Niezwykłe przemiany egzotycznych nuklidów

Marek Pfützner Instytut Fizyki Doświadczalnej Uniwersytet Warszawski

Świder, 7 maja 2004

"Poziomy" materii

Nuklidy

- Nuklid (atom, zazwyczaj obojętny elektrycznie) :
 Z protonów + N neutronów + Z elektronów
- ► Nuklid pozbawiony części (lub wszystkich) elektronów → jon
- Liczba Z decyduje o własnościach chemicznych
 pierwiastki chemiczne

► Różne liczby N → izotopy

Nuklidy trwałe

Nuklidy egzotyczne

W warunkach ziemskich niezwykle trudne do wytworzenia i bardzo nietrwałe.

Przykłady :

- Izotopy o wielkim niedoborze lub nadmiarze neutronów, czyli nuklidy bardzo dalekie od ścieżki trwałości.
- Jony o wielkim ładunku elektrycznym, np. jądra ciężkich pierwiastków całkowicie odarte z elektronów orbitalnych.

Od niedawna wytwarzane i badane w laboratoriach dzięki nowym technikom :

- → przyspieszania ciężkich jonów do energii relatywistycznych,
- → separacji produktów reakcji jądrowych,
- → utrzymywania jonów w pierścieniu kumulacyjnym.

Dwa przykłady

Ilustracja nowoczesnych metod doświadczalnych : dwa zjawiska po raz pierwszy zaobserwowane w GSI.

- Niezwykła przemiana beta, która może zachodzić tylko wtedy, gdy atom pozbawiony jest wszystkich elektronów.
- 2. Nowy rodzaj promieniotwórczości, który może ujawnić się tylko w nuklidach skrajnie neutrono-deficytowych.

Zwykła przemiana beta

- Wydzielona energia Q jest unoszona przez elektron i antyneutrino, które uciekają z nuklidu końcowego.
- Przemiana może zachodzić do różnych stanów jądra końcowego.

Przypadek ¹⁸⁷Re

Przemiana zjonizowanego ¹⁸⁷Re

Przemiana zjonizowanego ¹⁸⁷Re

Przemiana zjonizowanego ¹⁸⁷Re

- Zabieramy wszystkie elektrony orbitalne.
- Zwykła przemiana β nie jest teraz możliwa !
- Ale emitowany elektron może zatrzymać się na pustym orbitalu atomowym !

Przemiana beta do stanu związanego

Laboratorium GSI Darmstadt

Pierścień kumulacyjny ESR

Fragment pierścienia ESR

Pomiar m/q w pierścieniu ESR

 $(m/q)_1 > (m/q)_2 > (m/q)_3 > (m/q)_4$

Intensywność

Pomiar ¹⁸⁷Re w pierścieniu ESR

Wynik eksperymentu

Liczba jonów ¹⁸⁷Os⁷⁶⁺ w funkcji czasu

Wniosek :
 Półokres rozpadu całkowicie zjonizowanego ¹⁸⁷Re :
 T_{1/2}= 32.9 ± 2.0 lat

Półokres rozpadu obojętnego ¹⁸⁷Re : $T_{1/2} = 42.3 \cdot 10^9$ lat

Jeśli ¹⁸⁷Re pozbawimy elektronów, to rozpada się miliard (10⁹) razy szybciej !

Kosmiczny zegar

¹⁸⁷Os

- Długożyciowe nuklidy, jak ¹⁸⁷Re, pomagają wyznaczyć wiek naszej Galaktyki.
- W trakcie swej historii ¹⁸⁷Re mógł znajdować się w warunkach b. wysokiej temperatury (wnętrza gwiazd), gdzie był zjonizowany. Zegar oparty na tym nuklidzie przyspiesza wtedy do 10⁹ razy.

Efektywne tempo zaniku ¹⁸⁷Re zależy od :

- T_{1/2} w stanie obojętnym i zjonizowanym (fizyka jądrowa),
- chemicznej ewolucji Galaktyki (astrofizyka).

Obecny stan wiedzy :

 $T_{1/2}^{eff}$ (¹⁸⁷Re) \approx 25 Gy \rightarrow wiek Galaktyki : $T_G > 12$ Gy

Chwila odprężenia

Na skraju neutrono-deficytowym

Gdy przesuwamy się w stronę malejącej liczby neutronów, osiągamy tzw. linię odpadania protonu, poza którą protony przestają być związane w jądrze.

- Występuje tu zjawisko promieniotwórczości protonowej.
- Odkryto je w GSI w 1981 r. badając ¹⁵¹Lu.

7 = 82

Model "minigolfowy"

151

Sytuację cząstki naładowanej w jądrze dobrze ilustruje model "minigolfowy". Proton, mimo, że ma dodatnią energię potencjalną nie może łatwo opuścić jądra – musi pokonać barierę potencjału.

Zachodzi tu kwantowe "przenikanie przez ścianę" !

Prawdopodobieństwo tunelowania (półokres rozpadu) bardzo silnie zależy od grubości bariery (energii cząstki).

1 MeV

Promieniotwórczość dwuprotonowa

W 1960 r. przewidziano możliwość przemiany, w której z jądra wyrzucane są jednocześnie dwa protony. Należy jej szukać w bardzo neutronodeficytowych nuklidach o parzystej liczbie Z, w których emisja jednego protonu jest energetycznie niemożliwa.

Przy pomocy obliczeń teoretycznych wytypowano najlepszych kandydatów : ⁴⁵Fe, ⁴⁸Ni, ⁵⁴Zn.

Jak rozpada się ⁴⁵Fe ?

Aby doszło do emisji 2p oba protony muszą przetunelować przez barierę zanim zajdzie przemiana β⁺
→ 1 μs < T_{2p} < 10 ms; E_{2p} ≈ 1 MeV

Wyzwanie dla eksperymentu

- Bardzo trudno wytworzyć ⁴⁵Fe : można liczyć najwyżej na kilkanaście atomów.
- Dostrzec słaby sygnał (1 MeV) kilka µs po zatrzymaniu ⁴⁵Fe (1000 MeV).
- Odróżnić 2p od β+.

Jak dobrać się do nuklidów na skraju mapy ?

Laboratorium GSI Darmstadt

FRS : separator fragmentów w GSI

Czas przelotu jonu $\rightarrow v$ Tor lotu + pole B $\rightarrow B\rho$ $\rightarrow A/q \approx A/Z$ Strata energii ΔE w komorze jonizacyjnej $\rightarrow Z$

Separator FRS

Przykład identyfikacji jonów

Pierwsza obserwacja trzech nowych nuklidów : ⁴²Cr, ⁴⁵Fe i ⁴⁹Ni. GSI, 1996.

Detekcja rozpadu ⁴⁵Fe

Wyniki eksperymentu w GSI

- Lipiec 2001 : 5 dni pomiaru
- Fragmentacja jonów
 ⁵⁸Ni, E = 650 MeV/u
- Separator FRS → 6 jonów ⁴⁵Fe
- Zaobserwowano 5 skorelowanych rozpadów:
 - 4 zdarzenia : $E \approx 1 \text{ MeV}$ (bez γ)
 - ► 1 przypadek : E \approx 10 MeV + γ
- Interpretacja : emisja 2p jest głównym (80%) sposobem rozpadu ⁴⁵Fe

$$\begin{array}{l} {E_{2p} = 1.1(1) \ MeV} \\ {T_{1/2} = 3.4^{+3.4}_{-1.1} \ ms} \end{array}$$

Eksperyment w GANIL (Francja)

- Lipiec 2000 : 36 godz. pomiaru
- Fragmentacja jonów : ⁵⁸Ni, E = 75 MeV/u
- Separator LISE \rightarrow 22 jonów ⁴⁵Fe
- Zaobserwowano :
 - 12 zliczeń w wąskim piku
 - żadnych cząstek β i γ w koincydencji
- → Potwierdzenie wyniku z GSI $E_{2p} = 1.14(5) \text{ MeV}$ $T_{1/2} = 4.7^{+3.4}_{-1.4} \text{ ms}$

Czy na pewno 2p?

W eksperymencie zmierzyliśmy tylko sumaryczną energię wydzieloną w przemianie. Skąd wiemy, że była to emisja 2p ? Nie zarejestrowaliśmy przecież tych dwu cząstek oddzielnie.

Wykorzystujemy dotychczasową wiedzę i obliczenia teoretyczne.

Hipotezy alternatywne :

- ► Emisja jednego protonu \rightarrow E_p = 1 MeV : T_{1/2} < 1 × 10⁻¹⁵ s.
- ► Emisja cząstki α → E_p = 1 MeV : T_{1/2} ≈ 10¹⁰ s.
- ► Przemiana β^+ → prawdopodobieństwo ucieczki fotonów γ : ~10⁻⁵, przewidywana energia ~ 10 MeV.

Przewidywanie dla emisji 2p :

Obliczona energia rozpadu : 1.15 ±0.09 MeV.

Następne kroki

- Poszukiwanie innych nuklidów podlegających rozpadowi 2p.
- Konieczna jest detekcja obydwu emitowanych protonów oddzielnie i określenie korelacji między nimi (np. rozkładu kątów).
 - Pytanie fizyczne :

czy oba protony uciekają niezależnie od siebie, czy też tworzą wirtualną cząstkę (diproton) na czas przejścia przez barierę potencjału ?

Podsumowanie

- Przyspieszanie ciężkich jonów do dużych energii (> 50 MeV/nukleon) otworzyło nowe kierunki badań.
- Dzięki nowoczesnym urządzeniom (separator, pierścień kumulacyjny) można wytwarzać i badać z wielką czułością (pojedyncze atomy !), m.in.:
 - wysoko zjonizowane atomy ciężkich pierwiastków,
 - nuklidy b. dalekie od trwałości.
- Jako ilustrację nowych metod doświadczalnych przedstawiłem dwa ważne wyniki uzyskane w GSI Darmstadt :
 - rozpad beta do stanu związanego,
 - promieniotwórczość dwuprotonową.
- Przykłady innych osiągnięć :
 - identyfikacja > 100 nowych izotopów,
 - pomiar mas kilkuset nuklidów dalekich od trwałości,
 - testowanie QED w silnym polu E.
- Podobne techniki badawcze stosuje się też w laboratoriach :
 - GANIL w Caen (Francja),
 - RIKEN k/Tokio (Japonia),
 - NSCL w East Lansing (USA).

Planowana rozbudowa GSI

Projekt zatwierdzony do realizacji -> http://www.gsi.de

Chłodzenie elektronami

Elektronowa chłodziarka

Jak zarejestrować oba protony ?

Pomysł komory dryfowej z odczytem optycznym (prof. W. Dominik)

Planowane intensywności wiązek radioaktywnych

GSI Conceptual Design Report

Procesy nukleosyntezy

