Radiacyjny wychwyt elektronu w przemianach wzbronionych zagadka wciąż nierozwiązana

Marek Pfützner

Zakład Spektroskopii Jądrowej

Seminarium Struktura Jądra Atomowego 23 listopada 2005

Plan

- Podstawy: wychwyt elektronu (EC) i jego radiacyjna odmiana (REC)
- Przegląd wyników uzyskanych w ZSJ
- Elementy opisu teoretycznego REC
- Przypomnienie wyników dla ⁴¹Ca, ⁵⁹Ni postawienie problemu
- Model Kalinowskiego przejść okrężnych
- Kolejny problem: ²⁰⁴TI,
- Ostatni eksperyment: ⁸¹Kr
- Wnioski i podsumowanie

Wychwyt elektronu

$${}^{A}_{Z}X + e^{-} \rightarrow {}^{A}_{Z-1}Y^{*} + \nu_{e}$$

$${}^{L}_{a} = {}^{A}_{Z-1}Y + nX$$

Energia neutrina: $Q_v = Q_{EC} - B_n$

Koncentrujemy się na:

- przemianach między stanami podstawowymi
- wychwytach z powłoki K (1s)
- przemianach wzbronionych

$$\begin{split} \left|I_{i}-I_{f}\right| = 2 & \pi_{i} \neq \pi_{f} \quad (1u) \ 1^{\text{st}} \text{ forbidden unique} \\ \pi_{i} = \pi_{f} \quad (2nu) \ 2nd \text{ forbidden nonunique} \end{split}$$

Radiacyjny wychwyt elektronu (REC)

Energia fotonu (i neutrina) w przedziale od 0 do $Q_{\text{max}} = Q_{EC} - B_n$

wewnętrzne promieniowanie hamowania (IB - internal bremsstrahlung) przejścia okrężne (detour)

W doświadczeniu mierzymy widmo fotonów γ w koincydencji z fotonami KX(Z-1) \rightarrow wybieramy w ten sposób składową REC-1s

REC w przemianach dozwolonych

Zaawansowany model teoretyczny mechanizmu IB:

R.J. Glauber (!), P.C. Martin, Phys. Rev. 104 (1956) 158.

Liczne pomiary radiacyjnego wychwytu elektronu w przemianach dozwolonych wykazały dobrą zgodność z modelem Glaubera, Martina

→ mechanizm przejść detour nie wnosi żadnego wkładu!

Hayward & Hoppes, PR104 (1956) 183.

REC w przemianach wzbronionych

Zaawansowany model teoretyczny IB dla dowolnego stopnia wzbronienia: B.A. Zon, L.P. Rapoport, Sov. J. Nucl. Phys. 7 (1968) 330.

Brak danych na temat zjawiska REC towarzyszącego przemianom wzbronionym skłonił prof. J. Żylicza do zainicjowania tych badań w ZSJ
→ test teorii ZR i poszukiwanie wkładu przejść okrężnych.

Od 1983 r. zbadaliśmy następujące przypadki:

- ${}^{41}Ca (7/2^{-}) \rightarrow {}^{41}K (3/2^{+})$ 1u P.Hornshoj i in., Nucl. Phys. A472 (1987) 139.
- ${}^{59}\text{Ni}(7/2^{-}) \rightarrow {}^{59}\text{Co}(3/2^{-})$ 2nu Z.Janas i in., Nucl. Phys. A524 (1991) 391.
- ${}^{137}La (7/2^+) \rightarrow {}^{137}Ba (3/2^+) 2nu$ M.Pfützner i in., Nucl. Phys. A611 (1996) 270.
- ${}^{204}\text{Tl}(0^+) \rightarrow {}^{204}\text{Hg}(2^-)$ 1u J.Kurcewicz i in., Nucl. Phys. A728 (2003) 3.

• ⁸¹Kr (7/2⁺) \rightarrow ⁸¹Br (3/2⁻) 1u E.Werner-Malento, praca mag. WF UW 2005.

Zmierzone widma REC-1s

Wszystkie widma są znormalizowane na jeden bezradiacyjny wychwyt K

Elementy teorii

W najprostszym podejściu (Morrison, Schiff, 1940) rozkład prawdopodobieństwa emisji fotonu REC-1s o energii k, na jeden bezpromienisty wychwyt K wynosi:

$$\left(\frac{dw_{1s}^{IB}}{w_{1s}}\right)_{MS} = \frac{\alpha}{\pi (mc^2)^2} \frac{k(q_{1s}-k)^2}{q_{1s}^2} dk$$

Przewidywania bardziej zaawansowanych modeli przedstawia się w postaci:

$$\frac{dw_{1s}^{REC}}{w_{1s}} = \left(\frac{dw_{1s}^{IB}}{w_{1s}}\right)_{MS} \cdot R_{1s}(k)$$

 $R_{1s}(k)$ - czynnik kształtu

Zmierzone widma REC-1s

Czerwona linia pokazuje przewidywanie modelu Morrisona, Schiffa

$$\frac{dw_{1s}^{REC}}{w_{1s}} = \left(\frac{dw_{1s}^{IB}}{w_{1s}}\right)_{MS} \cdot R_{1s}(k) \qquad \qquad R_{1s}(k) - \text{czynnik kształtu}$$

Przy zaniedbaniu efektów kulombowskich dla przemian o $\Delta I = 2$:

$$\left(R_{1s}^{IB}\right)_{CF} = \left(1 - \frac{k}{q_{1s}}\right)^2 + \Lambda \left(\frac{k}{q_{1s}}\right)^2$$

 Λ - kombinacja jądrowych elementów macierzowych

W pełnym modelu Zona, Rapoporta, dla przemian o $\Delta I = 2$:

$$\left(R_{1s}^{IB}\right)_{ZR} = \left(1 - \frac{k}{q_{1s}}\right)^2 R_{1s}^{(1)}(k) + \Lambda\left(\frac{k}{q_{1s}}\right)^2 R_{1s}^{(2)}(k)$$

gdzie $R_{1s}^{(1)}(k)$, $R_{1s}^{(2)}(k)$ to tzw. funkcje Zona, obliczane numerycznie.

Dla przemian typu 1 $\Lambda \equiv 1$

→ widmo IB nie zależy wtedy od jądrowych elementów macierzowych !!!

Zagadka

W ⁴¹Ca obserwujemy 5-krotnie więcej promieniowania niż przewiduje model CF i 6-krotnie więcej niż model ZR! W ⁵⁹Ni obserwujemy 2-krotnie więcej promieniowania niż przewiduje model ZR. Ale wartość Λ dobrano tak, aby uzyskać zgodność kształtu.

Model przejść okrężnych Kalinowskiego

Model Kalinowskiego opiera się na obserwacji, że operator przemiany 1u można przedstawić jako złożenie operatorów przemiany dozwolonej GT i przejścia E1.

Podobnie, przemiana 2nu odpowiada złożeniu przemiany 1nu i E1.

Przejścia okrężne mogą konkurować z promieniowaniem hamowania (IB) towarzyszącym przemianom o wyższym stopniu wzbronienia.

Ł. Kalinowski, Nucl. Phys. A551 (1993) 473

Ł. Kalinowski i in., Nucl. Phys. A537 (1992) 1

Przykład: obraz jednocząstkowy przemiany $^{41}\mathrm{Ca} \rightarrow ^{41}\mathrm{K}$

W modelu Kalinowskiego czynnik kształtu widma REC-1s ma postać:

$$\left(R_{1s}^{REC}\right)_{DT} = \left(R_{1s}^{IB}\right)_{ZR} + 2\left(\frac{e_{eff}}{q_{1s}}\right)^2 + \sqrt{\Lambda}A_{1s}^{21}(k)\frac{e_{eff}}{q_{1s}^2} + \sqrt{\Lambda}A_{1s}^{21}(k)\frac{e_{eff}}{q_{1s}^2}$$

 $A_{1s}^{21}(k)$ - jedna z funkcji Zona (składnik $R_{1s}^{(2)}(k)$) obliczana numerycznie.

 $e_{e\!f\!f}$ - ładunek efektywny: $e_{e\!f\!f} = e_{e\!f\!f}^{(i)} - e_{e\!f\!f}^{(f)}$,

Dla przemiany 1u:

$$e_{eff}^{(i)} = \frac{1}{e} \sum_{n} \sqrt{\frac{4\pi}{2I_n + 1}} \frac{\left\langle f \| T(GT) \| n \right\rangle \left\langle n \| T(E1) \| i \right\rangle}{\left\langle f \| T(1u) \| i \right\rangle} \qquad T(E1) = \left[e_{\pi} \frac{1 - \tau_0}{2} + e_{\nu} \frac{1 + \tau_0}{2} \right] r Y_1$$

$$F(GT) = \frac{\lambda}{\sqrt{4\pi}} \sigma \tau_+$$

$$e_{eff}^{(f)} = \frac{1}{e} \sum_{n} \sqrt{\frac{4\pi}{2I_n + 1}} \frac{\left\langle f \| T(E1) \| n \right\rangle \left\langle n \| T(GT) \| i \right\rangle}{\left\langle f \| T(1u) \| i \right\rangle} \qquad T(1u) = \lambda r(\sigma Y_1)_2 \tau_+$$

W przybliżeniu wartość e_{eff} powinna być bliska jedności. Zwykle traktujemy ją jako wolny parametr.

Rozwiązanie zagadki (?)

Dodanie wkładu przejść okrężnych do mechanizmu IB pozwala dobrze opisać kształt i intensywność widma REC-1s w ⁴¹Ca i ⁵⁹Ni.

Wątpliwość: pomiar stosunku β^+/K dla ⁵⁹Ni sugeruje jednak, że $\Lambda = 1.0 \pm 0.3$

Przypadek ²⁰⁴TI

W ²⁰⁴TI obserwujemy 2-krotnie więcej promieniowania niż przewiduje model CF ale 4-krotnie mniej niż model ZR!

Dodanie przejść okrężnych do modelu ZR tylko pogarsza sytuację, niezależnie od znaku e_{eff} !

Ostatni eksperyment: ⁸¹Kr

Historia próbki ⁸¹Kr:

- propozycja eksperymentu w ISOLDE początek 1996
- pierwsze naświetlanie VIII 1998, awaria targetu po kilku zmianach,
- drugie naświetlanie VI 1999, awaria zasilania w CERN,
- trzecie naświetlanie VIII 2000, udane,
- monitorowanie kontaminacji (w ramach III Pracowni 2001, 2002, 2003),
- pomiar REC w koincydencji z Br-KX I-II 2005 (praca mag. E. Werner-Malento)

Produkcja ⁸¹Kr na separatorze ISOLDE:

- kruszenie tarczy ⁹³Nb wiązką protonów (1GeV), 3 × 10¹³ p/puls,
- separacja masowa produktów o masie A = 81,
- implantacja produktów (o energii 50 keV) w folię aluminiową.

- Głównym produktem był ⁸¹Rb, który po zatrzymaniu w folii przechodził w ⁸¹Kr.
- Najważniejsze zanieczyszczenia, ⁸²Sr i
 ⁸³Rb, produkowane z natężeniem ≈10⁻⁵ (!) w stosunku do ⁸¹Rb uniemożliwiły badanie zjawiska REC przez 5 lat od naświetlania!
- Końcowa próbka zawierała
 ok. 4 ×10¹⁵ atomów ⁸¹Kr (≈ 0.5 μg).
- Pomiar koincydencyjny γ-REC KX trwał 38.6 dni. Intensywność promieniowania Br-KX wynosiła ok. 100 zliczeń/s, Dobre zdarzenie koincydencyjne
 ^{9.7 ps} występowało średnio co 15 min.

Sr81	Sr82	Sr83	Sr84	Sr85	Sr86
22.3 m	25.55 d	32.41 h		64.84 d	.
1/2-	0+	7/2+	0+	9/2+	0+
EC	E	EC	0.56	EC	9.86
Rb80	Rb81	Rb82	Rb83	Rb84	Rb85
34 s	4.576 h	1.273 m	86.2 d	32.77 d	
1+	3/2- *	1+ *	5/2-	2- *	5/2-
EC	EC	EC	E	EC,β-	72.165
Kr79	Kr80	Kr81	Kr82	Kr83	Kr84
35.04 h		2.29E+5 y			
1/2- *	0+	7/2+	0+	9/2+	0+
EC	2.25	EC	11.6	11.5	57.0
Br78	Br79	Br80	Br81	Br82	Br83
6.46 m		17.68 m		35.30 h	2.40 h
1+	3/2-	1+ *	3/2-	5- *	3/2-
EC,β ⁻	50.69	EC,β ⁻	49.31	β-	β-
Se77	Se78	Se79	Se80	Se81	Se82
		1.13E6 y		18.45 m	1.08E+20 y
1/2-	0+	7/2+	0+	1/2-	0+
7.63	23.78	β-	49.61	β-	p-p- 8.73

Układ doświadczalny

Widmo REC-1s w ⁸¹Kr

W ²⁸¹Kr obserwujemy 5-krotnie więcej promieniowania niż przewiduje model CF a 2-krotnie więcej niż model ZR!

Przez dodanie przejść okrężnych nie da się uzyskać zgodności co do kształtu i intensywności promieniowania.

Wniosek: model Zona i Rapoporta błędnie opisuje wewnętrzne promieniowanie hamowania (IB), przynajmniej dla dużych Z. Nie da się stwierdzić czy (i jak duży) wkład wnosi mechanizm przejść okrężnych dopóki nie potrafimy dobrze opisać mechanizmu IB.

$$\left(R_{1s}^{IB}\right)_{ZR} = \left(1 - \frac{k}{q_{1s}}\right)^2 R_{1s}^{(1)}(k) + \Lambda\left(\frac{k}{q_{1s}}\right)^2 R_{1s}^{(2)}(k)$$

$$R_{1s}^{(1)}(k) = \frac{1}{2} \left[\left(A^{11}(k) \right)^2 + \left(B^{11}(k) \right)^2 \right]$$

 γ (M1), elektron chwytany ze stanu $S_{1/2}$

$$R_{1s}^{(2)}(k) \propto \frac{1}{8} \left\{ \left(A^{21}(k) \right)^2 + \left(B^{21}(k) \right)^2 + 3 \left[\left(A^{22}(k) \right)^2 + \left(B^{22}(k) \right)^2 \right] \right\}$$

 γ (E1) γ (M2)
elektron chwytany ze stanu P_{3/2}

Funkcja B^{21} jest bardzo czuła na ładunek jądra (Z) i zależy też od promienia jądrowego. Jej wkład łatwo ujawnić kładąc B^{21} = 1.

Widmo REC-1s w przypadku ¹³⁷La zgodne z teoria ZR dla Λ =0 !

Jeśli czynnik Λ rzeczywiście wynosi 0 w tym przypadku, to oznacza, że tylko funkcja $R^{(1)}(k)$ odgrywa rolę w opisie IB (elektron chwytany ze stanów S_{1/2}, γ - M1) i wyczerpująco je opisuje, a przejścia okrężne nie występują.

Podsumowanie

- Zmierzyliśmy rozkład prawdopodobieństwa promieniowania towarzyszącego wychwytowi elektronu (REC) w przemianach wzbronionych typu 1u (⁴¹Ca, ⁸¹Kr, ²⁰⁴TI) i typu 2nu (⁵⁹Ni, ¹³⁷La).
- Kształt i intensywność promieniowania REC-1s, we wszystkich przypadkach (z wyjątkiem ¹³⁷La), jest niezgodny z przewidywaniem zaawansowanego modelu Zona i Rapoporta rozwiniętego specjalnie dla przemian wzbronionych.
- Wkład od mechanizmu przejść okrężnych wg modelu Kalinowskiego jest możliwy, ale nie jest w stanie wyjaśnić wszystkich rozbieżności (→ ²⁰⁴TI). Aby go ocenić, należy najpierw poprawnie opisać mechanizm wew. prom. hamowania (IB).
- W modelu ZR 'podejrzana' jest funkcja B²¹(k), bardzo czuła na wartość ładunku i promienia jądra.
- Do pełnego obrazu przydałoby się obliczyć/zmierzyć wartość współczynnika Λ dla ¹³⁷La (pomiar L₃/K).
- Najlepszym dowodem na występowanie przejść okrężnych byłby pomiar polaryzacji promieniowania REC.

Współpracownicy

P. Hornshøj, H.L. Nielsen

Uniwersytet w Aarhus, Dania

J. Żylicz, A. Płochocki, Z. Janas, B. Szweryn, K. Rykaczewski, T. Batsch, J. Kurpeta, J. Kurcewicz, E. Werner-Malento Ł. Kalinowski

ZSJ

T. Nilsson CERN/ISOLDE