przemiana β z emisją protonów

Przemiana β może prowadzić do stanów wzbudzonych, w których proton jest niezwiązany. Występuje wtedy zjawisko opóźnionej emisji protonu (β p)

Rozpady ⁴⁵Fe i ⁴³Cr

Miernik et al., PRC 99 (2007) 041304R

Wszystkie przypadki przemiany $\beta 3p$

⁴⁵Fe NSCL 2007 Miernik et al., PRC 76 (2007) 041304(R)

⁴³Cr NSCL 2007 Pomorski et al., PRC 83 (2011) 014306

³¹Ar GSI 2012 Lis et al., PRC 91 (2015) 064309

²³Si Texas A&M 2017 Ciemny et al., to be published

Inne przypadki emisji cząstek po przemianie β

Badanie halo neutronowego w ⁶He.
Z prawdopodobieństwem ≈10⁻⁶ po przemianie β
następuje emisja d + α

MP et al., PRC 92 (2015) 014316

• Badanie halo neutronowego w 11 Be. Poszukujemy emisji opóźnionych protonów. Za to z prawdopodobieństwem \approx 3% występuje emisja opóźnionych cząstek α

Sokołowska et al., to be published

Podsumowanie

Świat nuklidów ciągle się poszerza, w ostatnich kilkunastu latach w tempie ok. 30/rok

Na granicach tego świata występują nowe procesy, jak bezpośrednia lub opóźniona emisja cząstek

Badanie nuklidów egzotycznych i ich rozpadów jest konieczne do zrozumienia np. kosmicznej nukleosyntezy

Zbudowaliśmy bardzo czuły i wydajny instrument (OTPC), który pozwala odkrywać nowe rozpady promieniotwórcze i zdobywać pierwsze informacje o nich

→ Plakaty: A. Giska (18:30) A. Kubiela (19:30)

M. Pfützner, 100 lat PTF, Warszawa, 16-18 X 2020